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Abstract: In this projecting work we propose a mass spectrometric patch-clamp equipment with the capillary performing both 

a local potential registration at the cell membrane and the analyte suction simultaneously. This paper provides a current literature 

analysis comparing the possibilities of the novel approach proposed with the known methods, such as scanning patch-clamp, 

scanning ion conductance microscopy, patch clamp based on scanning probe microscopy technology, quantitative subcellular 

secondary ion mass spectrometry or "ion microscopy", live single-cell mass spectrometry, in situ cell-by-cell imaging, single-cell 

video-mass spectrometry, etc. We also consider the ways to improve the informativeness of these methods and particularly 

emphasize the trend at the increasing of the analysis complexity. We propose here the way to improve the efficiency of the cell 

trapping to the capillary during MS-path-clamp, as well as to provide laser surface ionization using laser trapping and tweezing 

of cells with the laser beam transmitted through the capillary as a waveguide. It is also possible to combine the above system with 

the microcolumn separation system or capillary electrophoresis as an optional direction of further development of the complex of 

analytical techniques emerging from the MS variation of patch-clamp. 
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1. Introduction 

Among numerous specialized methods of the fine single cell 

analysis based on microelectrode and microcapillary 

techniques, such as extracellular and intracellular voltammetry, 

capillary electrophoresis and microcolumn separation, etc. [1], 

the most common one is the method of local potential 

registration of single channels also known as patch-clamp. It 

was first developed in the middle 1970-th [2], became widely 

available at the early 1980-th [3] and now patch-clamp 

appeared to be a multifunctional precision quantitative method 

for elecrophysiological registration of activity and reactivity of 

both single ion channels and their complexes functionally 

related according to the cytophysiological criteria. A complex 

of channels in the framework of the above approach is called a 

"channelome" [4, 5], and the corresponding branch of science is 

known as "chanellomics" [6], which studies the forms of either 

electrophysiological or electrobiochemical response of the ion 

channel system, as well as their biophysical dependencies. 

However, providing registration of a single ion channel 

activity, patch-clamp does not allow to perform chemical 

analysis. Thereby, since early 1990-th the attempts were 

made to combine local potential registration techniques with 

various analytical methods, in particular, with capillary 

electrophoresis [7-10], but this method is obviously not 

exhaustive, since there are fundamental limitations on 

combining capillary electrophoresis with electrochemical 

detection [11]. Thus, only assuming the nature of the 

substance detected it is possible to obtain a qualitative result. 

Patch-clamp combined with electroporation [12] and 

respectively with a single cell PCR [13] combined with 

electrodiffusion transport activity during patch-clamp [14] is 

well adapted for membranology and molecular genetics of 

single cells, such as neurons [15,16], but is not intended for 

the analysis of other cell constituents. The authors of a 

pioneer work [15] describe this as follows: "combination of 

patch-clamp and molecular biology techniques has made it 
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possible to characterize the pharmacological and biophysical 

properties of ion channels in single neurons and to screen for 

expression of specific mRNAs in the same cell". 

2. Ways of Chemical Registration 

A palliative solution (with respect to the existing 

techniques) is the combination of scanning patch-clamp 

methods with ionic conductance microscopy of living cells 

[17]
1
, also known as scanning patch-clamp [18]

2
. This method 

has been successfully hybridized with the latest scanning 

techniques of the mass spectroscopic tissue imaging using a 

scanning microcapillary [19].  

In contrast to the electrophoretic patch-clamp detection 

variation, mass spectrometry allows registration and 

distinction between various chemical cell constituents. Since 

1980-th, when imaging secondary ion mass spectrometry, 

also known as ion microscopy, provided quantitative 

concentration determination of boron, calcium, magnesium, 

potassium, and sodium in various parts of the living cell [20, 

21], and later with some of these elements, in particular, with 

boron [22], an isotopic analysis was performed – a 

quantitative subcellular secondary ion mass spectrometry 

(SIMS) imaging, this area has become a development trend 

of biological MS imaging. It is quite obvious that the 

possibility of inorganic ion detection in this way allows one 

to perform temporal registration and imaging of ion channel 

activity and mapping of the receptors which control the 

influx of inorganic ions [23]. This correlates well with the 

possibility of inorganic ion imaging during patch-clamp and 

patch-clamp recording with temporal resolution, e.g., 

chloride imaging and cell-attached patch-clamp recordings 

for the study of how a chloride efflux inhibits single calcium 

channel open probability
3
 [24].  

