Advances in Biochemistry
Volume 3, Issue 6, December 2015, Pages: 96-112

Isotopic Mass-Dependent MS-Patch-Clamp and Isotopic Mass-Independent ESR-Patch-Clamp

Serge Pankratov

Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email address:

To cite this article:

Serge Pankratov. Isotopic Mass-Dependent MS-Patch-Clamp and Isotopic Mass-Independent ESR-Patch-Clamp. Advances in Biochemistry. Vol. 3, No. 6, 2015, pp. 96-112. doi: 10.11648/j.ab.20150306.15

Abstract: This paper is a comprehensive review of the possibilities of isotopic patch-clamp and isotopic mass-patch-clamp technique development and represents a brief summary of the student's tutorial review by S. Pankratov. We propose to distinguish between the mass-dependent and mass-independent patch-clamp. The main principles introduced here will be developed in details at the second part of this paper.

Keywords: Mass-Dependent Isotope Effect, Mass-Independent Isotope Effect, Patch-Clamp, Electron Spin Resonance, Electron Paramagnetic Resonance Spectroscopy, Spin Label

1. Introduction: Towards the Mass-Dependent Isotopic Patch-Clamp

It has just been established that ion channels of the living cell can be studied using NMR spectroscopy with isotope labeling [1] (for example, a number of simple bacterial channels, such as the potassium channel [2], can be labeled for NMR). It is now evident that channelome (i.e. a complete set of the membrane ion channels in a biological tissue [3-5]) is a labile isotopic-dependent system. These objects are known to be quite complex, although there are many approaches to their investigation. In addition to NMR labeling, it is also possible to use either FTIR difference spectroscopy for isotopic study of the membrane channels and receptors [6] (a combination of different agonists and antagonists along with the structural changes upon isotopic labeling results in the band shifts in their IR spectra) or mass-spectrometric methods, aimed for the atomic mass determination, and hence, the isotope mass analysis.

Some early investigators considered the deuterium isotope effect on permeation and gating of H+ channels in the rat alveolar epithelium [7]. This effect becomes even more marked when using heavy radioisotopes, but it is very little known in such areas as «isotopic membranology» and, moreover, «isotopic channelomics». We shall assume that the reader has an idea of mass-spectrometric isotopic label determination in membrane structures, since it has long been known that mass spectrometry is an optimal tool for membrane component and constituent analysis (such as lipids [8-10], propeptides [11], membrane proteins and lipoprotein complexes [12-17]), including their labeled forms [18,19]. A vast amount of technical data is provided by the stable isotope biochemical labeling [20-30] (including isotope-coded labeling [31-37], known since late 1990-s [38] and optimally compatible with different MS-technologies [39-52], such as GC-MS [53], LC/MS [54-60], LC-MALDI [61], comparative MALDI and MALDI-TOF [62-64], 2-DE/MS [65], LC-MS/MS [66,67], tandem MS, including liquid chromatography-tandem mass spectrometry [68-76], quadrupole ion trap MS [77] etc.), nonstable isotope labeling (see, for example, [78-80] and the corresponding MS methods, known as "accelerator mass-spectrometry" [80-82]) used as the metabolic and chemical structure labeling methods [83]. Isotope labeling methods are indispensable tools for organic and bioorganic chemistry, which can be applied to membrane proteins, ion channels, receptors, glycolipid intercalates and other membrane structures, particularly those biochemically involved in the patch-clamp techniques.

It is also known that the methods for mass-spectrometric studies of the membrane proteins [84,85], membrane protein complexes [85,86] and transmembrane domains [87,88] can be applied together with the selected ion recording system, based on the mass-spectrometric principles for a precise isotope ratio determination in biomedical assays when the single isotope enrichment is derived from a single label [89]. The above analysis suggests a conclusion that the significance of the MS-methods for biochemical isotope ratio determinations of the membrane constituents or components can be considered as the prerequisite of the possibility of the in situ isotopic measurements based on or combined with the path-clamp-like principles. This conclusion is not applicable for multi-isotope mass-spectrometry, including multi-isotope mass-spectrometric imaging [90-98] using liquid pumping and adjustable capillary systems similar to those used in the standard patch-clamp configuration [99-100]. Earlier we have already shown the possibility of the MS-patch-clamp techniques [101,102], but those theoretical considerations fail to provide reliable results without strong biochemical argumentation in the frame of the biophysics of the isotope-labeled agents, such as receptors, antagonists, blockers, transmitters, etc. From the above considerations one can conclude that selective amplification of the isotope uptake by the electrical diffusion potentials is a direct consequent of the ion channel-mediated flux occurring in the membrane vesicles [103] and the isotope flows and flux ratios in biological membranes, which are interrelated [104] as in the ion exchange membranes [105-106].

In consistence with the above approach we should list some classical objects which are used for different isotopic membranological studies as the targets and labeled / labeling compounds or visualizing agents: receptors [107], receptor agonists [108], labeled receptor inhibitors [109], receptor antagonists [110], receptor mapping agents [111] and neurotransmission agents visualized by PET imaging [112], radioligands for ion channels [113-117] / receptors [118-121], pharmacodynamic brain occupancy substances of receptor inverse agonists [122], channel openers [123], stimulants, based on neurotransmitter injection activation principles (and their precursors) [124], ion channel activity reconstitution and membrane binding agents [125], etc. A problem which frequently arises from the variety of the above agents is a distinction between the mass-dependent and mass-independent isotope effects in the metabolic and other reactive redox-systems, including photolytic, thermal and electrolytic ones [126-131], which particularly can be distinguished by the mass-spectrometric methods, predominantly ICP-MS both in mass-dependent [132-135] and mass-independent [135-138] variants, despite the fact that the cited works are mostly devoted to the isotope fractionation as the most abundant isotopic effect.

2. Towards the Mass-Independent Isotopic Patch-Clamp

Another reasons lead to the idea of the mass-independent isotope effect-based patch-clamp studies and measurements with the main problem of the mass-independent isotope registration.

The most relevant contribution to the mass-independent isotope effect theory was made by A.L. Buchachenko [139]. The theory of the mass-independent isotope effect (also known as "magnetic isotope effect") proposed and developed by A. Buchachenko has been applied to a number of biochemical processes and objects, including the synthesis of semantids [140,141], enzymatic ATP synthesis [142-145] and intramitochondrial phosphorylation [146-148], ATP synthase efficiency as a molecular machine and magnetic mechanochemistry of the phosphorylating agents [149-152]. It has been noted that the magnetic magnesium isotope delivered by the membranotropic cation-exchanging fullerene-based nanoparticles into the myocardial cells is capable of the hypoxia-caused metabolic acidosis treatment by means of the reactivation of ATP synthesis, and thus, provides normalization of both intracellular proton concentration and the heart muscle cell membrane potential [153-155]. This is a remarkable fact, because the membrane potential is usually measured by electrophysiological methods and, moreover, patch-clamp is a classical selective technique for the single ion channel recordings on cardiomyocites [156-159]. It is even more rational to combine this method with the magnetic techniques for mass-independent / magnetic isotope effect registration. This goal can also be achieved by means of the exotic hybridization of the single calcium channel registration and the electron spin resonance spectral studies, whereof Wang Xiaoming with coauthors suggests that this complex approach may have a practical application for the registration of the calcium channel blocking effect on ventricular myocytes [160].

Although this method is a non-conventional one, it can provide valuable information. Another essential method applied in Buchachenko's approach was the single-spin ESR [161] (along with the other ESR methods). The former method differs significantly from the latter one, but the general principle for spin label measurements is the same in both works, and thus it can be applied for the spin labeled ion channel recording.

For example, from the beginning of the ESR-technique development, biophysicists have accepted the spin labeling technique for the simplest ion channels, such as spin-labeled derivatives of gramicidin peptides [162] and spin-labeled gramicidin itself [163], labeled valinomycin and its analogs [164] (along with the NMR observations of the nuclear Overhauser effect of transfer of the nuclear spin polarization from one nuclear spin population to another one via cross-relaxation [165,166]; the same method has been applied to the gramicidin [167-169]), cecropin [170-173], zervamicin [174,175] (early labeled by deuterium [176], 13C and 15N for NMR measurements [177]), alamethicin [178-182], etc. It is noteworthy that gramicidin as well as valinomycin [183] are well known as the simple ion channels [184-188], which can be studied by spin labeling and magnetic resonance methods [189,190] (as well as ion-channel-forming valinomycin [191-193]); zervamicin is also well known as the ion-channel-forming agent, ion channel peptide and a good model for the membrane ion channels [194-196] with a well-studied gating mechanisms [197-199] which can operate not only in the native membranes, but also in the artificial micelles and lipid bilayers [200], and can be studied using spin labeling ESR approaches as well as other equivalent mechanisms [201-203]; colicin (also studied by spin labeling and ESR [204-206]) also well known as the ion channel-forming protein [207]; cecropins (also studied by the spin labeling and ESR [170-173] and NMR [208-213]) known as the ion channel-forming peptide [214,215] and a simple ion channel model compound incorporated into planar lipid membranes for membrane biomimetics [216], based on the objective model approaches [217].

It is noteworthy that many membrane channels, receptors and other membrane structures are Mg2+-dependent, while its isotopes were used in the studies performed by A.L. Buchachenko and his coauthors [153-155]. Thus, it is well accepted that CorA is the major transport system responsible for Mg2+ uptake in bacteria and can functionally substitute its homolog Mrs2p in the yeast inner mitochondrial membrane [218]. There are also conformational changes in a GAAA tetraloop receptor upon Mg2+-dependent conditions [219]. Despite the receptors and transducers which are Mg-dependent structures at the molecular level, one can also give an example of the Mg-dependent phase, microhydrodynamical and rheological properties of the membranes at both micro- and mesoscopic levels [220-223]. Due to the effects coupled with ATP, AMP, adenylate cyclase activators [224-229] Mg2+ participates in the membrane bioenergetics. Since different metal ions (Fe2+, Cu2+, Ca2+, Mg2+) influence the transmembrane transport differently [230], to date it is possible to postulate the existence of a direct relationships between the membrane metallomics [231] of Mg2+ with the membrane bioenergetics. It should be noted that the above idea is also applicable to the photosynthetic bioenergetical structures, since there has been reported an effect of the magnesium ions on the structural state of the thylakoid membranes and the kinetics of the electron transport between the two photosystems in bean chloroplasts [232], and it was also found that Mg2+-induced lipid phase transition in the thylakoid membranes can be reversed by the anions [233]. Similar Mg-dependent mechanisms determine the bioenergetics in the sarcoplasmic reticulum membranes by magnesium-dependent adenosine triphosphatase [234].

3. Several Biophysical Considerations

Hence, it is not surprising that Mg2+ is widely involved in the biochemical pathways as a cross-agent and / or a physiological indicator in spin labeling methods (in particular – with nitroxyl [235] and biosynthetically generated phospholipid spin labels [236]). For the neurons being classical objects for the patch-clamp experiments, spin labels are frequently used (including the studies of the anesthetic effects upon the membrane [237]). At the same time it is obvious that divalent cations, including Mg2+, significantly affect the results of the spin label studies of the brain membranes [238], as well as other biomembranes in the context of their biosynthetic and bioenergetical activity, e.g. in Esherichia coli [239]. A classical ion channel – valinomycin, under NMR studies of its membrane-associated location and ion-binding demonstrates an interesting effect in presence of the bivalent ions: Rb+ and K+ show 1:1 binding to valinomycin, whereas the stoichiometry of Cs+ and Ba2+ is not certain [240]. This fact is of great importance, since the investigation of the surface potential in phospholipid vesicles by a spin label relaxation method reveals the coupling between the surface potential asymmetry and the parameters measured using spin labeling [241], as well as the dependence of the transmembrane electrical currents on the differently charged spin-labeled hydrophobic ions [242]. The above considerations suggest that it is reasonable and necessary to develop mass-independent isotopic patch-clamp, including its variation combined with the magnetic ESR measurements and spin labeling techniques. This can be illustrated by an example of the postsynatpic membrane acetylcholinesterase and acetylcholine receptors of the electric organ of Torpedo marmorata. Transmembrane potential of the postsynatpic membrane can be considered as the source of the surface bioelectrogenesis of Torpedo marmorata electric organ, i.e. to be a subject of the high-voltage electrophysiology and EHV patch-clamp \ voltage clamp. At the same time it is possible to perform ESR study of the postsynatpic membrane acetylcholinesterase of Torpedo marmorata electric organ [243] and of the association of the spin-labeled local agents at the hydrophobic surface of acetylcholine receptor in the native membranes from Torpedo marmorata [244] or of the effect of general anesthetics on the lipid-protein interactions in acetylcholine receptor enriched membranes from Torpedo nobiliana using nitroxide spin-labels [245]. Considering that since 1970 - 1980-th patch-clamp studies [246-261] and voltage clamp studies [262-277] on acetylcholine or its functionally complementary agents, therefore a similar patch-clamp \ voltage-clamp approach is particularly applicable to the electrogenerating membrane structures, including neuromimetic ones. From the standpoint of molecular biomimetics and QSAR \ QSPR it is interesting to mention that ESR studies using different spin labeled acetylcholine analogs are frequently used in the studies of the cholinergic receptor [278].

