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Abstract: This paper addresses the adaptive dynamic output-feedback control problem for a class of nonlinear discrete-time 
systems with multiple time-varying delays. First, the guaranteed cost function is introduced for the nonlinear system to reduce 
the effect of the time-varying delays. Secondly, in order to deal with the multiple time-varying delays, the nonlinear system is 
decomposed into two subsystems. Then the compensator is designed for the first subsystem, and the adaptive dynamic 
output-feedback controller is constructed based on the subsystems. By introducing the new discrete Lyapunov-Krasovskii 
functional, it can be seen that the solutions of the resultant closed-loop system converge to an adjustable bounded region. Finally, 
the simulations are performed to show the effectiveness of the proposed methods. 
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1. Introduction 

Many practical systems are the nonlinear systems and consist 
of time-delay, such as the urban traffic networks system, digital 
communication system, and the power systems [1-3]. As 
universal approximators, fuzzy systems or neural networks 
have been successfully applied to solve the control design 
problem for various kinds of such nonlinear systems, and many 
interesting results have been obtained see [4-6] and the 
references therein. It is noted that with those control schemes, 
the stability of the closed-loop systems can be guaranteed, and 
the tracking errors can be confined to a small residual set, while 
the size of the residual sets is often unknown, and the transient 
and/or steady state performance cannot be prescribed. 

The Lyapunov-Krasovskii functional method and 
Lyapunov-Razumikhin method are always employed for the 
system design. In recent years, many adaptive fuzzy/neural 
output-feedback control approaches have been proposed for 
uncertain SISO/MIMO nonlinear systems with unmeasured 
states in [7, 8]. Note that all the aforementioned adaptive 
fuzzy/neural output-feedback control schemes are for the 

nonlinear strict-feedback uncertain systems [9], instead of the 
nonlinear nonstrict-feedback ones [10, 11]. In [12], the 
robust-control problem for the time-delay systems was 
considered, and the nonlinear uncertainties are bounded by the 
high-order polynomials. A tracking control system has a more 
general form than a general nonlinear system, and yet the 
system functions contain the whole state variables [13, 14]. 
But how to apply this method into the nonlinear time-delay 
systems is a challenging subject [15]. By employing the neural 
network technique, the state feedback controller is designed 
for the time-delay nonlinear systems. Compared with the 
previous work, in the effort to develop new adaptive control 
strategies, adaptive neural back-stepping state feedback 
control methodologies for nonlinear systems were proposed in 
[18]. There are few results on dynamic output feedback 
control for nonlinear system with time delays 

It has been early recognized that the multiple time-varying 
characteristic deserve further research. In practice, time delay 
is one of the most important problems which usually appears 
in many industrial control systems [19]. For single nonlinear 
system, the time delay had been investigated in many 
references [20]. Recently, some static output-feedback control 
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methods were proposed for the robotic system.  
Based on the neural networks, a robust adaptive control 

method for a class of uncertain nonlinear systems in the presence 
of input saturation and external disturbance was proposed [21]. 
And an adaptive tracking control was designed for a class of 
uncertain multi-input and multi-output nonlinear systems with 
non-symmetric input constraints by using an auxiliary system 
[22]. Then, the input saturation problem was investigated for 
stochastic nonlinear systems [23]. In [24], the output feedback 
control problem for identical linear dynamic systems with input 
saturation was addressed. To our best knowledge, there are no 
results on output feedback control results for feedback nonlinear 
systems with time-delays and multiple subsystems. 

In this paper, the dynamic output feedback control approach 
is proposed for the mobile robot system with multiple 
time-varying delays. The contributions of this paper can be 
summarized as follows:  

(1) The cost function is introduces to deal with the 
time-delays. 

(2) The nonlinear system is decomposed into two 
subsystems based on the input matrix and output matrix. The 
dynamic compensator is developed for the first subsystem. 
And the dynamic output-feedback controller is designed based 
on the second subsystem.  

(3) By introducing the new Lyapunov-Krasovskii 
functional, it can be seen that the solutions of the resultant 
closed-loop system converge to an adjustable bounded region. 

This paper is organized as follows. The preliminary 
knowledge for the nonlinear multiple time-varying delays 
system with parametric uncertainties are described in Section 
2. The dynamic output-feedback controller for the nonlinear 
system is designed in Section 3. The results are further 
extended to the general nonlinear discrete-time case in Section 
4. The simulation results are performed for a mobile robot 
case in Section 5. Finally, Section 6 concludes with a summary 
of the obtained results. 