It is of particular interest that, in addition to the inorganic 

ion content analysis, for example, calcium stores in cells 

[25], MS imaging also allows to determine the content of cell 

surfactants, for example, cholesterol in the membranes of 

individual cells [26], providing data interpretation at the 

physico-chemical level. This is even more promising in 

terms of dynamic secondary ion mass spectrometry analysis 

[27], since in this case the comparability with the temporal 

patch-clamp registration can be clearly revealed. 

To date, the main principles of live single-cell mass 

spectrometry have been developed [28], capable of operating 

in vivo at atmospheric pressure [29] and detecting even 

midget fragments [30]. They are used for various tasks at 

different organization levels of living matter, from 

                                                             

1 See also patents: "Scanning ion conductance microscopy for the investigation of 

living cells" (WO 2008015428 A1; EP 2047231 A1; US 8006316 B2), based on the 

fundamental technique, patented as "Scanning ion conductance microscopy" (WO 

2009095720 A2, US 20110131690 A1, EP 2238428 A2). 

2 See patents: "High resolution patch clamp based on scanning probe microscopy 

technology and operating method thereof" (CN 102071135 A) and "High 

resolution patch clamp device based on scanning probe microscopy technology" 

(CN 201654064 U). 

3 It is worth mentioning that SIMS is developed for the work with the frozen 

tissues rather than with native ones. 

single-cell metabolomics [31] to single-cell ecophysiology, 

often in combination with other microspectral, in particular, 

optical methods [32]. As well as usual patch-clamp, which in 

its planar patch clamp configuration [33-35]
4
 is capable of 

screening at large tissue layers, the above mass spectrometric 

methods also allow working with large tissue layers [36, 37] 

(up to the so-called "leaf spray" method for direct chemical 

analysis of living plants [38]) and cell populations, 

performing in situ cell-by-cell imaging with cellular 

resolution [39, 40].  

Thus, it is possible to study precisely single cell activity and 

intercellular interactions in the populations and tissues. 

Unfortunately, there have been no attempts to apply any of 

these methods to the study of electrobiochemical activity and 

the chemistry of electrophysiological regimes in channelome, 

although this follows directly from the above considerations. 

However, its implementation requires combination of the 

input capillary of the detection / registration device with the 

patch-clamp capillary, which is impossible in some of the 

similar methods, since they are based on the imaging 

principles different from the required ones. Thus, it is almost 

meaningless to combine patch-clamp with MALDI imaging 

without using the capillary also as a laser waveguide, 

operating simultaneously as a tool for laser trapping and 

tweezing. It also does not make technical sense to combine 

patch-clamp with any other detection methods which do not 

use the capillary and the suction. 

The novel methods for single-cell video-mass 

spectrometry, combining the optical and mass spectrometric 

methods of registration and imaging [41-43], suggest the 

comparison with the combination of patch-clamp and optical 

methods [44], that is often used in analyzing of 

electrophysiological and signaling activity [45], in 

particular, during single channel registration [46], especially 

in its fluorescence variation [47] special attention should be 

paid to the possibility of the laser beam passing through the 

capillary as a waveguide, which enables a synchronized laser 

ionization and combination of the optical tweezers with 

patch clamp for the study of cell membrane 

electromechanics [48], that was previously performed using 

standard patch-clamp methods [49-51].  

However, both laser trapping and patch clamp are 

characterized by the forces, providing retraction of the cell (or 

its area, as it occurs in the outside-out method), while standard 

methods of MS-imaging do not use retraction. Hence, the 

problem of combining the patch-clamp principles with the 

suction into a mass spectrometer is of great scientific 

relevance and novelty, and it can be successfully solved both 

for patch clamp in loose contact (suitable for potential 

registration from the whole cell or its membrane at the area of 

three orders of magnitude higher than in single channel 

registration - up to 200 µm
2
), and for conveyor and automated 

the whole-cell method. 