Another advantage of the Buchachenko's approach is the possibility to work with the singlet molecular oxygen [279-281], including the studies on the photo-oxidation of water by molecular oxygen considering the isotope exchange and isotope effects [281]. The method described in the above cited paper can also be applied to the studies of the light-induced hindrance of spin label motion in the lumen of spinach thylakoids [282] using patch-clamp techniques, since modern patch clamp techniques for studying the ion channels in organelles [283] allow not only to perform a patch-clamp study of the vascular plant chloroplasts [284], but also a patch clamp study of the voltage-dependent anion channel in the thylakoid membrane [285]. This makes possible in future to apply ESR magnetic isotope patch-clamp method for studying the activity of the oxygen channels [286,287] and oxygen sensitive channels [288,289].

4. Several Technical Considerations

The implementation of the above technique with the ESR setups equipped with a capillary connected to the standard patch-clamp registration system is not difficult, since the detection of the singlet oxygen [290-296], as well as the other reactive oxygen species [297-305] within their physiological and biochemical functions in the cellular structures, is long performed using ESR methods.

It is also possible to combine the conventional isotope and ESR studies by using the isotope label method (isotope-substituted, membrane-impermeant bifunctional spin label for the studies of the dynamics of the membrane proteins; for example, in application to the anion-exchange channel [306]). It should be also mentioned here that the oxygen isotopes have been already used for a long time as the labels in molecular biology and biophysical chemistry, being the classical research tools with 18O [307-334] being more popular than 15O [335-339] and other ones.

This suggests the possibility to apply them for the studies of the oxygen- and redox-dependent ion channels, as well as for the analysis of their redox regulation [340-352], including the classical Marinov ion channel redox model [353], and hence, a redox-dependent voltage clamp [354-358].


The author is grateful to his supervisor at the student’s practicum Gradov O. V. for the inspiration to write this paper and for the fruitful discussions.


