Measurements in Agro-ecologic Micrometeorology Need New Model of Multi-component Reacting Gaseous Flow

Nurgaliev I. S.

UNESCO Chair of Renewable Energy and Electrification of Agriculture at VIESH, Moscow, Russia

Email address: ildus58@mail.ru

To cite this article:

Received: October 30, 2016; Accepted: December 8, 2016; Published: October 18, 2017

Abstract: New approach to the electrification measurements in agro-ecologic micrometeorology is suggested on the bases of new turbulent model of the flow. Analytical dynamic model of the turbulent multi-component flow in the three-layer boundary system is presented. Turbulence is simulated by the non-zero vorticity, but not only. Other mathematical aspects of the turbulence are introducing new model of the material point and considering a torsion of their trajectories. The generalized advection-diffusion-reaction equation is derived for an arbitrary number of components in the flow. The flows in the layers are objects for matching requirements on the boundaries between the layers. Different types of transport mechanisms are dominant on the different levels of the layers and space scales. The same models of mass and energy transfer are instrumental in rural electrification concepts.

Keywords: Rural Electrification, Green House Gas, Mathematical Model, Turbulent Flow, Vorticity, Material Point, Micrometeorology, Turbulent Diffusion

1. Introduction

Fluxes of carbon dioxide, water vapor, and energy exchange have been measured at dosens forest, grassland, and crop sites as part of the EUROFLUX, AmeriFlux and of the emerging RusFluxNet projects. Half-hour flux and meteorology measurements take place as well as the gap-filled half-hour estimates and aggregations to day and night, weekly, monthly, and annual periods. Gap filling and extrapolation-interpolation techniques still have natural open questions as well as the identification of the real final big-data competent beneficiary of the raw informational flow about precise chemical content of the boundary level atmosphere flow of countries.

Creation of Russian part of Fluxnet – RusFluxNet – aims, as it declared, to fill the carbon dioxide fluxes data shortage. Because the Central Russia is still one of the less GHG-investigated European areas especially in case of agro-eco-system-level carbon dioxide fluxes monitoring by eddy covariance method. For the first time eddy covariance (EC) GHG study has been conducted at two representative agroecosystems of Central Russia belonging to different climate zones (geography and soils), but both with the same land use: the both fields were under barley.

Figure 1. Precision Farming Experimental Field of the Timiryazev Agricultural University situated in Moscow. President of Russian Federation will protect this site from attempted raider seizure.
Modeling carbon dioxide and other greenhouse gases (GHG) budgets at the local, regional and global scale is a fundamental task for understanding the current and future behavior of the climate cycles and to work out strategies in the decision making for sustainable development [1]. Mathematical models are effective and often the only available tools and instruments for testing the claims of GHG emission reduction. Building adequate models, especially in the presence of complex phenomena such as turbulence is a big challenge [2]. Further complications may be introduced by the variability of flows in mixed landscapes, by the physical aspects in measuring covariance of flows and complex atmospheric layer dynamics, as well as the problem of interpretation, gap filling, footprint identification and date aggregation. Therefore, despite the fact that many investigators are producing estimates of annual carbon exchange, it is imperative to clarify and to account for the key limiting factors imposed to the eddy covariance method. For example, well written just recently published book by Dr. George Burba [3], as well as his previous multiple publications, as an instrumental introduction to the subject and a thorough collection of useful state of the art articles [4] introduce simplified “Eddy Flux” as a product of the averaged air density and correlation term (time-averaged product) between fluctuations of the vertical air velocity and concentration fluctuations of the targeted gas component. The authors carefully perform necessary assessment of different sources of the errors. We try to use new platform to simulate the turbulent model and to account neglected component of the flow, such as vorticity induced turbulent diffusion in gas flow modeling (do not confuse with thermal diffusion: which is in English language literature called molecular diffusion though both types of diffusivity are molecular). Our approach is based on introducing vorticity and a new conception of the material point, constructed and effectively used by the author in cosmology [5-7] and in modeling global social (demographic, economic) and natural (climatic) processes [15, 16].

2. Background of the Problem

As usual with this type of problems, the system is represented “as simple as possible but not simpler” as the famous saying by A. Einstein calls. Atmosphere, canopy and soil are represented locally by flat horizontal layers, and the dominant transport mechanisms are identified in Figure 1. The flows between the layers have to meet the matching conditions required by the theory of partial differential equations, and the development of flow models encounters a series of complex additional requirements at the boarders between media, one of the difficulties being the incomplete knowledge of the physical laws of the turbulence. This problem will be approached in the present work by using the vorticity concept. The eddy covariance method, in its currently accepted form, serves as a compromise available at the moment for addressing the multiple questions still open with regard to the turbulent flow measurement and monitoring. In the main eddy covariance expression, two diffusive flows have been neglected so far: the molecular diffusion and the turbulent diffusion. The first is much less than the second, and can be neglected indeed.
developed turbulence mechanism which covers the important aspects of the gas transport in the boundary layer. But, first of all, diffusive transport is main input/output mechanism of gases and, therefore, has to be counted and estimated consciously in the layer flux balances. And, secondly, if we plan to build self-consistent models of the gas circulation within all three subsystems, diffusion is the main phenomenon in the soil layer. Therefore, in the expression of eddy covariance flux, accounting speed of air has to be combined by the speed of the considered gas relative to “air”, i.e. all other ones taken together as a sort of system of reference. That will be building model as simple as we can, but ignoring coexistence of the turbulent diffusion transport among the others would be oversimplification. Therefore the problem arises of instrumental discrimination between speed of air and, specifically target gas say, carbon dioxide along with mathematical modeling. Other constraints of the method can be found in [8-11].