                                                             

4 See also general patent "Planar patch clamp electrodes" (US 6,999,697) and its 

patent application (US 2004/0168912 A1). 
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3. Simple Technical Problems to Be 

Solved 

Thus, the main task is to design a head with a capillary and 

its connection to the MS-skimmer in such a way that the 

chemical signal from the cell could be registered by the 

spectrometer. From this perspective the most effective is 

FT-MS registration, where such contacts are rather common, 

[52, 53], and FTICR-MS itself is known to be the most 

effective tool for the analysis of macromolecular, and 

especially biomacromolecular samples, among the existing 

MS-methods.  

Despite the applicability of the capillary variation in 

polysaccharide analysis using capillary electrophoresis with 

mass spectrometric detection [54] and in capillary liquid 

chromatography with electrospray mass spectrometry in 

biochemical analysis [55], they can not be considered more 

effective in registration during the patch-clamp procedure, 

although we can not exclude the perspectives of 

ultramicrocolumn and, in fact, submicroscopic and nanoscale 

separation for detection during patch clamp experiments in the 

future.  

It is well known that in gas mass spectrometry the question 

about the comparison of the capillary and skimmer interfaces 

efficiency still remains controversial [56], but in FT-MS and 

related techniques the effect of capillary – skimmer potential 

difference possesses a complex value for detection efficiency 

[57]. It should be noted that the resulting mass spectrometric 

patch-clamp will represent in fact not only a single 

patch-clamp technique as it is known now, since FTICR-MS 

allows registration not only of the ionic channel activity, but 

also of the chemical composition of the medium, including 

macromolecular compounds. 

Moreover, FTICR is applicable for chiral supramolecular 

structures measurements [58], as well as for the study of 

asymmetric reactions [59]. This method is compatible with 

ESI-MS – electrospray ionization mass spectrometry [60], 

which has already provided significant results for 

neurobiochemistry [61], and hence, with nanospray 

desorption – electrospray ionization mass spectrometry, useful 

in cell-by-cell imaging and tissue imaging [19]. Adaptation of 

the existing equipment for microdoses is, in fact, a 

physico-technical problem, which seems to be rather feasible. 

Since it is not closely related to the biochemistry of the 

process, it will be considered elsewhere. 

4. Conclusions 

The idea of "MS-patch-clamp" in its current state is not 

simply a research method, but a fundamental approach that 

can be extended to a large number of detection, ionization and 

desorption methods and various ways of the analyte 

supplying. Both high resolution and high sensitivity is 

required, though the orbitrap exceeds FTICR-MS in 

sensitivity. All of these instruments provide a high mass 

accuracy (<2-3 ppm with external calibrant and <1-2 ppm 

with internal), a high resolving power (up to 240,000 at m/z 

400), a high dynamic range and high sensitivity [62, 63]. 

FTICR может provide a detection limit of approximately 30 

zmol (≈ 18 000 molecules) for proteins with molecular 

weights ranging from 8 to 20 kDa [64]. To date the detection 

limit for accelerator mass-spectrometry in different analytical 

protocols is not as low as femtomolar [65,66] and attomolar 

[67,68], but even subattomolar [69] and zeptomolar [70-72] 

concentrations, corresponding to the sensitivity at the atomic 

level and satisfying the trend to the «accelerator mass 

spectrometry-isotope measurements at the atomic level» [72]. 

Thus, the accuracy of MS-patch-clamp analysis can be 

significantly improved with the implementation of 

«accelerator MS –patch-clamp» concept. 

A pilot volunteer project in this area is now starting at 

RAS Center of Mass spectrometry, IBCP RAS and IEPCP 

RAS, but it is also technically possible to design similar 

instrumentation based on more simple or even alternative 

principles as a DIY project [73], since many novel ideas and 

findings during patch-clamp experiments traditionally have 

been obtained using a combinatorial DIY approach [74-76] 

which provided a lot of new data for cellular and molecular 

biology. 
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