  1. Abarca-Heideman K., Duchardt-Ferner E., Woehnert J., Rothberg B.S. Isotope labeling strategies for analysis of an ion channel cytoplasmic domain by NMR spectroscopy. Meth. Mol Biol., 2013, 998: 289-300.
  2. Bhate M.P., Wylie B.J., Thompson A., Tian L., Nimigean C., McDermott A.E. Preparation of uniformly isotope labeled KcsA for solid state NMR: expression, purification, reconstitution into liposomes and functional assay. Protein Expr. Purif., 2013, 91(2): 119-124.
  3. Barrett-Jolley R., Lewis R., Fallman R., Mobasheri A. The emerging chondrocyte channelome. Front Physiol., 2010, 1(135): 1-11.
  4. Publicover S.J., Barratt C.L. Chloride channels join the sperm "channelome". Journ. Physiol., 2012, 590(11): 2553-2554.
  5. Hoffert JD, Chou CL, Knepper MA. Aquaporin-2 in the "-omics" era. J Biol Chem., 2009, 284(22): 14683-14687.
  6. Baenziger J.E., Miller K.W., Rothschild K.J. Fourier transform infrared difference spectroscopy of the nicotinic acetylcholine receptor: evidence for specific protein structural changes upon desensitization. Biochemistry, 1993, 32(20): 5448-5454.
  7. DeCoursey T.E., Cherny V.V. Deuterium isotope effects on permeation and gating of proton channels in rat alveolar epithelium. Journ. Gen. Physiol., 1997, 109(4): 415-434.
  8. Schneiter R., Brьgger B., Sandhoff R., Zellnig G., Leber A., Lampl M., Athenstaedt K., Hrastnik C., Eder S., Daum G., Paltauf F., Wieland F.T., Kohlwein S.D. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. Journ. Cell Biol., 1999, 146(4): 741-754.
  9. Gerl M.J., Sachsenheimer T., Grzybek M., Coskun U., Wieland F.T., Brьgger B. Analysis of Transmembrane Domains and Lipid Modified Peptides with Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry. Anal Chem., 2014, 86(8): 3722-3726.
  10. Pannkuk E.L., McGuire L.P., Gilmore D.F., Savary B.J., Risch T.S. Glycerophospholipid analysis of eastern red bat (lasiurus borealis) hair by electrospray ionization tandem mass spectrometry. Journ. Chem. Ecol., 2014, 40(3): 227-235.
  11. Parker C.H., Morgan C.R., Rand K.D., Engen J.R., Jorgenson J.W., Stafford D.W. A Conformational Investigation of Propeptide Binding to the Integral Membrane Protein γ-Glutamyl Carboxylase Using Nanodisc Hydrogen Exchange Mass Spectrometry. Biochemistry, 2014, 53(9): 1511-1520.
  12. Han D., Moon S., Kim Y., Min H., Kim Y. Characterization of the membrane proteome and N-glycoproteome in BV-2 mouse microglia by liquid chromatography-tandem mass spectrometry. BMC Genomics, 2014, 15(95): 1-17.
  13. Hopper J.T., Yu Y.T., Li D., Raymond A., Bostock M., Liko I., Mikhailov V., Laganowsky A., Benesch J.L., Caffrey M., Nietlispach D., Robinson C.V. Detergent-free mass spectrometry of membrane protein complexes. Nat. Methods., 2013, 10(12): 1206-1208.
  14. Laganowsky A., Reading E., Hopper J.T., Robinson C.V. Mass spectrometry of intact membrane protein complexes. Nat. Protoc., 2013, 8(4): 639-651.
  15. Marty M.T., Zhang H., Cui W., Blankenship R.E., Gross M.L., Sligar S.G. Native mass spectrometry characterization of intact nanodisc lipoprotein complexes. Anal. Chem., 2012, 84(21): 8957-8960.
  16. Morgner N., Montenegro F., Barrera N.P., Robinson C.V. Mass spectrometry - from peripheral proteins to membrane motors. Journ. Mol. Biol., 2012, 423(1): 1-13.
  17. Souda P., Ryan C.M., Cramer W.A., Whitelegge J. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry. Methods, 2011, 55(4): 330-336.
  18. Trompelt K., Steinbeck J., Terashima M., Hippler M. A New Approach for the Comparative Analysis of Multiprotein Complexes Based on 15N Metabolic Labeling and Quantitative Mass Spectrometry. Journ. Vis. Exp., 2014, 85 [DOI: 10.3791/51103].
  19. Ruseva S., Lozanov V., Markova P., Girchev R., Mitev V. In vivo investigation of homocysteine metabolism to polyamines by high resolution accurate mass spectrometry and stable isotope labeling. Anal. Biochem.,2014, 457: 38-47.
  20. Liu H., Ponniah G., Neill A., Patel R., Andrien B. Identification and comparative quantitation of glycation by stable isotope labeling and LC-MS. Journ. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2014 (in press)
  21. Tang B., Li Y., Zhao L., Yuan S., Wang Z., Li B., Chen Q. Stable isotope dimethyl labeling combined with LTQ mass spectrometric detection, a quantitative proteomics technology used in liver cancer research. Biomed Rep.,2013,1(4):549-554.
  22. Dong Y., Tang M., Song H., Li R., Wang C., Ye H., Qiu N., Zhang Y., Chen L., Wei Y. Characterization of metabolic profile of honokiol in rat feces using liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and 13C stable isotope labeling. Journ. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2014,953-954:20-9.
  23. Popova A.M., Williamson J.R. Quantitative analysis of rRNA modifications using stable isotope labeling and mass spectrometry. Journ. Amer. Chem. Soc.,2014,136(5):2058-2069.
  24. Herath K.B., Zhong W., Yang J., Mahsut A., Rohm R.J., Shah V., Castro-Perez J., Zhou H., Attygalle A.B., Kang L., Singh S., Johns D.G., Cleary M.A., Hubbard B.K., Previs S.F., Roddy T.P. Determination of low levels of 2H-labeling using high-resolution mass spectrometry: application in studies of lipid flux and beyond. Rap. Comm. Mass Spectr.,2014,28(3):239-244.
  25. Pettelkau J., Thondorf I., Theisgen S., Lilie H., Schrцder T., Arlt C., Ihling C.H., Sinz A. Structural analysis of guanylyl cyclase-activating protein-2 (GCAP-2) homodimer by stable isotope-labeling, chemical cross-linking, and mass spectrometry. Journ. Amer. Soc. Mass Spectr.,2013,24(12):1969-1979.
  26. Huege J., Goetze J., Dethloff F., Junker B., Kopka J. Quantification of stable isotope label in metabolites via mass spectrometry. Meth. Mol. Biol.,2014,1056:213-223.
  27. Torde R.G., Therrien A.J., Shortreed M.R., Smith L.M., Lamos S.M. Multiplexed analysis of cage and cage free chicken egg fatty acids using stable isotope labeling and mass spectrometry. Molecules,2013,18(12):14977-14988.
  28. Wang C., Wu Z., Yuan J., Wang B., Zhang P., Zhang Y., Wang Z., Huang L. Simplified quantitative glycomics using the stable isotope label Girard's reagent p by electrospray ionization mass spectrometry. Journ. Prot. Res.,2014,13(2):372-384.
  29. Sparbier K., Lange C., Jung J., Wieser A., Schubert S., Kostrzewa M. MALDI biotyper-based rapid resistance detection by stable-isotope labeling. Journ. Clin. Microbiol.,2013,51(11):3741-3748.
  30. Zhou R., Guo K., Li L. 5-Diethylamino-naphthalene-1-sulfonyl chloride (DensCl): a novel triplex isotope labeling reagent for quantitative metabolome analysis by liquid chromatography mass spectrometry. Anal.Chem.,2013,85(23):11532-11539.
  31. Pan Y., Ye M., Zheng H., Cheng K., Sun Z., Liu F., Liu J., Wang K., Qin H., Zou H. Trypsin-catalyzed N-terminal labeling of peptides with stable isotope-coded affinity tags for proteome analysis. Anal. Chem.,2014, 86(2):1170-1177.
  32. Rainczuk A., Condina M., Pelzing M., Dolman S., Rao J., Fairweather N., Jobling T., Stephens A.N. The utility of isotope-coded protein labeling for prioritization of proteins found in ovarian cancer patient urine. Journ. Prot. Res.,2013,12(9):4074-4088.
  33. Hдgglund P., Bunkenborg J., Maeda K., Finnie C., Svensson B. Identification of thioredoxin target disulfides using isotope-coded affinity tags. Meth. Mol. Biol.,2014,1072:677-685.
  34. Biniossek M.L., Lechel A., Rudolph K.L., Martens U.M., Zimmermann S. Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. Journ. Proteomics.,2013,91:515-535.
  35. Kellermann J., Lottspeich F. Isotope-coded protein label. Meth. Mol. Biol.,2012,893:143-153.
  36. Vogt A., Fuerholzner B., Kinkl N., Boldt K., Ueffing M. Isotope coded protein labeling coupled immuno-precipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue. Mol. Cell Proteomics.,2013,12(5):1395-1406.
  37. Gaupels F., Sarioglu H., Beckmann M., Hause B., Spannagl M., Draper J., Lindermayr C., Durner J. Deciphering systemic wound responses of the pumpkin extrafascicular phloem by metabolomics and stable isotope-coded protein labeling. Plant Physiol.,2012,160(4):2285-2299.
  38. Gygi S.P., Rist B., Gerber S.A., Turecek F., Gelb M.H., Aebersold R. Quantitative analysis of complex protein mixtures using isotope - coded affinity tags. Nat. Biotech.,1999,17(10):994-999.
  39. Schrimpf S.P., Meskenaite V., Brunner E., Rutishauser D., Walther P., Eng J., Aebersold R., Sonderegger P. Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics,2005,5(10):2531-2541.
  40. Shiio Y., Aebersold R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat. Prot., vol. 1, no. 1, pp. 139-145, 2006.
  41. Haqqani A.S., Kelly J.F., Stanimirovic D.B. Quantitative protein profiling by mass spectrometry using isotope-coded affinity tags. Meth. Mol. Biol.,2008,439:225-240.
  42. Tam E.M., Morrison C.J., Wu Y.I., Stack M.S., Overall C.M. Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc. Nat. Acad. Sci. USA,2004,101(18):6917-6922.
  43. Dong L., Li J., Li L., Li T., Zhong H. Comparative analysis of S-fatty acylation of gel-separated proteins by stable isotope-coded fatty acid transmethylation and mass spectrometry. Nat. Prot.,2011,6(9):1377-1390.
  44. Molloy M.P., Donohoe S., Brzezinski E.E., Kilby G.W., Stevenson T.I., Baker J.D., Goodlett D.R., Gage D.A. Large-scale evaluation of quantitative reproducibility and proteome coverage using acid cleavableisotope coded affinity tag mass spectrometry for proteomic profiling. Proteomics,2005,5(5):1204-1208.
  45. Kozarova A., Sliskovic I., Mutus B., Simon E.S., Andrews P.C., Vacratsis P.O. Identification of redox sensitive thiols of protein disulfide isomerase using isotope coded affinity technology and mass spectrometry. Journ. Am. Soc. Mass Spectr.,2007,18(2):260-269.
  46. Allison W.T., Veldhoen K.M., Hawryshyn C.W. Proteomic analysis of opsins and thyroid hormone-induced retinal development using isotope-coded affinity tags (ICAT) and mass spectrometry. Mol. Vis.,2006,12:655-672.
  47. Sethuraman M., Clavreul N., Huang H., McComb M.E., Costello C.E., Cohen R.A. Quantification of oxidative posttranslational modifications of cysteine thiols of p21ras associated with redox modulation of activity using isotope-coded affinity tags and mass spectrometry. Free Radic. Biol. Med.,2007,42(6):823-829.
  48. Smolka M., Zhou H., Aebersold R. Quantitative protein profiling using two-dimensional gel electrophoresis, isotope-coded affinity tag labeling, and mass spectrometry. Mol. Cell Proteom., 2002, 1(1): 19-29.
  49. Turecek F. Mass spectrometry in coupling with affinity capture-release and isotope-coded affinity tags for quantitative protein analysis. Journ. Mass Spectr.,2002, 37(1):1-14.
  50. Han D.K., Eng J., Zhou H., Aebersold R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotech.,2001,19(10):946-951.
  51. Hochleitner E.O., Kastner B., Frцhlich T., Schmidt A., Lьhrmann R., Arnold G., Lottspeich F. Protein stoichiometry of a multiprotein complex, the human spliceosomal U1 small nuclear ribonucleoprotein: absolute quantification using isotope-coded tags and mass spectrometry. Journ. Biol. Chem.,2005,280(4):2536-2542.
  52. Goshe M.B., Smith R.D. Stable isotope-coded proteomic mass spectrometry. Curr. Opin. Biotechnol.,2003,14(1):101-109.
  53. Zhong H., Dong L., Dong Q., Ke C., Fu J., Wang X., Liu C., Dai L. Quantitative analysis of aberrant fatty acid composition of zebrafish hepatic lipids induced by organochlorine pesticide using stable isotope-coded transmethylation and gas chromatography-mass spectrometry. Anal. Bioanal. Chem.,2012,404(1):207-216.
  54. Toyo'oka T. LC-MS determination of bioactive molecules based upon stable isotope-coded derivatization method. Journ. Pharm. Biomed. Anal.,2012,69:174-184.
  55. Turtoi A., Mazzucchelli G.D., De Pauw E. Isotope coded protein label quantification of serum proteins--comparison with the label-free LC-MS and validation using the MRM approach. Talanta,2010,80(4):1487-1495.
  56. Dall'asta C., Sforza S., Moseriti A., Galaverna G., Dossena A., Marchelli R. An innovative LC/MS approach applied to the determination of zeralenone in maize: Alternate Isotope-coded Derivatization Assay (AIDA). Mycotoxin Res.,2005,21(4):218-223.
  57. Yu W., Liu J., Colangelo C., Gulcicek E., Zhao H. A new protocol of analyzing isotope-coded affinity tag data from high-resolution LC-MS spectrometry. Comput. Biol. Chem., 2007,31(3):215-221.
  58. Li C., Hong Y., Tan Y.X., Zhou H., Ai J.H., Li S.J., Zhang L., Xia Q.C., Wu J.R., Wang H.Y., Zeng R. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry.Mol. Cell Proteomics.,2004,3(4), 399-409.
  59. Guo J., Prokai-Tatrai K., Prokai L. Relative quantitation of protein nitration by liquid chromatography-mass spectrometry using isotope-coded dimethyl labeling and chemoprecipitation. Journ. Chromatogr. A.,2012,1232:266-275.