The rest of paper is organized as follows. Section 2 presents 
some preliminary knowledge for the dynamicsystem with. In 

Section 3, the dynamic output-feedback controller is 
presented. The proving process is shown in Section 4. The 
simulation results are presented in Section 5. Finally, Section 
6 concludes with a summary of the obtained results 

2. System Formulation and Preliminaries 

Consider a nonlinear discrete system with multiple 
time-varying delays and parametric uncertainties as follows. 
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where ( ) nx k R∈  is the state variable, ( ) mu k R∈  is the control 

input, and ( ) py k R∈ is the control output. n n
jA R ×∈ ,

n mB R ×∈  and p nC R ×∈  are gain matrices with appropriate 

dimensions, n n
jA R ×∆ ∈  are the unknown matrix representing 

the parametric uncertainties. ( )j kτ  are the multiple 

time-varying delays satisfies 1 ( 1)j j kτ τ∗> ≥ +  and ( )j j kτ τ≥ , 

where 0 ( )=0kτ , jτ ∗  and jτ  are the positive scalars. The 

nonlinear function ( )if  is uncertain and contains multiple 

time-varying delays.  
Assumption 1. For the nonlinear function ( )if , the 

following inequality holds 
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where pj
j Rϑ ∈  is unknown constant vector. 

1 2( ) [ ( ), ( ), , ( )]i i i … i
T

j j j jiα α α α= , jiα  is known function with 

(0) 0jiα = . And there exist the nonlinear functions ( )ijiα  

satisfying ( ) ( )ji jix x xα α≥ . 

Remark 1. In this paper, the adaptive control theory was 
presented to estimate the system parameters or uncertain bound 
parameters. In [25], the adaptive control theory was discussed 
with some unknown interconnections. Since the research 
contains the nonlinear functions, it can be seen that the schemes 
are not enforceable to system (1). In this paper, there are three 
challenging problems as follows: how to design a dynamic 
compensator with the output feedback signal; how to reduce the 
influence of uncertain parameters; and how to design the 
adaptive output feedback controller for the multiple time-delays 
system. The aim of this paper is to solve the above issues, and 
then the controller will be easy to implement in practical systems. 

In this paper, ( )0
T

m mn-m m
B B ××

 =
 

 and ( )0
T

p pn- p p
C D ××

 =
 

, 

where m mB × and D  satisfying ( )m mRank B m× =  and 

mUT TDD D D= = , mU  is the identity matrix. Let 1
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x
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=  
  

, 

then the system (1) is rewritten as follows: 
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where 11 12 21, ,j j jA A A  and 22jA
 
are the decomposition 
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matrices of jA . 11jA∆ , 12jA∆ , 21jA∆  and 22jA∆  are the 

decomposition matrix of jA∆ . With m p< , one has 1

2

T

T

y
y

y

 
=  
  

. 

For the matrices B  and C , there exist the nonsingular 

matrices m mE R ×∈  and ( - )( - )ɶ p m n mC R∈  satisfying 1 1
ɶy Cx=  and 

2 2y Ex= . 
With the above analysis, the system (1) is further rewritten 

as follows: 
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where 11 11j jA A= , 1
12 12j jA A E−= , 21 21j jA EA= , 

1
22 22j jA EA E

−= , 11 11j jA A∆ = ∆ , 1
12 12j jA A E

−∆ = ∆ , 

21 21j jA E A∆ = ∆  and 1
22 22j jA E A E−∆ = ∆ .  

3. Controller Design 

First, a cost function is introduced for the nonlinear system 
to deal with the uncertain parameters jA∆ . Secondly, a 

dynamic compensator is designed for the subsystem- 1x , and 

the adaptive output-feedback controller is constructed base on 
the second subsystem- 2y  and the compensator.  

3.1. Cost Function Design 

In this study, the uncertainties are norm-bounded, described 
as follows: 
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where 1Q  and 2Q  are the constant matrices, ( )M k  is an 

unknown matrix satisfying ( ) ( ) UT
mM k M k ≤ . Let 

10 n nRλ ×< ∈  and 20 m mRλ ×< ∈ . Consider the cost function 

for the system (1) as follows 

1 2
0
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Now, in order to improve the stability of system (3), one has 
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where ˆ( )x k  is the state vector. Then applying (6) to the 

system (3), the new closed-loop system is obtained as follows 
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For the closed-loop system (7), design the cost function as 
follows 

0
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J x k x kλ

∞

=
= ∑                              (8) 

where 1 2[ , ]T
c cdiag C Cλ λ λ= . 