3. New Concept of Material Point

In the traditional approach of the eddy covariance method, one of the basic concepts is the fluid parcel, defined in Wikipedia as ‘a very small amount of fluid, identifiable throughout its dynamic history while moving with the flow’ referring to [17].

The new approach to the turbulent flow model that will be dealt with in this article starts by reconsidering the basic concept of the ‘material point’ itself displacing parcel concept. The usual meaning of a small, dimensionless body carrying a given mass will be called material point of type 1. The new concept that was previously introduced the author (mentioned as well in [5-7]), is that of material point of type 2. While the type 1 point is characterized by mass, this type 2 material point is characterized by its density, not mass. Its motion has attributes of continuous media, i.e. deformations and torsions. Hereby we get rid of to the old sophism “let us call material particle material point and will treat it as a point.” Sorry, material point is material. Therefore it has inalienable ability to be oriented relative to other material objects. And calling it point should not eliminate this essential ability. Treating material point, just because its name, as it was geometrical point is sophism. Description of material point has to include his degrees of freedom, specifically, rotational and distortional ones, characteristic to anything material.

This revelation brings us to reconsideration of the flow and flux. A new aspect of the new model is awareness on necessity of projecting velocity vector \(V_a \) to configuration space of radius-vectors \(R^\beta \) to manipulate with velocities’ Cartesian coordinates:

\[
V_a = H_{\alpha \beta} R^\beta ,
\]

because velocity vector is an object of the different (tangential) space. For the fundamental geometrical aspects of this statement see [12].

Here in (1) \(H_{\alpha \beta} \) is advection-distortion-vortex tensor (affinor, in old terminology, as it is called in [12], representation of an projection operator), \(R^\beta \) is radius-vector of the material point. Splitting tensor \(H_{\alpha \beta} \) into three parts, responsible for expansion \(\theta \delta_{\alpha \beta} / 3 \), shear \(\sigma_{\alpha \beta} \) and vorticity \(\omega_{\alpha \beta} \) is a novel tool to describe turbulence in the boundary layer agro-meteorology, accounting new degrees of freedom of the material particle as the material point of the second type:

\[
H_{\alpha \beta} = \theta \delta_{\alpha \beta} / 3 + \sigma_{\alpha \beta} - \omega_{\alpha \beta} .
\]

4. GHG Flow Model Equations

Hydrodynamic Euler equations split into system (3) of 3 sets of equations

\[
\frac{d\theta}{dt} + \theta^2 + \sigma^2 - \omega^2 = F_{\alpha \alpha}
\]

\[
\frac{d\sigma_{\alpha \beta}}{dt} + 2 \theta \sigma_{\alpha \beta} + \sigma_{\alpha \gamma} \sigma_{\gamma \beta} - \frac{1}{3} \delta_{\alpha \beta} \sigma^2 - \omega_{\alpha \gamma} \omega_{\gamma \beta} - \frac{1}{3} \delta_{\alpha \beta} \omega^2 = F_{\alpha \alpha} - \frac{1}{3} \delta_{\alpha \beta} F_\pi
\]

\[
\frac{d\omega_{\alpha \beta}}{dt} + 2 \theta \omega_{\alpha \beta} + \sigma_{\alpha \gamma} \omega_{\gamma \beta} - \omega_{\alpha \gamma} \sigma_{\gamma \beta} = F_{\alpha \beta}.
\]

Here \(F_{\alpha \beta} \) is a tensor of the external forces gradient. Dynamics of the turbulent flow (3) is much more complex than of laminar flow and flux measurement methods need including turbulence-related terms.

5. Advection-Diffusion-Reaction Equations

For a more general description structure (e.g. eddies) formation we get equation of the multi-component reaction-diffusion type

\[
\frac{\partial x_i}{\partial t} = f_i(\{x_j\}) + \nabla \cdot D_i^k(j) \nabla x_i .
\]

Substances diffusion and transfer of thermal energy are described by the same class equations. This equation is extremely universal and can be applied in modeling the broad range of processes taking place in agroindustry and in its energetics. The most impressive new application is a thermochemical decomposition of organic material such as agro manure at elevated temperatures without the participation of oxygen (pyrolysis) and production of designed fuels. It goes without saying that migration and generating (reacting) of gases in soil described by this equation.

The geometries of the subsystems are also considered in the modeling of the growth kinetics as a crucial factor. New class of equations called advection-diffusion-reaction
The dynamics of the turbulent flow of GHGs on the boundary layer, as the present mathematical model demonstrates, is much more complicated compared to the vortex free motion. Therefore, the eddy covariance method, as an existing broadly accepted and successfully working instrument, can be further developed towards more detailed models that account for vorticity. Therefore, we expect that the existing unsolved problems in the boundary flow model, such as energy balance, the difference in tower-based monitoring and camera based methods, can be tackled by using the models that consider the vortex flow.

7. Conclusions

“The dynamics of the turbulent flow of GHGs on the boundary layer, as the present mathematical model demonstrates, is much more complicated compared to the vortex free motion. Therefore, the eddy covariance method, as an existing broadly accepted and successfully working instrument, can be further developed towards more detailed models that account for vorticity. Therefore, we expect that the existing unsolved problems in the boundary flow model, such as energy balance, the difference in tower-based monitoring and camera based methods, can be tackled by using the models that consider the vortex flow.

Acknowledgements

This research was partly funded by Government of Russian Federation, Grant № 11.G34.31.0079. The parts of the result of this research won the Best Paper Award of International Journal of Engineering & Technical Research (An ISO 9001:2008 Certified International Journal) and gets published by other academic journals as well. https://www.erpublication.org/IJETR/Best%20Paper%Award.htm/.

References