  60. Prokai L., Zharikova A.D., Stevens S.M. Effect of chronic morphine exposure on the synaptic plasma-membrane subproteome of rats: a quantitative protein profiling study based on isotope-coded affinity tags and liquid chromatography/mass spectrometry. Journ. Mass Spectrom.,2005,40(2):169-175.
  61. Jochim N., Gerhard R., Just I., Pich A. Impact of clostridial glucosylating toxins on the proteome of colonic cells determined by isotope-coded protein labeling and LC-MALDI. Proteome Sci.,2011,9(48), 1-12.
  62. Koulman A., Petras D., Narayana V.K., Wang L., Volmer D.A. Comparative high-speed profiling of carboxylic acid metabolite levels by differential isotope-coded MALDI mass spectrometry. Anal. Chem.,2009,81(18):7544-7551.
  63. Nelson K.J., Day A.E., Zeng B.B., King S.B., Poole L.B. Isotope-coded, iodoacetamide-based reagent to determine individual cysteine pK(a) values by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem.,2008,375(2):187-195.
  64. Tsumoto H., Murata C., Miyata N., Kohda K., Taguchi R. Efficient identification and quantification of proteins using isotope-coded 1-(6-methylnicotinoyloxy)succinimides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rap. Comm. Mass Spectr.,2007,21(23):3815-3824.
  65. Kim Y.H., Cho K., Yun S.H., Kim J.Y., Kwon K.H., Yoo J.S., Kim S.I. Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics,2006,6(4):1301-1318.
  66. Shen P.T., Hsu J.L., Chen S.H. Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using LC-MS/MS. Anal. Chem.,2007,79(24):9520-9530.
  67. Manini P., Andreoli R., Sforza S., Dall'Asta C., Galaverna G., Mutti A., Niessen W.M. Evaluation of Alternate Isotope-Coded Derivatization Assay (AIDA) in the LC-MS/MS analysis of aldehydes in exhaled breath condensate. Journ. Chromatog. B.: Analyt. Techn. Biomed. Life Sci.,2010,878(27):2616-2622.
  68. Li K., Hornshaw M.P., van Minnen J., Smalla K.H., Gundelfinger E.D., Smit A.B. Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins. Journ. Prot. Res.,2005,4(3):725-733.
  69. Butler G.S., Overall C.M. Proteomic validation of protease drug targets: pharmacoproteomics of matrix metallo-proteinase inhibitor drugs using isotope-coded affinity tag labelling and tandem mass spectrometry. Curr. Pharm. Des.,2007,13(3):263-270.
  70. Moulder R., Filйn J.J., Salmi J., Katajamaa M., Nevalainen O.S., Oresic M., Aittokallio T., Lahesmaa R., Nyman T.A. A comparative evaluation of software for the analysis of liquid chromatography-tandem mass spectrometry data from isotope coded affinity tag experiments. Proteomics,2005, 5(11):2748-2760.
  71. Zhang S., You J., Ning S., Song C., Suo Y.R. Analysis of estrogenic compounds in environmental and biological samples by liquid chromatography-tandem mass spectrometry with stable isotope-coded ionization-enhancing reagent. Journ. Chrom. A, 2013, 1280: 84-91.
  72. Yan W., Lee H., Deutsch E.W., Lazaro C.A., Tang W., Chen E., Fausto N., Katze M.G., Aebersold R. A dataset of human liver proteins identified by protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry. Mol. Cell Prot., 2004, 3(10): 1039-1041.
  73. Vaughn C.P., Crockett D.K., Lim M.S., Elenitoba-Johnson K.S. Analytical characteristics of cleavable isotope-coded affinity tag-LC-tandem mass spectrometry for quantitative proteomic studies. Journ. Mol. Diag., 2006, 8(4): 513-520.
  74. Qu J., Jusko W.J., Straubinger R.M. Utility of cleavable isotope-coded affinity-tagged reagents for quantification of low-copy proteins induced by methylprednisolone using liquid chromatography tandem mass spectrometry. Anal. Chem., 2006, 78(13): 4543-4542.
  75. von Haller P.D., Yi E., Donohoe S., Vaughn K., Keller A., Nesvizhskii A.I., Eng J., Li X.J., Goodlett D.R., Aebersold R., Watts J.D. The application of new software tools to quantitative protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry: I. Statistically annotated datasets for peptide sequences and proteins identified via the application of ICAT and tandem mass spectrometry to proteins copurifying with T cell lipid rafts. Mol. Cell Prot., 2003, 2(7): 426-427.
  76. von Haller P.D., Yi E., Donohoe S., Vaughn K., Keller A., Nesvizhskii A.I., Eng J., Li X.J., Goodlett D.R., Aebersold R., Watts J.D. The application of new software tools to quantitative protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry: II. Evaluation of tandem mass spectrometry methodologies for large-scale protein analysis, and the application of statistical tools for data analysis and interpretation. Mol. Cell Prot., 2003, 2(7): 428-442.
  77. Seo J., Yoon H.J., Shin S.K. Quantification of tryptic peptides in quadrupole ion trap using high-mass signals derived from isotope-coded N-acetyl dipeptide tags. Journ. Amer. Soc. Mass Spectrom., 2007, 22(9): 1668-1677.
  78. Grunwald H., Hargreaves P., Gebhardt K., Klauer D., Serafyn A., Schmitt-Hoffmann A., Schleimer M., Schlotterbeck G., Wind M. Experiments for a systematic comparison between stable-isotope-(deuterium) labeling and radio-14C) labeling for the elucidation of the in vitro metabolic pattern of pharmaceutical drugs. Journ. Pharm. Biomed. Anal., 2013, 85: 138-144.
  79. Zhang J., Katta V. Identification of Asp isomerization in proteins by 18O labeling and tandem mass spectrometry. Meth. Mol. Biol., 2012, 899: 365-377.
  80. Lappin G., Seymour M. Addressing metabolite safety during first-in-man studies using 14C-labeled drug and accelerator mass spectrometry. Bioanal., 2010, 2(7,): 1315-1324.
  81. Hah S.S. Determination of protein-ligand interactions using accelerator mass spectrometry: modified crosslinking assay. Anal. Sci., 2009, 25(5): 731-733.
  82. Salehpour M., Forsgard N., Possnert G. FemtoMolar measurements using accelerator mass spectrometry. Rapid Comm. Mass. Spec., 2009, 23(5): 557-563.
  83. Schmidt C., Grшnborg M., Deckert J., Bessonov S., Conrad T., Lьhrmann R., Urlaub H. Mass spectrometry-based relative quantification of proteins in precatalytic and catalytically active spliceosomes by metabolic labeling (SILAC), chemical labeling (iTRAQ), and label-free spectral count. RNA, 2014, 20(3): 406-420.
  84. Waas M., Bhattacharya S., Chuppa S., Wu X., Jensen D.R., Omasits U., Wollscheid B., Volkman B.F., Noon K.R., Gundry R.L. Combine and conquer: surfactants, solvents, and chaotropes for robust mass spectrometry based analyses of membrane proteins. Anal. Chem., 2014, 86(3): 1551-1559.
  85. Barrera N.P., Robinson C.V. Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Ann. Rev. Biochem., 2011, 80: 247-271.
  86. Hopper J.T., Yu Y.T., Li D., Raymond A., Bostock M., Liko I., Mikhailov V., Laganowsky A., Benesch J.L., Caffrey M., Nietlispach D., Robinson C.V. Detergent-free mass spectrometry of membrane protein complexes. Nat. Meth., 2013, 10(12): 1206-1208.
  87. Gerl M.J., Sachsenheimer T., Grzybek M., Coskun U., Wieland F.T., Brьgger B. Analysis of Transmembrane Domains and Lipid Modified Peptides with Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry. Anal. Chem., 2014, 86(8): 3722-3726.
  88. Eichacker L.A., Granvogl B., Mirus O., Mьller B.C., Miess C., Schleiff E. Hiding behind hydrophobicity. Trans-membrane segments in mass spectrometry. Journ. Biol. Chem., 2004, 279(49): 50915-50922.
  89. Gruenke L.D., Craig J.C., Bier D.M. An improved selected ion recording system for precise isotope ratio determination. Biomed. Mass Spectrom., 1980, 7(9): 381-384.
  90. Steinhauser M.L., Lechene C.P. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry. Semin. Cel. Dev. Biol., 2013, 24(8-9): 661-667.
  91. Zhang D.S., Piazza V., Perrin B.J., Rzadzinska A.K., Poczatek J.C., Wang M., Prosser H.M., Ervasti J.M., Corey D.P., Lechene C.P. Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia. Nature, 2012, 481(7382): 520-524.
  92. Steinhauser M.L., Bailey A.P., Senyo S.E., Guillermier C., Perlstein T.S., Gould A.P., Lee R.T., Lechene C.P. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature, 481(7382): 516-519.
  93. Gormanns P., Reckow S., Poczatek J.C., Turck C.W., Lechene C. Segmentation of multi-isotope imaging mass spectrometry data for semi-automatic detection of regions of interest. PLoS One, 2012, 7(2): e30576, 1-12.
  94. Goto K., Waki M., Takahashi T., Kadowaki M., Setou M. High-resolution multi-isotope imaging mass spectrometry enables visualization of stem cell division and metabolism. Chembiochem, 2012, 13(8): 1103-1106.
  95. Lechene C.P., Lee G.Y., Poczatek J.C., Toner M., Biggers J.D. 3D multi-isotope imaging mass spectrometry reveals penetration of 18O-trehalose in mouse sperm nucleus. PLoS One, 2012, 7(8): e42267, 1-4.
  96. Steinhauser M.L., Bailey A.P., Senyo S.E., Guillermier C., Perlstein T.S., Gould A.P., Lee R.T., Lechene C.P. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature, 2012, 481(7382): 516-519.
  97. Alexandrov T., Meding S., Trede D., Kobarg J.H., Balluff B., Walch A., Thiele H., Maass P. Super-resolution segmentation of imaging mass spectrometry data: Solving the issue of low lateral resolution. Journ. Proteomics., 2011, 75(1): 237-245.
  98. McMahon G., Saint-Cyr H.F., Lechene C., Unkefer C.J. CN-secondary ions form by recombination as demonstrated using multi-isotope mass spectrometry of 13C- and 15N-labeled polyglycine. Journ. Amer. Soc. Mass Spectrom., 2006, 17(8): 1181-1187.
  99. Chen Y., Allegood J., Liu Y., Wang E., Cachуn-Gonzalez B., Cox T.M., Merrill A.H., Sullards M.C. Imaging MALDI mass spectrometry using oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs / Sandhoff disease. Anal. Chem., 2008, 80(8): 2780-2788.
  100. Chen Y., Liu Y., Allegood J., Wang E., Cachуn-Gonzбlez B., Cox T.M., Merrill A.H,, Sullards M.C. Imaging MALDI mass spectrometry of sphingolipids using an oscillating capillary nebulizer matrix application system. Meth. Mol. Biol., 2010, 656: 131-146.
  101. Gradov O., Gradova M. "MS-Patch-Clamp" or the Possibility of Mass Spectrometry Hybridization with Patch-Clamp Setups for Single Cell Metabolomics and Channelomics, Preprint ICP \ INEPCP, 2013, Nov.: 20 p.
  102. Gradov O.V., Gradova M.A. On the possibility of "MS-patch-clamp" or mass spectrometry hybridization with patch-clamp setups for single cell metabolomics and channelomics, Int. Workshop "Structure and Functions of Biomembranes" (BIOMEMBRANES’14), MIPT (Moscow Institute of Physics and Technology), 2014, Dolgoprudny, 29th Sept. – 3rd Oct., [p. 105].
  103. Garty H., Karlish S.J. Ion channel-mediated fluxes in membrane vesicles: selective amplification of isotope uptake by electrical diffusion potentials. Meth. Enzymol., 1989, 172: 155-164.
  104. Kedem O., Essig A. Isotope Flows and Flux Ratios in Biological Membranes. Journ. Gen. Physiol., 1965, 48(6): 1047-1070.
  105. DeSousa R.C., Li J.H., Essig A. Flux ratios and isotope interaction in an ion exchange membrane. Nature, 1971, 231(5297): 44-45.
  106. Li J.H., DeSousa R.C., Essig A. Kinetics of tracer flows and isotope interaction in an ion exchange membrane. Journ. Membr. Biol., 1974, 19(1): 93-104.
  107. Pisani A., Bonsi P., Catania M.V., Giuffrida R., Morari M., Marti M., Centonze D., Bernardi G., Kingston A.E., Calabresi P. Metabotropic glutamate 2 receptors modulate synaptic inputs and calcium signals in striatal cholinergic interneurons. Journ. Neurosci., 2002, 22(14): 6176-6185.
  108. Rubovszky B., Szentmiklуsi A.J., Mбriбn T., Cseppento A., Gesztelyi R., Szйkely A., Fуrizs F., Gбspбr R., Trуn L., Krasznai Z. Comparative pharmacological studies on the A2 adenosine receptor agonist 5'-n-ethyl-carboxamido-adenosine and its F19 isotope labelled derivative. Journ. Pharmac. Sci., 2003, 93(3): 356-363.
  109. Kapras V., Slavickova A., Stastna E., Vyklicky L., Vales K., Chodounska H. Synthesis of deuterium labeled NMDA receptor inhibitor - 20-Oxo-5β-[9,12,12-2H3] pregnan -3α-yl-L-glutamyl 1-ester. Steroids, 2012, 77(3): 282-287.
  110. Thominiaux C., de Bruin B, Bramoullй Y, Hinnen F, Demphel S, Valette H, Bottlaender M, Besret L, Kassiou M, Dollй F. Radiosynthesis of (E)-N-(2-[11C]methoxybenzyl)-3-phenyl-acrylamidine, a novel subnanomolar NR2B subtype-selective NMDA receptor antagonist. Appl. Radiat. Isot., 2006, 64(3): 348-354.
  111. Gildersleeve D.L., Van Dort M.E., Johnson J.W., Sherman P.S., Wieland D.M. Synthesis and evaluation of [123I]-iodo-PK11195 for mapping peripheral-type benzodiazepine receptors (ω3) in heart. Nuc. Med. Biol., 1996, 23(1): 23-28.
  112. Martнn A., Szczupak B., Gуmez-Vallejo V., Plaza S., Padrу D., Cano A., Llop J. PET imaging of serotoninergic neurotransmission with [11C]DASB and [18F]altanserin after focal cerebral ischemia in rats. Journ. Cereb. Bl. Fl. Met., 2013, 33(12): 1967-1975.
  113. Gould R.J., Murphy K.M., Snyder S.H. Studies on voltage-operated calcium channels using radioligands. CSH Symp. Quant. Biol., 1983, 48(1), 355-362.
  114. Lovenberg T., Daly J.W. Histrionicotoxins: effects on binding of radioligands for sodium, potassium, and calcium channels in brain membranes. Neurochem. Res., 1986, 11(11): 1609-1621.