With the cost function (5), the Assumption 2 is imposed on 
system (3): 

Assumption 2. Consider the nonlinear system (3) and cost 
function (5), the initial states of system (3) are given. If there 

exist the equation (6) and a positive scalar J ∗  such that 

J J∗≤ , then the closed-loop system is stable. 

Lemma 1. [26]: Let ˆ ˆ 0TJ J= > , 1m̂ , 2m̂  are the known 

matrices with appropriate dimensions. Then the following 
inequalities hold: 

1
1 1 2 2

ˆ ˆ ˆ ˆ ˆ 0T TJ m m m mϖ ϖ−+ + <  

1 2 2 1
ˆ ˆ ˆ ˆ ˆ 0T T TJ m Mm m M m+ + <  

where UT
mM M ≤  and ϖ  is a positive scalar. 

Lemma 2. [27]: For matrices 1 0n >  and 2 0n > , if there 

exist a matrix Θ  such that 0TΘ = Θ > , then the following 
inequality holds: 

1
1 2 1 1 2 22 T T Tn n n n n n−− ≤ Θ + Θ . 

3.2. Compensator Design 

For subsystem- 1( 1)x k + , the augmented dynamic system is 

designed as follows: 
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where n mRζ −∈ , ( )2
my k R∈ , , ,l l lA B C  and lD  are designed 

with appropriate dimensions. With equations (4) and (9), one 
has: 
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For equation (10), choose a discrete Lyapunov-Krasovskii 
functional as follows: 
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where , jP R , and jZ  are the positive matrices, c  and σ are 

the positive scalars. Now taking the forward difference of 
(11), one has: 

( ) ( )(

( ) ( ) ( ) )
( ) ( ) ( )(

( )( ) ( )( ))
( ) ( ) ( ) ( )

1
1

1

1

1 1

1

2 1

ɺ ɺj

j

j

r
T

j j
j

ck T
jk k

r
T

j j
j

c T
j j j

T T

V k Z k

e Z d

k R k

e k k R k k

cV k P k c k P k

τ
τ

τ

τ δ δ

δ σ δ σ σ

δ δ τ

δ τ δ τ

δ δ δ δ

=

−
−

∗

=

−

∆ ≤ ∑ + +

−

+ ∑ − −

× − −

− + + +

∫
        (12) 

Note that: 

( )( ) ( ) ( )

( ) ( ) ( ) ( )( )( )
1

1 0
2 T T

0ɺ
i

r r
T T

j ij i r
i j

k
ik k

k k w k

k d k kτ

δ τ

δ δ σ σ δ τ

+
= =

−

 
∑ ∑ − + 
 

× − − − =∫
       (13) 

where Tij  is a weight matrix. With equations (10), (12) and 

(13), one has: 
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With the above analysis, the new results arise: 
Theorem 1. ∀  positive scalar ε , there exist the positive 

matrices , , ,Ti i ijP R Z  and iljX  such that 0G <  and 0iF <  

for any (1,2, , )…i r= . With Theorem 1 and (14), taking the 

forward difference of 1V  along (10), one has 
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Remark 2. The matrix Til  is employed to derive the 

conservative conditions. The use details of Til  is shown in 
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subsystem- 1x . The matrices , , ,l l lA B C  and lD  are designed 
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With the above analysis and the compensator (9), the 
adaptive dynamic output-feedback controller will be designed 
in next section. 

3.3. Adaptive Dynamic Output-Feedback Controller Design 

Let ɶ
l lC D C Λ =  

, one can obtain 
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( ) ( ) ( ) ( )2 2 2z k y k y k y kδ= − = − Λ . Since ( )ijiα
 
is a 

nonlinear function, with Assumption 1, there exist the 
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where 1µ  2µ  and ϒ  are the positive scalars. 