  115. Rauh J.J., Benner E., Schnee M.E., Cordova D., Holyoke C.W., Howard M.H., Bai D., Buckingham S.D., Hutton M.L., Hamon A., Roush R.T., Sattelle D.B. Effects of [3H]-BIDN, a novel bicyclic dinitrile radioligand for GABA-gated chloride channels of insects and vertebrates. Br. Journ. Pharmacol., 1997, 121(7): 1496-1505.
  116. Fuchigami T., Haradahira T., Fujimoto N., Okauchi T., Maeda J., Suzuki K., Suhara T., Yamamoto F., Sasaki S., Mukai T., Yamaguchi H., Ogawa M., Magata Y., Maeda M. Difference in brain distributions of carbon 11-labeled 4-hydroxy-2(1H)-quinolones as PET radioligands for the glycine-binding site of the NMDA ion channel. Nucl. Med. Biol., 2012, 35(2): 203-212.
  117. Marvizуn J.C., Skolnick P. Enhancement of t-[35S]butylbicyclophosphorothionate and [3H]strychnine binding by monovalent anions reveals similarities between gamma-aminobutyric acid- and glycine-gated chloride channels. Journ. Neurochem., 1988, 50(5): 1632-1639.
  118. van Veghel D., Cleynhens J., Pearce L.V., DeAndrea-Lazarus I.A., Blumberg P.M., Van Laere K., Verbruggen A., Bormans G. New transient receptor potential vanilloid subfamily member 1 positron emission tomography radioligands: synthesis, radiolabeling, and preclinical evaluation. ACS Chem. Neurosci., 2013, 4(4): 624-634.
  119. Jones S.M., Snell L.D., Johnson K.M. Characterization of the binding of radioligands to N-methyl-D-aspartate, phencyclidine, and glycine receptors in buffy coat membranes. Journ. Pharmac. Meth., vol. 21, no. 2, pp. 161-168, Apr 1989.
  120. Pike V.W., Halldin C., Crouzel C., Barrй L., Nutt D.J., Osman S., Shah F., Turton D.R., Waters S.L. Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites-current status. Nucl. Med. Biol., 1993, 20(40): 503-525.
  121. Rubin J.G., Soderlund D.M. Binding of [3H]batrachotoxinin A-20-alpha-benzoate and [3H]saxitoxin to receptor sites associated with sodium channels in trout brain synaptoneurosomes. Comp. Biochem. Physiol. C, 1993, 105(2): 231-238.
  122. Van Laere K.J., Sanabria-Bohуrquez S.M., Mozley D.P., Burns D.H., Hamill T.G., Van Hecken A., De Lepeleire I., Koole M., Bormans G., de Hoon J., Deprй M., Cerchio K., Plalcza J., Han L., Renger J., Hargreaves R.J., Iannone R. 11C-MK-8278 PET as a tool for pharmacodynamic brain occupancy of histamine 3 receptor inverse agonists. Journ. Nucl. Med., 2014, 55(1): 65-72.
  123. Davis-Taber R., Molinari E.J., Altenbach R.J., Whiteaker K.L., Shieh C.C., Rotert G., Buckner S.A., Malysz J., Milicic I., McDermott J.S., Gintant G.A., Coghlan M.J., Carroll W.A., Scott V.E., Gopalakrishnan M. [125I]A-312110, a novel high-affinity 1,4-dihydropyridine ATP-sensitive K+ channel opener: characterization and pharmacology of binding. Mol. Pharmacol., 2003, 64(1): 143-153, Jul 2003.
  124. Salouros H., Sutton G.J., Howes J., Hibbert D.B., Collins M. Measurement of stable isotope ratios in methylamphetamine: a link to its precursor source. Anal. Chem., 2013, 85(19): 9400-9408.
  125. Hamilton S.L., Alvarez R.M., Fill M., Hawkes M.J., Brush K.L., Schilling W.P., Stefani E. [3H]PN200-110 and [3H]ryanodine binding and reconstitution of ion channel activity with skeletal muscle membranes. Anal. Biochem., 1989, 183(1): 31-41.
  126. Fujii T., Moynier F., Uehara A., Abe M, Yin QZ, Nagai T, Yamana H. Mass-dependent and mass-independent isotope effects of zinc in a redox reaction. Journ. Phys Chem. A, 2009, 113(44): 12225-12232.
  127. Cole A.S., Boering K.A. Mass-dependent and non-mass-dependent isotope effects in ozone photolysis: resolving theory and experiments. Journ. Chem. Phys., 2006, 125(18): 184301-1 – 184301-14, Nov. 2006.
  128. Bhattacharya S.K., Savarino J., Luz B. Mass-dependent isotopic fractionation in ozone produced by electrolysis. Anal. Chem., 2009, 81(13): 5226-5232.
  129. Bergquist B.A., Blum J.D. Mass-dependent and independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science, 2007, 318(5849): 417-420.
  130. Jackson T.A., Muir D.C. Mass-dependent and mass-independent variations in the isotope composition of mercury in a sediment core from a lake polluted by emissions from the combustion of coal. Sci. Tot. Envir., 2012, 417-418: 189-203.
  131. Sun T., Bao H. Thermal-gradient-induced non-mass-dependent isotope fractionation. Rap. Comm. Mass Spectr., 2011, 25(6): 765-773.
  132. Anbar A.D., Knab K.A., Barling J. Precise determination of mass-dependent variations in the isotopic composition of molybdenum using MC-ICPMS. Anal. Chem., 2001, 73(7): 1425-1431.
  133. Ohno T., Hirata T. Simultaneous determination of mass-dependent isotopic fractionation and radiogenic isotope variation of strontium in geochemical samples by multiple collector-ICP-mass spectrometry. Anal. Sci., 2007, 23(11): 1275-1280.
  134. Ohno T., Hirata T. Determination of mass-dependent isotopic fractionation of cerium and neodymium in geochemical samples by MC-ICPMS. Anal. Sci., 2013, 29(1): 47-53.
  135. Dauphas N., Janney P.E., Mendybaev R.A., Wadhwa M., Richter F.M., Davis A.M., van Zuilen M., Hines R., Foley C.N. Chromatographic separation and multicollection-ICPMS analysis of iron. Investigating mass-dependent and -independent isotope effects. Anal. Chem., 2004, 76(19): 5855-5863, Oct 2004.
  136. Cook D.L., Wadhwa M., Janney P.E., Dauphas N., Clayton R.N., Davis A.M. High precision measurements of non-mass-dependent effects in nickel isotopes in meteoritic metal via multicollector ICPMS. Anal. Chem., 2006, 78(24): 8477-8484.
  137. Malinovsky D., Vanhaecke F. Mass-independent isotope fractionation of heavy elements measured by MC-ICPMS: a unique probe in environmental sciences. Anal. Bioanal. Chem., 2011, 400(6): 1619-1624.
  138. Yang L., Mester Z., Zhou L., Gao S., Sturgeon R.E., Meija J. Observations of large mass-independent fractionation occurring in MC-ICPMS: implications for determination of accurate isotope amount ratios. Anal. Chem., 2011, 83(23): 8999-9004.
  139. Buchachenko A.L. Mass-independent isotope effects. Journ. Phys. Chem. B, 2013, 117(8): 2231-2238.
  140. Buchachenko A.L., Orlov A.P., Kuznetsov D.A., Breslavskaya N.N. Magnetic isotope and magnetic field effects on the DNA synthesis. Nucleic Ac. Resear., 2013, 41(17): 8300-8307.
  141. Buchachenko A.L., Orlov A.P., Kuznetsov D.A., Breslavskaya N.N. Magnetic control of the DNA synthesis. Chem. Phys. Lett., 2013, 586: 138-142.
  142. Buchachenko A.L., Kuznetsov D.A., Breslavskaya N.N. Chemistry of enzymatic ATP synthesis: an insight through the isotope window. Chem. Rev., 2012, 112(4): 2042-2058.
  143. Buchachenko A.L., Kuznetsov D.A., Breslavskaya N.N. Ion-radical mechanism of enzymatic ATP synthesis: DFT calculations and experimental control. Journ. Phys. Chem. B, 2010, 114(6): 2287-2292.
  144. Buchachenko A.L., Kuznetsov D.A. Magnetic field affects enzymatic ATP synthesis. Journ. Amer. Chem. Soc., 2008, 130(192): 12868-12869.
  145. Buchachenko A.L., Kouznetsov D.A., Breslavskaya N.N., Orlova M.A. Magnesium isotope effects in enzymatic phosphorylation. Journ. Phys. Chem. B, 2008, 112(8): 2548-2556.
  146. Buchachenko A.L., Kouznetsov D.A., Arkhangelsky S.E., Orlova M.A., Markarian A.A. Spin biochemistry: intramitochondrial nucleotide phosphorylation is a magnesium nuclear spin controlled process. Mitochondr., 2005, 5(1): 67-69.
  147. Buchachenko A.L., Kouznetsov D.A., Arkhangelsky S.E., Orlova M.A., Markarian A.A. Spin biochemistry: magnetic 24Mg-25Mg-26Mg isotope effect in mitochondrial ADP phosphorylation. Cell Biochem. Biophys., 2005, 43(2): 243-251.
  148. Buchachenko A.L., Kuznetsov D.A., Arkhangel'sky S.E., Orlova M.A., Markaryan A.A., Berdieva A.G., Khasigov P.Z. Dependence of mitochondrial ATP synthesis on the nuclear magnetic moment of magnesium ions. D. Bioch. Biophys., 2004, 369: 197-199.
  149. Buchachenko A.L., Kuznetsov D.A. Magnesium magnetic isotope effect: A key to the mechanochemistry of phosphorylating enzymes as molecular machines. Molecular Biology, 2006, 40(1): 9-15.
  150. Buchachenko A.L., Kouznetsov D.A., Orlova M.A., Markarian A.A. Magnetic isotope effect of magnesium in phosphoglycerate kinase phosphorylation. Proc. Nat. Acad. Sci. USA, 2005, 102(31): 10793-10796.
  151. Buchachenko A.L., Kouznetsov D.A. Efficiency of ATP synthase as a molecular machine. Biophysics, 2008, 153(3): 219-222.
  152. Buchachenko A.L., Kouznetsov D.A. How mechanical energy of phosphorylating enzymes transforms into the energy of chemical bonds? Mend. Comm., 2008, 18(2): 63-66.
  153. Amirshahi N., Alyautdin R.N., Sarkar S., Rezayat S.M., Orlova M.A., Trushkov I.V., Buchachenko A.L., Kuznetsov D.A. Fullerene-based low toxic nanocationite particles (porphyrin adducts of cyclohexyl fullerene-C60 to treat hypoxia-induced mitochondrial dysfunction in mammalian heart muscle. Arch. Med. Res., 2008, 39(6): 549-559.
  154. Rezayat S.M., Boushehri S.V., Salmanian B., Omidvari A.H., Tarighat S., Esmaeili S., Sarkar S., Amirshahi N., Alyautdin R.N., Orlova M.A., Trushkov I.V., Buchachenko A.L., Liu K.C., Kuznetsov D.A. The porphyrin-fullerene nanoparticles to promote the ATP overproduction in myocardium: 25Mg2+-magnetic isotope effect. Eur. Journ. Med. Chem., 2009, 44(4): 1554-1569.
  155. Shetab Boushehri S.V., Ostad S.N., Sarkar S., Kuznetsov D.A., Buchachenko A.L., Orlova M.A., Minaii B., Kebriaeezadeh A., Rezayat S.M. The C60-fullerene porphyrin adducts for prevention of the doxorubicin-induced acute cardiotoxicity in rat myocardial cells. Acta Med Ir., 2010, 48(5): 342-350.
  156. Richardson E.S., Xiao Y.-F. "Electrophysiology of Single Cardiomyocytes: Patch Clamp and Other Recording Methods". in Cardiac Electrophysiology Methods and Models, D.C. Sigg, P.A. Iaizzo, Y.-F. Xiao, B. He, Eds. New York, Dordrecht, Heidelberg, London, "Springer", 2010, pp. 329-348.
  157. Honda M, Kiyokawa J, Tabo M, Inoue T. Electrophysiological characterization of cardiomyocytes derived from human induced pluripotent stem cells. Journ. Pharmacol. Sci., 2011, 117(3): 149-159.
  158. Stoelzle S., Haythornthwaite A., Kettenhofen R., Kolossov E., Bohlen H., George M., Brьggemann A., Fertig N. Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction. Journ. Biomol, Screen., 2011, 16(8): 910-916.
  159. Schroder R., Christensen M., Anson B., Sunesen M. Electrophysiological properties of iCell cardiomyocytes obtained by automated patch clamp on QPatch. Journ. Pharm. Toxic. Meth., 2012, 66(2): 178.
  160. Wang X.M., Qi Y., Sun C.W., Zhong G.G., Jiang Y., Qiu Y.H. [Single calcium channel analysis and electron spin resonance (ESR) spectral study on the myocardial effects of ginsenoside Rb2]. Zhongguo Zhong Yao Za Zhi, 1994, 19(10): 621-4, 640.
  161. Buchachenko A.L., Dalidchik F.I., Shub B.R. Single spin ESR. Chem. Phys. Lett., 2001, 340(1-2): 103-108.
  162. Ivanov V.T., Miroshnikov A.I., Snezhkova L.G., Ovchinnikov Yu.A., Kulikov A.V., Likhtenshtein G.I. Use of electron-spin-resonance spectroscopy for studying the conformational states of peptides gramicidin S. Chem. Nat. Comp., 1973, 9(1): 82-87.
  163. Dzikovski B.G., Borbat P.P., Freed J.H. Channel and nonchannel forms of spin-labeled gramicidin in membranes and their equilibria. Journ. Phys. Chem. B., 2011, 115(1): 176-185.
  164. Ivanov V.T., Sumskaya L.V., Mikhaleva I.I, Laine M.A., Ryabova I.D., Ovchinnikov Yu.A. Synthesis of analogs of valinomycin and enniatine B containing charged, spin-labeled, or fluorescent groups. Chem. Nat. Comp., 1974, 10(3): 350-358.
  165. Glickson J.D., Gordon S.L., Pitner P., Agresti D.G., Walter R. Intramolecular 1H nuclear Overhauser effect study of the solution conformation of valinomycin in dimethyl sulfoxide. Biochemistry, 1976, 15(26): 5721-5729.
  166. Krishna N.R., Agresti D.G., Glickson J.D., Walter R. Solution conformation of peptides by the intramolecular nuclear Overhauser effect experiment. Study of valinomycin-K+. Biophys. Journ., 1978, 24(3): 791-814.
  167. Jones C.R., Sikakana C.T., Hehir S., Kuo M.C., Gibbons W.A. The quantitation of nuclear Overhauser effect methods for total conformational analysis of peptides in solution. Application to gramicidin S. Biophys. Journ., 1978, 24(3): 815-832.
  168. Huang D.H., Walter R., Glickson J.D., Krishna N.R. Solution conformation of gramicidin S: An intramolecular nuclear Overhauser effect study. Proc. Nat. Acad. Sci. USA, 1981, 78(2): 672-675.
  169. Barsukov I.L., Arsen'ev A.S., Bystrov V.F. Spatial structure of gramicidin A in organic solvents. 1H-NMR analysis of conformation heterogeneity in ethanol [in Russian] Bioorg. Chem., 1987, 13(11): 1501-1522. [OriginalRussianarticle.: Барсуков И.Л., Арсеньев А.С., Быстров В.Ф. Пространственные структуры грамицидина А в органических растворителях. 1Н-ЯМР-анализ конформационной гетерогенности в этаноле. Биоорг. хим., том 13,No11, 1987].
  170. Mchaourab H.S., Hyde J.S., Feix J.B. Aggregation state of spin-labeled cecropin AD in solution. Biochemistry, 1993, 32(44): 11895-11902.
  171. Mchaourab H.S., Hyde J.S., Feix J.B. Binding and state of aggregation of spin-labeled cecropin AD in phospholipid bilayers: effects of surface charge and fatty acyl chain length. Biochemistry, 1994, 33(21): 6691-6699.
  172. Hung S.C., Wang W., Chan S.I., Chen H.M. Membrane lysis by the antibacterial peptides cecropins B1 and B3: A spin-label electron spin resonance study on phospholipid bilayers. Biophys. Journ.. 1999, 77(6): 3120-3133.
  173. Bhargava K., Feix J.B. Membrane binding, structure, and localization of cecropin-mellitin hybrid peptides: a site-directed spin-labeling study. Biophys. Journ., 2004, 86(1\1): 329-336.
  174. Milov A.D., Tsvetkov Y.D., Gorbunova E.Y., Mustaeva L.G., Ovchinnikova T.V., Raap J. Self-aggregation properties of spin-labeled zervamicin IIA as studied by PELDOR spectroscopy. Biopolymers, 2002, 64(6): 328-336.
  175. Milov A.D., Samoilova R.I., Shubin A.A., Gorbunova E.Y., Mustaeva L.G., Ovchinnikova T.V., Raap J., Tsvetkov Y.D. Self-Aggregation and Orientation of the Ion Channel-Forming Zervamicin IIA in the Membranes of ePC. Appl. Magn. Res., 2010, 38(1): 75-84.
  176. Ogrel A., Bloemhoff W., Lugtenburg J., Raap J. Total synthesis of zervamicin IIB and its deuterium-labelled analogues. Journ. Pept. Sci., 1997, 3(3): 193-208.
  177. Ovchinnikova T.V., Shenkarev Z.O., Yakimenko Z.A., Svishcheva N.V., Tagaev A.A., Skladnev D.A., Arseniev A.S. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment. Journ. Pept. Sci., 2003, 9(11-12): 817-826.
  178. Archer S.J., Ellena J.F., Cafiso D.S. Dynamics and aggregation of the peptide ion channel alamethicin. Measurements using spin-labeled peptides. Biophys. Journ., 1991, 60(2): 389-398.
  179. Marsh D., Jost M., Peggion C., Toniolo C. Lipid chain-length dependence for incorporation of alamethicin in membranes: electron paramagnetic resonance studies on TOAC-spin labeled analogs. Biophys. Journ., 2007, 92(11): 4002-4011.
  180. Crisma M., Peggion C., Baldini C., Maclean E.J., Vedovato N., Rispoli G., Toniolo C. Crystal structure of a spin-labeled, channel-forming alamethicin analogue.Angew. Chem. (Int. Ed. Engl.), 2007, 46(12): 2047-2050.
  181. Marsh D. Orientation and peptide-lipid interactions of alamethicin incorporated in phospholipid membranes: polarized infrared and spin-label EPR spectroscopy. Biochemistry, 2009, 48(4): 729-737.
  182. Bartucci R., Guzzi R., Sportelli L., Marsh D. Intramembrane water associated with TOAC spin-labeled alamethicin: electron spin-echo envelope modulation by D2O. Biophys. Journ., 2009, 96(3): 997-1007.
  183. Gliozzi A., Robello M., Fittabile L., Relini A., Gambacorta A. Valinomycin acts as a channel in ultrathin lipid membranes.Biochim. Biophys. Acta, 1996, 1238(1): 1-3.
  184. Hu W., Lee K.C., Cross T.A. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Biochemistry, 1993, 32(27): 7035-7047.
  185. Chaudhuri A., Haldar S., Sun H., Koeppe R.E., Chattopadhyay A. Importance of indole N-H hydrogen bonding in the organization and dynamics of gramicidinchannels. Biochim. Biophys. Acta, 2014, 1838 (1): 419-428.
  186. Basu I., Chattopadhyay A., Mukhopadhyay C. Ion channel stability of Gramicidin A in lipid bilayers: effect of hydrophobic mismatch. Biochim. Biophys. Acta, 2014, 1838(1): 328-338.
  187. Wang F., Qin L., Wong P., Gao J. Effects of lysine methylation on gramicidin channel folding in lipid membranes. Biopolymers, 2013, 100(6): 656-661.
  188. Haldar S., Chaudhuri A., Gu H., Koeppe R.E., Kombrabail M., Krishnamoorthy G., Chattopadhyay A. Membrane organization and dynamics of "inner pair" and "outer pair" tryptophan residues in gramicidin channels. Journ. Phys. Chem. B, 2012, 116(36): 11056-11064.
  189. de Planque M.R., Greathouse D.V., Koeppe R.E., Schдfer H., Marsh D., Killian J.A. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. Biochemistry, 1998, 37(26): 9333-9345.
  190. Dzikovski B.G., Borbat P.P., Freed J.H. Spin-labeled gramicidin a: channel formation and dissociation. Biophys. Journ., 2004, 87(5): 3504-3517.
  191. Eastman M.P. Electron spin resonance studies of valinomycin Na+–TCNE– ion pairs. Journ. Chem. Soc., Chem. Commun., 1974, 19: 789-790.
  192. Meers P., Feigenson G.W. Location and ion-binding of membrane-associated valinomycin, a proton nuclear magnetic resonance study. Biochim. Biophys. Acta, 1988, 938(3): 469-482.
  193. Krнz J., Makrlнk E., Vanura P. NMR evidence of a valinomycin-proton complex. Biopolymers, 2006, 81(2): 104-109.
  194. Agarwalla S., Mellor I.R., Sansom M.S., Karle I.L., Flippen-Anderson J.L., Uma K., Krishna K., Sukumar M., Balaram P. Zervamicins, a structurally characterised peptide model for membrane ion channels. Biochem Biophys. Res. Comm., 1992, 186(1): 8-15.
  195. Sansom M.S., Balaram P., Karle I.L. Ion channel formation by zervamicin-IIB. A molecular modelling study. Eur. Biophys. Journ., 1993, 21(6): 369-383.
  196. Ovchinnikova T.V., Levitskaya N.G., Voskresenskaya O.G., Yakimenko Z.A., Tagaev A.A., Ovchinnikova A.Y., Murashev A.N., Kamenskii A.A. Neuroleptic properties of the ion-channel-forming peptaibol zervamicin: locomotor activity and behavioral effects. Chem. Biodivers., 2007, 4(6): 1374-1387.
  197. Karle I.L., Flippen-Anderson J.L., Agarwalla S., Balaram P. Crystal structure of [Leu1]zervamicin, a membrane ion-channel peptide: implications for gating mechanisms. Proc. Nat. Acad. Sci. USA, 1991, 88(12): 5307-5311.
  198. Ballesteros J.A., Weinstein H. The role of Pro/Hyp-kinks in determining the transmembrane helix length and gating mechanism of a [Leu]zervamicin channel. Biophys. Journ., 1992, 62(1): 110-111.
  199. Karle I.L., Flippen-Anderson J.L., Agarwalla S., Balaram P. Conformation of the flexible bent helix of Leu1-zervamicin in crystal C and a possible gating action for ion passage. Biopolymers, 1994, 34(6): 721-735.
  200. Shenkarev Z.O., Balashova T.A., Efremov R.G., Yakimenko Z.A., Ovchinnikova T.V., Raap J., Arseniev A.S. Spatial structure of zervamicin IIB bound to DPC micelles: implications for voltage-gating. Biophys. Journ., 2002, 82(2): 762-771.
  201. Barranger-Mathys M., Cafiso D.S. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling. Biochemistry, 1996, 35(2): 498-505.
  202. Perozo E., Kloda A., Cortes D.M., Martinac B. Site-Directed Spin-Labeling Analysis of Reconstituted Mscl in the Closed State. Journ. Gen. Physiol., 2001, 118(2): 193-206.
  203. Dellisanti C.D., Ghosh B., Hanson S.M., Raspanti J.M., Grant V.A., Diarra G.M., Schuh A.M., Satyshur K., Klug C.S., Czajkowski C. Site-directed spin labeling reveals pentameric ligand-gated ion channel gating motions. PLoS Biol., 2013, 11(11): e1001714, 1-14.
  204. Shin Y.K., Levinthal C., Levinthal F., Hubbell W.L. Colicin E1 binding to membranes: time-resolved studies of spin-labeled mutants. Science, 1993, 259(5097): 960-963.
  205. Todd A.P., Cong J., Levinthal F., Levinthal C., Hubbell W.L. Site-directed mutagenesis of colicin E1 provides specific attachment sites for spin labels whose spectra are sensitive to local conformation. Proteins, 1989, 6(3): 294-305.
  206. Pulagam L.P., Steinhoff H.J. Acidic pH-induced membrane insertion of colicin A into E. coli natural lipids probed by site-directed spin labeling. Journ. Mol. Biol., 2013, 425 (10): 1782-1794.
  207. Ghosh P., Mel S.F., Stroud R.M. The domain structure of the ion channel-forming protein colicin Ia. Nat. Struct. Biol., 1994, 1(9): 6597-604.
  208. Yagi-Utsumi M., Yamaguchi Y., Boonsri P., Iguchi T., Okemoto K., Natori S., Kato K. Stable isotope-assisted NMR characterization of interaction between lipid A and sarcotoxin IA, acecropin-type antibacterial peptide. Biochem. Biophys. Res. Commun., 2013, 431(2): 136-140.
  209. Holak T.A., Engstrцm A., Kraulis P.J., Lindeberg G., Bennich H., Jones T.A., Gronenborn A.M., Clore G.M. The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonanceand dynamical simulated annealing study. Biochemistry, 1988, 27(20): 7620-7629.
  210. Sipos D., Chandrasekhar K., Arvidsson K., Engstrцm A., Ehrenberg A. Two-dimensional proton-NMR studies on a hybrid peptide between cecropin A and melittin. Resonance assignments and secondary structure. Eur. Journ. Biochem., 1991, 199(2): 285-291.
  211. Sipos D., Andersson M., Ehrenberg A. The structure of the mammalian antibacterial peptide cecropin P1 in solution, determined by proton-NMR. Eur. Journ. Biochem., 1992, 209(1): 163-169.
  212. Marassi F.M., Opella S.J., Juvvadi P., Merrifield R.B. Orientation of cecropin A helices in phospholipid bilayers determined by solid-state NMR spectroscopy. Biophys. Journ., 1999, 77(6): 3152-3155.
  213. Oh D., Shin S.Y., Kang J.H., Hahm K.S., Kim K.L., Kim Y. NMR structural characterization of cecropin A(1-8) - magainin 2(1-12) and cecropin A (1-8) - melittin (1-12) hybrid peptides. Journ. Pept. Res., 1999, 53(5): 578-589.
  214. Juvvadi P., Vunnam S., Merrifield E.L., Boman H.G., Merrifield R.B. Hydrophobic effects on antibacterial and channel-forming properties of cecropin A-melittin hybrids. Journ. Pept. Sci., 1996, 2(4): 223-232.
  215. Bechinger B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. Journ. Membr. Biol., 1997, 156(3): 197-211.
  216. Christensen B., Fink J., Merrifield R.B., Mauzerall D. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Nat. Acad. Sci. USA, 1988, 85(14): 5072-5076.
  217. Durell S.R., Raghunathan G., Guy H.R. Modeling the ion channel structure of cecropin. Biophys. Journ., 1992, 63(6): 1623-1631.
  218. Dalmas O., Sompornpisut P., Bezanilla F., Perozo E. Molecular mechanism of Mg2+-dependent gating inCorA. Nature Comm., 2014, 5(3590): 1-11.
  219. Qin P.Z., Feigon J., Hubbell W.L. Site-directed spin labeling studies reveal solution conformational changes in a GAAA tetraloop receptor upon Mg2+-dependent docking of a GAAA tetraloop. Journ. Mol. Biol., 2005, 351(1): 1-8.
  220. Sшrensen P. Changes in the viscosity of the plasma membrane of flounder (Platichthys flesus L.) erythrocyte induced by varying the content of membrane cholesterol or by benzyl alcohol. Correlation of the activity of the intrinsic Mg2+-ATPase and the viscosity. Comp. Biochem. Physiol. B, vol. 87, no. 1, pp. 109-116, 1987.
  221. East J.M., Jones O.T., Simmonds A.C., Lee A.G. Membrane fluidity is not an important physiological regulator of the Ca2+-Mg2+-dependent ATPase of sarcoplasmic reticulum. Journ. Biol. Chem., 1984, 259(13): 8070-8071.
  222. Yang F.Y., Guo B.Q., Wang D.H. Mg2+-mediated change in lipid fluidity enhances the reconstituted H+-ATPase activity. Sci. Sin. B, 1983, 26(10): 1045-1056.
  223. Ogiso T., Iwaki M., Mori K. Fluidity of human erythrocyte membrane and effect of chlorpromazine on fluidity and phase separation of membrane. Biochim. Biophys. Acta., 1981, 649(2): 325-335.
  224. Negash S., Yao Q., Sun H., Li J., Bigelow D.J., Squier T.C. Phospholamban remains associated with the Ca2+- and Mg2+-dependent ATPase following phosphorylation by cAMP-dependent protein kinase. Biochem. Journ., 2000, 351(1): 195-205.
  225. Zimmermann J.L., Schneider B., Morlet S., Amano T., Sigalat C. The role of the Mg2+ cation in ATP synthase studied by electron paramagnetic resonance using VO2+ and Mn2+ paramagnetic probes. Spectrochim. Acta. A Mol. Biomol. Spectr., 2000, 56A(2): 285-299.
  226. Coan C., Jakobs P., Ji J.Y., Murphy A.J. Sarcoplasmic reticulum calcium ATPase. Labeling of a putative Mg2+ site by reaction with a carbodiimide and a spin-label. FEBS Lett., 1993, 335(1): 33-36.
  227. Du Z.H., Mansour T.E. Effect of adenylate cyclase activators and Mg2+ on the binding and the electron spin resonance spectra of N-methylmaleimide nitroxide in membrane particles from the liver fluke Fasciola hepatica. Biochim. Biophys. Acta, 1982, 687(2): 257-264.
  228. Zhang X.F., Yang F.Y. Further study on the role of Mg2+ in lipid-protein interaction in reconstituted porcine heart mitochondrial H+-ATPase. Biochim. Biophys. Acta, 1989, 976(1): 53-62.
  229. Yang F.Y., Huang Y.G., Zhang X.F., Guo B.Q. Magnesium mediated change in physical state of phospholipid modulates membrane ATPase activity. Magn. Res., 1988, 1(1-2): 13-21.
  230. Lohmann W., Tian P.Z., Holz D., Schmehl W. Influence of metal ions on the transport of ascorbate across membranes. Int. Journ. Vitam. Nutr. Res., 1986, 56(2): 169-172.
  231. Klein J.S., Lewinson O. Bacterial ATP-driven transporters of transition metals: physiological roles, mechanisms of action, and roles in bacterial virulence. Metallomics, 2011, 3(11): 1098-108.
  232. Tikhonov A., Khomutov G., Ruuge E. [Electron paramagnetic study of electron transport in photosynthetic systems. X. Effect of magnesium ions on the structural state of thylakoid membranes and the kinetics of electron transport between the two photosystems in bean chloroplasts] // Mol. Biol., 1980, 14(5): 1065–1079. [in Russian]