Now, taking the forward difference of 2V  yields: 
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( ) 1

21 11 1
0

22 12 2

2 1

2 ( ( ) ( ( ) ( )))

+2 ( ) (( ) ( ( ))

( ) ( ( )))

ɶ

ɶ

T

T
l l l

r
T

j l j j
j

j l j j

z k z k

z k EBu k EBf C A k B y k

z k A D CA x k k

A D CA y k k

ζ

τ

τ
=

+

= + − +

∑ − −

+ − −

     (21) 

By employing (17), such that: 

1

1
0

1 1

221
1

0

2
1

2
1

2 ( ) ( ( ), ( ( )), , ( ( )))

2 ( ) ( (3 ( ( )) )

(3 ( ( )) ) (3 ( ( )) ))

(3 ( ) (3 ( ( )) )

(3 ( ( )) )

(3 ( ( )) ) )

…
T

r

r
T
j j j

j

j j j j

r
T
j j j j

j

j j

j j

z k EBf x k x k k x k k

z k x k k

E k k E z k k

z k x k k

E k k

E z k k

τ τ

ϑ α τ

α δ τ α τ

ϑ ϑ α τ

α δ τ

α τ

=

− −

−

=

−

−

− −

≤ ∑ −

+ Λ − + −

≤ ∑ ϒ + ϒ −

+ϒ Λ −

+ϒ −

  (22) 

Applying 2 1( ) ( )+ ( ) ( )ɶ
l ly k C k z k D Cx kζ= +  gives 
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21 11 1
0

22 12 2

21 11
0

22 12 1

22 12
0

2 ( ) (( ) ( ( ))

( ) ( ( )))

2 ( ) (

( ) ) ( ( ))

2 ( ) ( ) ( ( ( )) ( ( )))

ɶ

ɶ

ɶ

ɶ ɶ

ɶ

r
T

j l j j
j

j l j j

r
T

j l j
j

j l j l j

r
T

j l j j l j
j

z k A D CA x k k

A D CA y k k

z k A D CA

A D CA D C x k k

z k A D CA z k k C k k

τ

τ

τ

τ ζ τ

=

=

=

∑ − −

+ − −

= ∑ −

+ − −

+ ∑ − × − + −

 (23) 

By letting 

2

21 22 12 11 1( )ɶ ɶ ɶ
j j l j l l jA A D CA D C D CA s+ − − ≤  

2

22 12 2
ɶ

j l jA D CA s− ≤  

where 1s  and 2s  are the transition parameters. 

For [1, ]j r∈ , one has: 

22 21 1
1 1 1 1 1 1

1

21 11 22 12 1
0

( ) (1 ) ( ) ( ( ))

2 ( ) ( ( ) ) ( ( ))ɶ ɶ ɶ

r

j
j

r
T

j l j j l j l j
j

x k r s z k x k k

z k A D CA A D CA D C x k k

µ µ µ τ

τ

− −

=

=

+ + + ∑ −

≥ ∑ − + − −
                                       (24) 

and 

2 22 21 1
2 2 2 2

1

22 12
1

( ( ( )) ( ( )) )+2 ( )

2 ( ) ( )( ( ( ))+ ( ( )))ɶ

r

j l j
j

r
T

j l j l j j
j

z k k C k k r s z k

z k A D CA C k k z k k

µ τ µ ζ τ µ

ζ τ τ

− −

=

=

∑ − + −

≥ ∑ − − −
                                         (25) 

Design the control law 1( ) ( ) ( )u k EB u k−=  for system (1) 

where 

012 022

1

1 1

1 1
2 2 2

1

2
2 1

0

2
1 1

1

( ) ( )( ( ) ( ))

1
( ( ) ( )) ( ( ))

2
1 1

( ) ( ) (( 1)
2 2

2 (1 ) ) ( )

4.5 ( )( (3 ( ) )

(1 ) (3 ( ) ) )

ɶ

j

j

l l

l l l

r
b

j
j

r
b

j j
j

u k D CA A z k C k

C A k B y k z k

k z k r s b

r s e z k

E z k E z k

e E z k

τ

τ

ζ

ζ φ

ϑ µ

µ τ µ

α

τ α

∗ − −

=

− −

∗ − −

=

= − +

+ + −

− − + +

+ + ∑ −

− ϒ

+ ∑ −

        (26) 

in which ( ( ))z kφ  is a nonlinear function, ( ( ))z kφ  is employed 

to reduce the influences of parameter δ  in subsystem (10).  
Substituting (21)–(26) into (20) yields: 

2 2

2

1
( ( ) ) ( 1)

( ( )) ( ) ( ) ( ) ( ( ))

( ( )) ( ( ) )
2

T T

V k k bV
d

k z k z k z k z k

b
k k

d

ϑ ϑ ϑ

ϑ ϑ φ

δ ϑ ϑ

∗

∗

∗

∆ ≤ − + −

+ − −

+Φ + −

                 (27) 

where ( ( ))kδΦ  is defined as follows: 

( )