  233. Jajoo A., Dube A., Bharti S. Mg2+-induced lipid phase transition in thylakoid membranes is reversed by anions.. Biochem. Biophys. Res. Comm., 1994, 202(3): 1724-1730.
  234. Kirino Y., Ohkuma T., Shimizu H. Saturation transfer electron spin resonance study on the rotational diffusion of calcium- and magnesium-dependent adenosine triphosphatase in sarcoplasmic reticulum membranes. Journ. Biochem., 1978, 84(1): 11-115.
  235. Du Z.H., Mansour T.E. Effect of adenylate cyclase activators and Mg2+ on the binding and the electron spin resonance spectra of N-methylmaleimide nitroxide in membrane particles from the liver fluke Fasciola hepatica. Biochim. Biophys. Acta, 1982, 687(2): 257-264.
  236. Takeuchi Y., Ohnishi S.I., Ishinaga M., Kito M. Dynamic states of phospholipids in Escherichia coli B membrane. Electron spin resonance studies with biosynthetically generated phospholipid spin labels. Biochim. Biophys. Acta, 1981, 646(1): 119-125.
  237. Wang H.H., Yeh J.Z., Narahashi T. Interaction of spin-labeled local anesthetics with the sodium channel of squid axon membranes. Journ. Membr. Biol., 1982, 66(3): 227-233.
  238. Viret J., Leterrier F. A spin label study of rat brain membranes. Effects of temperature and divalent cations. Biochim, Biophys, Acta., 1976, 436(4): 811-824.
  239. Takeuchi Y., Ohnishi S.I., Ishinaga M., Kito M. Spin-labeling of Escherichia coli membrane by enzymatic synthesis of phosphatidylglycerol and divalent cation-induced interaction of phosphatidylglycerol with membrane proteins. Biochim. Biophys. Acta., 1978, 506(1): 54-63.
  240. Meers P., Feigenson G.W. Location and ion-binding of membrane-associated valinomycin, a proton nuclear magnetic resonance study. Biochim. Biophys. Acta., 1988, 938(3): 469-482.
  241. Sundberg S.A., Hubbell W.L. Investigation of surface potential asymmetry in phospholipid vesicles by a spin label relaxation method. Biophys. Journ., 1986, 49(2): 553-562.
  242. Cafiso D.S., Hubbell W.L. Transmembrane electrical currents of spin-labeled hydrophobic ions. Biophys. Journ., 1982, 39(3): 263-272.
  243. Sentjurc M., Stalc A., Zupancic A.O. An ESR study of the postsynatpic membrane acetylcholinesterase of Torpedo marmorata electric organ. Mol. Cel. Biochem., 1976, 13(3): 137-139.
  244. Horvбth L.I., Arias H.R., Hankovszky H.O., Hideg K., Barrantes F.J., Marsh D. Association of spin-labeled local anesthetics at the hydrophobic surface of acetylcholine receptor in native membranes from Torpedo marmorata. Biochemistry, 1990, 29(37): 8707-8713.
  245. Fraser D.M., Louro S.R., Horvбath L.I., Miller K.W., Watts A. A study of the effect of general anesthetics on lipid-protein interactions in acetylcholine receptor enriched membranes from Torpedo nobiliana using nitroxide spin-labels. Biochemistry, 1990, 29(11): 2664-2669.
  246. Robertson A.P., Buxton S.K., Martin R.J. Whole-cell patch-clamp recording of nicotinic acetylcholine receptors in adult Brugia malayi muscle. Parasitol. Int., 2013, 62(6): 616-8.
  247. Hao Y., Tang J., Wang K. Development of Automated Patch Clamp Assay for Evaluation of α7 Nicotinic Acetylcholine Receptor Agonists in Automated QPatch-16. As. Drug Dev. Technol., 2015, 13(3): 174-84.
  248. Matsubayashi H., Inoue A., Amano T., Seki T., Nakata Y., Sasa M., Sakai N. Involvement of alpha7- and alpha4beta2-type postsynaptic nicotinic acetylcholine receptors in nicotine-induced excitation of dopaminergic neurons in the substantia nigra: a patch clamp and single-cell PCR study using acutely dissociated nigral neurons. Brain Res. Mol, Brain Res., 2004, 129(1-2): 1-7.
  249. Re L., Corneli C., Sturani E., Paolucci G., Rossini F., Leуn O.S., Martнnez G., Bordicchia M., Tomassetti Q. Effects of Hypericum extract on the acetylcholine release: a loose patch clamp approach. Pharmac. Res., 2003, 48(1): 55-60.
  250. Keleshian A.M., Edeson R.O., Liu G.J., Madsen B.W. Evidence for cooperativity between nicotinic acetylcholine receptors in patch clamp records. Biophys. Journ., 2000, 78(1): 1-12.
  251. Buisson B., Gopalakrishnan M., Arneric S.P., Sullivan J.P., Bertrand D. Human alpha4beta2 neuronal nicotinic acetylcholine receptor in HEK 293 cells: A patch-clamp study. Journ. Neurosci., 1996, 16(24): 7880-7891.
  252. Milone M., Hutchinson D.O., Engel A.G. Patch-clamp analysis of the properties of acetylcholine receptor channels at the normal human endplate. Mus. Nerve., 1994, 17(12): 1364-1369.
  253. Nooney J.M., Peters J.A., Lambert J.J. A patch clamp study of the nicotinic acetylcholine receptor of bovine adreno-medullary chromaffin cells in culture. Journ. Physiol., 1992, 455: 503-527.
  254. Pennington A.J., Martin R.J. A patch-clamp study of acetylcholine-activated ion channels in Ascaris suum muscle. Journ. Exp. Biol., 1990, 154: 201-221.
  255. Kuba K., Tanaka E., Kumamoto E., Minota S. Patch clamp experiments on nicotinic acetylcholine receptor-ion channels in bullfrog sympathetic ganglion cells. Pflugers Arch., 1989, 414(2): 105-112.
  256. Brett R.S., Dilger J.P., Yland K.F. Isoflurane causes "flickering" of the acetylcholine receptor channel: observations using the patch clamp. Anesthesiology, 1988, 69(2): 161-170.
  257. Methfessel C., Witzemann V., Takahashi T., Mishina M., Numa S., Sakmann B. Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflugers Arch., 1986, 407(6): 577-588.
  258. Gallacher D.V., Morris A.P. A patch-clamp study of potassium currents in resting and acetylcholine-stimulated mouse submandibular acinar cells. Journ. Physiol., 1986, 373: 379-395.
  259. Akaike A., Ikeda S.R., Brookes N., Pascuzzo G.J., Rickett D.L., Albuquerque E.X. The nature of the interactions of pyridostigmine with the nicotinic acetylcholine receptor-ionic channel complex. II. Patch clamp studies. Mol. Pharmacol., 1984, 25(1): 102-112.
  260. Allen C.N., Akaike A., Albuquerque E.X. The frog interosseal muscle fiber as a new model for patch clamp studies of chemosensitive- and voltage-sensitive ion channels: actions of acetylcholine and batrachotoxin. Journ. Physiol., 1984, 79(4): 338-343.
  261. Fenwick E.M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. Journ. Physiol., 1982, 331: 577-597.
  262. Voigt N., Makary S., Nattel S., Dobrev D. Voltage-clamp-based methods for the detection of constitutively active acetylcholine-gated I(K, ACh) channels in the diseased heart. Meth. Enzymol., 2010, 484: 653-675.
  263. Simon S.A., Baggett H.C. Identification of muscarinic acetylcholine receptors in isolated canine lingual epithelia via voltage clamp measurements. Arch. Or. Biol., 1992, 37(9): 685-90.
  264. Nelson I.D., Huddart H. The nature of the acetylcholine receptor in a Buccinum proboscis muscle examined by the sucrose-gap voltage clamp technique. Gen. Pharmacol., 1992, 23(3): 317-323.
  265. Cachelin A.B., Colquhoun D. Desensitization of the acetylcholine receptor of frog end-plates measured in a Vaseline-gapvoltage clamp. Journ. Physiol., 1989, 415: 159-188.
  266. Woody C.D., Gruen E. Acetylcholine reduces net outward currents measured in vivo with single electrode voltage clamptechniques in neurons of the motor cortex of cats. Brain Res., 1987, 424(1): 193-198.
  267. Hirano T., Kidokoro Y., Ohmori H. Acetylcholine dose-response relation and the effect of cesium ions in the rat adrenal chromaffin cell under voltage clamp. Pflugers Arch., 1987, 408(4): 401-407.
  268. Takeyasu K., Udgaonkar J.B., Hess G.P. Acetylcholine receptor: evidence for a voltage-dependent regulatory site for acetylcholine. Chemical kinetic measurements in membrane vesicles using a voltage clamp. Biochemistry, 1983, 22(25): 5973-5978.
  269. McCandless M., Nishiyama A., Petersen O.H., Philpott H.G. Mouse pancreatic acinar cells: voltage-clamp study of acetylcholine-evoked membrane current. Journ. Physiol., 1981, 318: 57-71.
  270. Wachtel R.E., Wilson W.A. Use of the single electrode voltage clamp to perform noise and relaxation studies of acetylcholine-activated channels in Aplysia neurons. Journ. Neurosci, Meth., 1981, 4(1): 87-103.
  271. Bregestovksi P.D., Bukharaeva E.A., Iljin V.I. Voltage clamp analysis of acetylcholine receptor desensitization in isolated mollusc neurones. Journ. Physiol., 1979, 297: 581-595.
  272. Chad J.E., Kerkut G.A., Walker R.J. Ramped voltage clamp study of the action of acetylcholine on three types of neurons in the snail (Helix aspersa) brain. Comp. Biochem. Physiol. C., 1979, 63C(2): 269-278.
  273. Fischbach G.D., Lass Y. Acetylcholine noise in cultured chick myoballs: a voltage clamp analysis. Journ. Physiol., 1978, 280: 515-526.
  274. Sachs F., Lecar H. Acetylcholine-induced current fluctuations in tissue-cultured muscle cells under voltage clamp. Biophys. Journ., 1977, 17(2): 129-143.
  275. Bolton T.B. Effects of stimulating the acetylcholine receptor on the current-voltage relationships of the smooth muscle membrane studied by voltage clamp of potential recorded by micro-electrode. Journ. Physiol., 1975, 250(1): 175-202.
  276. Anderson C.R., Stevens C.F. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. Journ. Physiol., 1973, 235(3): 655-691.
  277. Sano T., Iida Y., Hiraoka M. Action of acetylcholine on the Purkinje fiber studied by voltage clamp technique. J. Journ. Physiol., 1970, 20(2): 155-166.
  278. Rosen G.M., Abou Donia M.B., Yeh J.Z., Menzel D.B. Spin labeled acetylcholine analogs: studies of cholinergic receptor. Res. Commun. Chem. Path. and Pharm., 1975, 12(2): 317-329.
  279. Martнnez C.G., Jockusch S., Ruzzi M., Sartori E., Moscatelli A., Turro N.J., Buchachenko A.L. Chemically induced dynamic electron polarization generated through the interaction between singlet molecular oxygen and nitroxide radicals. Journ. Phys Chem A., 2005, 109(45): 10216-10221.
  280. Buchachenko A.L., Ivanov V.L., Roznyatovsky V.A., Ustynyuk Y.A. Magnetic isotope effect in the photolysis of organotin compounds. Journ. Phys. Chem. A., 2006, 110 (11): 3857-3859.
  281. Buchachenko A.L., Dubinina E.O. Photo-oxidation of water by molecular oxygen: isotope exchange and isotope effects. Journ. Phys. Chem. A., 2011, 115(15): 3196-3200.
  282. Nesbitt D.M., Berg S.P. Proton involvement with the light-induced hindrance of spin label motion in the lumen of spinach thylakoids. Biochim. Biophys. Acta, 1980, 593(2): 353-61.
  283. Keller B.U., Hedrich R. Patch clamp techniques to study ion channels from organelles. Meth. Enzymol., 1992, 207: 673-681.
  284. Muсiz J.J., Pottosin I.I., Sandoval L. Patch-clamp study of vascular plant chloroplasts: ion channels and photocurrents. Journ. Bioenerg. Biomembr., 1995, 27(2): 249-258.
  285. Pottosin I.I., Schцnknecht G. Patch clamp study of the voltage-dependent anion channel in the thylakoid membrane. Journ. Membr, Biol., 1995, 148(2): 143-156.
  286. Ivanov I.I., Loktyushkin A.V., Gus'kova R.A., Vasil'ev N.S., Fedorov G.E., Rubin A.B. Oxygen channels of erythrocyte membrane. Dok. Biochem. Biophys., 2007, 414: 137-140.
  287. Frankel L.K., Sallans L., Limbach P.A., Bricker T.M. Identification of oxidized amino acid residues in the vicinity of the Mn4CaO5 cluster of Photosystem II: implications for the identification of oxygen channels within the Photosystem. Biochemistry, 2012, 51(32): 6371-6377.
  288. Lуpez-Barneo J., Ortega-Sбenz B., Garcнa-Fernбndez M., Pardal R. Oxygen Sensing, Oxygen-sensitive Ion Channels and Mitochondrial Function in Arterial Chemoreceptors. Dev. Cardiovasc. Med., 2004, 252: 361-373.
  289. Otsubo T., Yamaguchi S., Okumura M., Shirahata M. Differential Expression of Oxygen Sensitivity in Voltage-Dependent K Channels in Inbred Strains of Mice. Adv. Exp. Med. & Biol., 2006, 580: 209-214.
  290. Jung M.Y., Min D.B. ESR study of the singlet oxygen quenching and protective activity of Trolox on the photodecomposition of riboflavin and lumiflavin in aqueous buffer solutions. Journ. Food Sci., 2009, 74(6): C449-C455.
  291. Lavi R., Sinyakov M., Samuni A., Shatz S., Friedmann H., Shainberg A., Breitbart H., Lubart R. ESR detection of 1O2 reveals enhanced redox activity in illuminated cell cultures. Free Radic Res., 2004, 38(9): 893-902.
  292. Song Y.Z., An J., Jiang L. ESR evidence of the photo-generation of free radicals (GDHB*-, O2*-) and singlet oxygen (1O2) by 15-deacetyl-13-glycine-substituted hypocrellin B. Biochim. Biophys. Acta, 1999, 1472(1-2): 307-313.
  293. Feix J.B., Kalyanaraman B. Production of singlet oxygen-derived hydroxyl radical adducts during merocyanine-540-mediated photosensitization: analysis by ESR-spin trapping and HPLC with electrochemical detection. Arch. Biochem. Biophys., 1991, 291(1): 43-51.
  294. Moan J., Wold E. Detection of singlet oxygen production by ESR. Nature, 1979, 279(5712): 450-451.
  295. Cannistraro S., Van de Vorst A. ESR and optical absorption evidence for free radical involvement in the photosensitizing action of furocoumarin derivatives and for their singlet oxygen production. Biochim. Biophys. Acta, 1977, 476(2): 166-177.