221
1 1 0 1

2
1

0

21
1

1

2
1

2 2 21 1 1
2 1 1

1

( ( )) ( ) (3 ( ) )

(3 ( ) )

(1 ) ( (3 )

(3 ( ) ) )

(1 ) ( ( ) ( ) )

j

j

r
b

j j
j

j

r
b

j l
j

k x k x k

E k

e x k

E k

e C k x k

τ

τ

δ µ α

α δ

τ α

α δ

τ µ ζ µ

−

−

∗ −

=

−

∗ − − −

=

Φ = + ϒ

+ ϒ Λ

+ ∑ − ϒ

+ Λ

+ ∑ − +

 

With the above analysis, the Theorem 2. is given as follows 

Theorem 2. For system (1) with 1( ) ( ) ( )u k EB u k−= , ( )u k  

is defined in (26). Defining 
2

( ( )) ( ( ) ) ( )z k W z k z k
c a

εφ ε
µ

=
− −

 

with a cµ+ < , there exists an increasing positive function 

( )iW  satisfying (30) below, the adaptive law is defined as 

follows: 

2
( 1) ( )+ ( )k d k d z kϑ σ ϑ+ = −                   (28) 

where σ  and d  are the positive scalars such that 0d bσ − > , 
then the solutions of the closed-loop system convergent to a 
ball. 

Proof. Choose the discrete Lyapunov-Krasovskii functional 
(29) for the system (4) as follows: 

1
2 0 ( )V

V V W dσ σ= + ∫                        (29) 

where ( )iW  is an increasing positive function, such that: 
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( ( )) ( ) ( ) ( ( ) ( ))T Tk k P k W k P kδ µδ δ δ δΦ ≤           (30) 

1
0 ( )V

W dσ σ∫  is employed to deal with the nonlinear function

( ( ))kδΦ . Then, taking the forward difference of V  yields 

1 1 2

2
2

1 1

( )

( ) ( ( )) ( ( ) )
2
1

( ( )) ( ) ( ) ( ( ) ) ( 1)

( ( )) ( )

T

T

V W V V V

b
bV z k z k k

d

k z k z k k k
d

k W V V

φ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ

δ

∗

∗ ∗

∆ = ∆ + ∆

≤ − − + −

+ − + − +

+ Φ + ∆

     (31) 

With (30), one has: 

2
1 1

2
1 1 1 1

2 2
1 1

( ( )) ( )( ( ) )

( ) ( )( ) ( ) )

( ) ( ( ) ) ( )

k W V cV z k

aV W V W V a c V z k

aV W V W z k z k
c a

δ ε

µ ε
εε

µ

Φ + − +

≤ − + − + +

≤ − +
− −

     (32) 

One knows, if 
2

1 ( )V z k
c a

ε
µ

≤
− − , using 

2
( )z k

c a

ε
µ− −

 

instead of 
1V

 in (32), and if 
2

1 ( )V z k
c a

ε
µ

>
− −

, (32) also 

holds. Substituting (32) into (31) with 

2 2( ( ) ) ( ) ( ) ( ( ))
2 2

k k k
σ σσ ϑ ϑ ϑ ϑ ϑ ϑ∗ ∗ ∗− − ≤ − − , one has: 

2 2 2
2 1 1( ( ) ) ( ( )) ( ) ( )

2 2 2

b
V k k bV aV W V

d

σ σϑ ϑ ϑ ϑ ϑ∗ ∗ ∗∆ ≤ − − − + − −  

where 1
1 10 ( ) ( )V

W d W V Vσ σ ≤∫  and d bσ > , such that 

2( )
2

V bV
σ ϑ∗∆ ≤ −  with min{ , }b b a= , one has: 

* 2( ) ( ) (0)
2

bk
V k e V

b

σ ϑ −≤ +                        (33) 

Since 1
1 0(0) ( )V

W V W dσ σ≤ ∫ , combining (11), (19), (29) and 

(33), one has: 

2 2

minmin

(0)
( ) ( )

( ) (0)2 ( ) (0)
bkV

k e
P WP W b

σδ ϑ
ηη

∗ −≤ + , 

and 

2 2( ) ( ) (0)
2

bk
z k e V

b

σ ϑ∗ −≤ +  

With the following inequality: 

2 2 2
1 2

2 2 21
1 1

2 2 21
1

2 22 2 21 1
1

2 2 21

( ) ( ) ( )

( ) C ( ) D ( ) ( )

3 ( ) ( )

3 ( ) 3 C ( )

3 ( ) ( )