  296. Schaich K.M., Karel M. Free radical reactions of peroxidizing lipids with amino acids and proteins: an ESR study. Lipids, 1976, 11(5): 392-400.
  297. Qi H., Dong X.F., Zhao Y.P., Li N., Fu H., Feng D.D., Liu L., Yu C.X. ROS production in homogenate from the body wall of sea cucumber Stichopus japonicus under UVA irradiation: ESR spin-trapping study. Food Chem., 2016, 192: 358-362.
  298. Lee M.C. Assessment of oxidative stress and antioxidant property using electron spin resonance (ESR) spectroscopy. Journ. Clin. Biochem. Nutr., 2013, 52(1): 1-8.
  299. Saita M., Kobayashi K., Yoshino F., Hase H., Nonami T., Kimoto K., Lee M.C. ESR investigation of ROS generated by H2O2 bleaching with TiO2 coated HAp. Dent. Mater. Journ., 2012, 31(3): 458-464.
  300. Sawada T., Yoshino F., Kimoto K., Takahashi Y., Shibata T., Hamada N., Sawada T., Toyoda M., Lee M. ESR detection of ROS generated by TiO2 coated with fluoridated apatite. Journ. Dent, Res., 2010, 89(8): 848-853.
  301. Xu Y., Kalyanaraman B. Synthesis and ESR studies of a novel cyclic nitrone spin trap attached to a phosphonium group-a suitable trap for mitochondria-generated ROS? Free Radic. Res., 2007, 41(1): 1-7.
  302. Cao Y., Guo P., Xu Y., Zhao B. Simultaneous detection of NO & ROS by ESR in biological systems. Meth. Enzymol., 2005, 396: 77-83.
  303. Yamato M., Egashira T., Utsumi H. Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic. Biol. Med., 2003, 35(12): 1619-1631.
  304. Kasazaki K., Yasukawa K., Sano H., Utsumi H. Non-invasive analysis of reactive oxygen species generated in NH4OH-induced gastric lesions of rats using a 300 MHz in vivo ESR technique. Free Radic. Res., 2003, 37(7): 757-766.
  305. Capani F., Loidl C.F., Aguirre F., Piehl L., Facorro G., Hager A., De Paoli T., Farach H., Pecci-Saavedra J. Changes in reactive oxygen species (ROS) production in rat brain during global perinatal asphyxia: an ESR study. Brain Res., 2001, 914(1-2): 204-207.
  306. Anjaneyulu P.S., Beth A.H., Sweetman B.J., Faulkner L.A., Staros J.V. Bis(sulfo-N-succinimidyl) [15N,2H16]doxyl-2-spiro-4'-pimelate, a stable isotope-substituted, membrane-impermeant bifunctional spin label for studies of the dynamics of membrane proteins: application to the anion-exchange channel in intact human erythrocytes. Biochemistry, 1988, 27(18): 6844-6851.
  307. Sha X.M., Tu Z.C., Wang H., Huang T., Duan D.L., He N., Li D.J., Xiao H. Gelatin quantification by oxygen-18 labeling and liquid chromatography-high-resolution mass spectrometry. Journ. Agric. Food Chem., 2014, 62(49): 11840-11853.
  308. Stingl C., Sцderquist M., Karlsson O., Borйn M., Luider T.M. Uncovering effects of ex vivo protease activity during proteomics and peptidomics sample extraction in rat brain tissue by oxygen-18 labeling. Journ. Proteome Res., 2014, 13(6): 2807-2817.
  309. Kanady J.S., Mendoza-Cortes J.L., Tsui E.Y., Nielsen R.J., Goddard W.A., Agapie T. Oxygen atom transfer and oxidative water incorporation in cuboidal Mn3MOn complexes based on synthetic, isotopic labeling, and computational studies. Journ. Amer. Chem. Soc., 2013, 135(3): 1073-1082.
  310. Qian W.J., Petritis B.O., Nicora C.D., Smith R.D. Trypsin-catalyzed oxygen-18 labeling for quantitative proteomics. Meth. Mol. Biol., 2011, 753: 43-54.
  311. Melby E.S., Soldat D.J., Barak P. Synthesis and detection of oxygen-18 labeled phosphate. PLoS One, 2011, 6(4): e18420, 1-6.
  312. Fernandez-de-Cossio J. Mass spectrum patterns of 18O-tagged peptides labeled by enzyme-catalyzed oxygen exchange. Anal. Chem., 2011, 83(8): 2890-2896.
  313. Schliep M., Crossett B., Willows R.D., Chen M. 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecularoxygen are precursors. Journ. Biol. Chem., 2010, 285(37): 28450-28456.
  314. Niles R., Witkowska H.E., Allen S., Hall S.C., Fisher S.J., Hardt M. Acid-catalyzed oxygen-18 labeling of peptides. Anal. Chem., 2009, 81(7): 2804-2809.
  315. Crean C., Geacintov N.E., Shafirovich V. Oxidation of guanine and 8-oxo-7,8-dihydroguanine by carbonate radical anions: insight from oxygen-18 labeling experiments. Angew. Chem. Int. Ed. Engl., 2005, 44(32): 5057-5060.
  316. Staes A., Demol H., Van Damme J., Martens L., Vandekerckhove J., Gevaert K. Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides withoxygen-18. Journ. Proteome Res., 2004, 3(4): 786-791.
  317. Ye Y., Muller J.G., Luo W., Mayne C.L., Shallop A.J., Jones R.A., Burrows C.J. Formation of 13C-, 15N-, and 18O-labeled guanidinohydantoin from guanosine oxidation with singletoxygen. Implications for structure and mechanism. Journ. Amer. Chem. Soc., 2003, 125(46): 13926-13927.
  318. Martinez G.R., Medeiros M.H., Ravanat J.L., Cadet J., Di Mascio P. [18O]-labeled singlet oxygen as a tool for mechanistic studies of 8-oxo-7,8-dihydroguanine oxidative damage: detection of spiroiminodihydantoin, imidazolone and oxazolone derivatives. Biol. Chem., 2002, 383(3-4): 607-617.
  319. Horvitz M.A., Schoeller D.A. Natural abundance deuterium and 18-oxygen effects on the precision of the doubly labeled water method. Amer. Journ. Physiol. Endocrinol. Metab., 2001, 280(6): E965-E972.
  320. Tian G., Berry J.A., Klinman J.P. Oxygen-18 kinetic isotope effects in the dopamine beta-monooxygenase reaction: evidence for a new chemical mechanism in non-heme metallomonooxygenases. Biochemistry, 1994, 33(1): 226-234.
  321. Murphy R.C., Clay K.L. Preparation of labeled molecules by exchange with oxygen-18 water. Meth. Enzymol., 1990, 193: 338-48.
  322. McLeish M.J., Julin D.A., Kirsch J.F. Aspartate amino-transferase catalyzed oxygen exchange with solvent from oxygen-18-enriched alpha-ketoglutarate: evidence for slow exchange of enzyme-bound water. Biochemistry, 1989, 28(9): 3821-5.
  323. Risley J.M., Van Etten R.L. Mechanistic studies utilizing oxygen-18 analyzed by carbon-13 and nitrogen-15 nuclear magnetic resonance spectroscopy. Meth. Enzymol,. 1989, 177: 376-389.
  324. Aissa M., Hatch G.E. Method for tracing oxygen-18 in vivo: application to ozone dosimetry in animals. Bas. Life Sci., 1988, 49: 195-197.
  325. Ponnusamy E., Fiat D., Jones C.R. Oxygen-18 isotope labeling and its effect on carbon-13 chemical shifts of the peptide bond. Int. Journ. Pept. Prot. Res., 1986, 28(5): 542-545.
  326. Stempel K.E., Boyer P.D. Refinements in oxygen-18 methodology for the study of phosphorylation mechanisms. Meth. Enzymol., 1986, 126: 618-639.
  327. Rosenberg S., Kirsch J.F. Oxygen-18 leaving group kinetic isotope effects on the hydrolysis of nitrophenyl glycosides. 2. Lysozyme and beta-glucosidase: acid and alkaline hydrolysis. Biochemistry, 1981, 20(11): 3196-3204.
  328. Rosenberg S., Kirsch J.F. Oxygen-18 leaving group kinetic isotope effects on the hydrolysis of nitrophenyl glycosides. 1. Beta-galactosidease-catalyzed hydrolysis. Biochemistry, 1981, 20(11): 3189-3196.
  329. Pickett W.C., Murphy R.C. Enzymatic preparation of carboxyl oxygen-18 labeled prostaglandin F2 alpha and utility for quantitative mass spectrometry. Anal. Biochem., 1981, 111(1): 115-121.
  330. Hackney D.D., Stempel K.E., Boyer P.D. Oxygen-18 probes of enzymic reactions of phosphate compounds. Meth. Enzymol., 1980, 64: 60-83.
  331. Marnett L.J., Bienkowski M.J., Pagels W.R. Oxygen 18 investigation of the prostaglandin synthetase-dependent co-oxidation of diphenylisobenzofuran. Journ. Biol. Chem., 1979, 254(12): 5077-5082.
  332. Sleep J.A., Hackney D.D., Boyer P.D. Characterization of phosphate oxygen exchange reactions catalyzed by myosin through measurement of the distribution of 18-O-labeled species. Journ. Biol. Chem., 1978, 253(15): 5235-5238.
  333. Puzo G., Schram K.H., McCloskey J.A. Incorporation of oxygen-18 into nucleosides and bases. Nucleic Acids Res., 1977, 4(6): 2075-2081.
  334. Burstein S., Middleditch B.S. Enzymatic formation of (20R, 22R)-20,22-dihydroxycholesterol from cholesterol and a mixture of 16O2 and 18O2: random incorporation of oxygen atoms. Biochem. Biophys. Res. Commun., 1974, 61(2): 692-697.
  335. Berridge M.S., Cassidy E.H., Terris A.H. A routine, automated synthesis of oxygen-15-labeled butanol for positron tomography. Journ. Nucl. Med., 1990, 31(10): 1727-1731.
  336. Moerlein S.M., Gaehle G.G., Lechner K.R., Bera R.K., Welch M.J. Automated production of oxygen-15 labeled butanol for PET measurement of regional cerebral blood flow. Appl. Radiat. Isot., 1993, 44(9): 1213-1218.
  337. Berridge M.S., Franceschini M.P., Tewson T.J., Gould K.L. Preparation of oxygen-15 butanol for positron tomography. Journ. Nucl, Med., 1986, 27(6): 834-837.
  338. Subramanyam R., Bucelewicz W.M., Hoop B., Jones S.C. A system for oxygen-15 labeled blood for medical applications. Int. Journ. Appl. Radiat. Isot., 1977, 28(1-2): 21-24.
  339. West J.B. Studies of pulmonary and cardiac function using short-lived isotopes oxygen-15, nitrogen-13 and carbon-11. Prog. At. Med., 1968, 2, 39-64.
  340. Anzai K., Ogawa K., Ozawa T., Yamamoto H. Oxidative modification of ion channel activity of ryanodine receptor. Antioxid. Redox Signal., 2000, 2(1): 35-40.
  341. Choudhary G., Dudley S.C. Heart failure, oxidative stress, and ion channel modulation. Con. Heart Fail., 2002, 8(3): 148-155.
  342. Wang Z. Role of redox state in modulation of ion channel function by fatty acids and phospholipids. Br. Journ. Pharmacol., 2003, 139(4): 681-683.
  343. Hall A.C., Suarez C., Hom-Choudhury A., Manu A.N., Hall C.D., Kirkovits G.J., Ghiriviga I. Cation transport by a redox-active synthetic ion channel. Org. Biomol. Chem., 2003, 1(16): 2973-2982.
  344. Matalon S., Hardiman K.M., Jain L., Eaton D.C., Kotlikoff M., Eu J.P., Sun J., Meissner G., Stamler J.S. Regulation of ion channel structure and function by reactive oxygen-nitrogen species. Amer. Journ. Physiol. Lung Cell Mol. Physiol., 2003, 285(6): 1184-1189.
  345. Antonenko Y.N., Stoilova T.B., Kovalchuk S.I., Egorova N.S., Pashkovskaya A.A., Sobko A.A., Kotova E.A., Surovoy A.Y. Redox-regulated ion channel activity of a cysteine-containing gramicidin A analogue. Biochim. Biophys. Acta, 2006, 1758(4): 493-498.
  346. Tsikolia M., Hall A.C., Suarez C., Nylander Z.O., Wardlaw S.M., Gibson M.E., Valentine K.L., Onyewadume L.N., Ahove D.A., Woodbury M., Mongare M.M., Hall C.D., Wang Z., Draghici B., Katritzky A.R. Synthesis and characterization of a redox-active ion channel supporting cation flux in lipid bilayers. Org. Biomol. Chem., 2009, 7(18): 3862-3870.
  347. Carpaneto A., Cantщ A.M., Gambale F. Redox agents regulate ion channel activity in vacuoles from higher plant cells. FEBS Lett., 1999, 442(2-3): 129-132.
  348. Elliott S.J., Koliwad S.K. Redox control of ion channel activity in vascular endothelial cells by glutathione. Microcirculation, 1997, 4(3): 341-347.
  349. Fogle K.J., Baik L.S., Houl J.H., Tran T.T., Roberts L., Dahm N.A., Cao Y., Zhou M., Holmes T.C. CRYPTO-CHROME-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor. Proc. Nat. Acad. Sci. USA, 2015, 112(7): 2245-2250.
  350. Petrotchenko E.V., Yamaguchi N., Pasek D.A., Borchers C.H, Meissner G. Mass spectrometric analysis and mutagenesis predict involvement of multiple cysteines in redox regulation of the skeletal muscle ryanodine receptor ion channel complex. Res. Rep. Biol., 2011, 2: 13-21.
  351. Schцn P., Degefa T.H., Asaftei S., Meyer W.W. Charge propagation in "ion channel sensors" based on protein-modified electrodes and redoxmarker ions. Journ. Amer. Chem. Soc., 2005, 127(32): 11486-11496.
  352. Buck L.T. Adenosine as a signal for ion channel arrest in anoxia-tolerant organisms. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 2004, 139(3): 401-114.
  353. Marinov B.S. Ion channel redox model.Journ. Mol. Cell Cardiol., 1991, 23(Suppl. 1): 53-60.
  354. Puppi A., Nбnбsi P., Dely M. Influence of the redox-state potential of biophase on electrically stimulated skeletal muscles (myographic and voltage-clamp analysis). Acta Physiol. Hung., 1991, 77(1): 33-41.
  355. Hoffman R.A., Long D.D., Arndt R.A., Roper L.D. Voltage-clamp experiments on oxidized cholesterol membranes modified with excitability-inducing material and comparison with a model. Biochim. Biophys. Acta., 1976, 455(3): 780-795.
  356. Hescheler J., Delpiano M.A., Acker H., Pietruschka F. Ionic currents on type-I cells of the rabbit carotid body measured by voltage-clamp experiments and the effect of hypoxia. Brain Res., 1989, 486(1): 79-88.
  357. Shattock M.J., Matsuura H. Measurement of Na+-K+ pump current in isolated rabbit ventricular myocytes using the whole-cell voltage-clamp technique. Inhibition of the pump by oxidant stress. Circ. Res., 1993, 72(1): 91-101.
  358. Haddad G.G., Jiang C. Mechanisms of anoxia-induced depolarization in brainstem neurons: in vitro current and voltage clamp studies in the adult rat. Brain Res., 1993, 625(2): 261-268.

Article Tools
Follow on us
Science Publishing Group
NEW YORK, NY 10018
Tel: (001)347-688-8931