ɶ

l l

l l

x k x k x k

E z k k y k x k

E z k x k

E D C x k E k

E z k k

ζ

ζ

υ δ

−

−

− −

−

= +

≤ + + +

≤ +

+ +

≤ +

 

where { }2 2 21 1max 3 , 3 +1ɶ
l lE C E D Cυ − −= , one has: 

2
2 1 ( )bk

l l e x k
−+ ≥                           (34) 

where 
21

1
min

(0)
3 (0)+

( )W(0)

V
l E V

P

υ
η

−=  and 

21 2 2

2
min

3 ( ) ( )

2 2 ( ) (0)

E
l

b P W b

σ ϑ υσ ϑ
η

− ∗ ∗
= +  

With the above analysis, the system state ( )x k  converges 

to bounded region { }2
2( ) ( )x x k x k lΨ = ≤ . Then the proof is 

completed. 

4. Case Expansion 

Consider a nonlinear discrete system with multiple 
time-varying delays as follows: 

1 2( 1) ( , , , ) ( ) ( )

( ) ( )

… rx k f x x x x g x u k

y k h x

τ τ τ+ = +
 =

        (35) 

where ( ) nx k R∈  is state vector, ( ) Rmu k ∈ and ( ) py k R∈  

are the input and output of the system (35) with m p n< ≤ . 

( )if , ( )ig  and ( )ih  are the nonlinear functions with 

(0)=0f , (0) 0g = , (0) 0h =  and [ ( )]Rank g x m= . 

( ( ))i ix x k kτ τ= −  for [1, ]i r∈ , the time-varying delays 

parameter ( )j kτ  satisfying ( )j jkτ τ≤ and ( 1) 1j jkτ τ ∗+ ≤ < . 

For the general nonlinear case (35), there exists a state 
transformation relation T( )=[ , ]x z y  such that: 

1 2 1 2 2 1 2 2 2

1 2 2 1 2 2 1 2 2 2

2 3 2 1 2 2 1 2 2 2

1 2

( 1) ( , , , , , , , , , )

( 1) ( , , , , , , , , , )

( 1) ( , , , , , , , , , )

( ) ( )

[ ]

⌢ ⌢ ⌢ ⌢
… …

⌢ ⌢ ⌢ ⌢
… …

⌢ ⌢ ⌢ ⌢
… …

r r

r r

r r

T T T

z k f z y z z z y y y

y k f z y z z z y y y

y k f z y z z z y y y

g y u k

y y y

τ τ τ τ τ τ

τ τ τ τ τ τ

τ τ τ τ τ τ

 + =


+ =
 + =
 +

 =

 (36) 

where 1[ ]
⌢T T Tz z y= , 1( )if , 2 ( )if  3( )if and ( )ig  are the 

nonlinear functions with the transformation.  
The system (36) is rewritten as: 
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2 1 2 2 1 2 2 2

2 3 2 1 2 2 1 2 2 2

1 2

( 1) ( , , , , , , , , , )

( 1) ( , , , , , , , , , )

( ) ( )

[ ]

⌢ ⌢ ⌢ ⌢ ⌢
… …

⌢ ⌢ ⌢ ⌢
… …

r r

r r

T T T

z k f z y z z z y y y

y k f z y z z z y y y

g y u k

y y y

τ τ τ τ τ τ

τ τ τ τ τ τ

 + =


+ =
 +
 =

  (37) 

where 1 2[ ]T T Tf f f= . 

For the system (37), design the dynamic compensator as 
follows: 

1

2 1

( 1) ( , )

( ) ( , )

k y

y k y

δ η

η∗

+ = Ω


= Θ
                            (38) 

where 2 ( )y k∗  is the subsidiary variable, ( )iΩ  and ( )iΘ  are 

the nonlinear functions. For the system (37) with the 
compensation controller (38), there exists a discrete 
Lyapunov-Krasovskii functional V  such that: 

2

ˆ( )

( )

z V

V V

κ

α ς

 ≤


− ϒ ≥ ∆

                             (39) 

where ˆ [ ]
⌢T T Tz z δ= , 2 2y yς ∗= − . ( )iκ  and ( )iα  are the 

nonlinear functions with ϒ  is a positive scalar. Then, with 

2 2y yς ∗= − , one has: 

1

3 1

3 2 1

( , ) ( ) ( )

( , ) ( ) ( )y

f y g y u t

f f y g y u kδ

ς δ

δ

∆ = − ∆Θ +

= − ∆Θ − ∆Θ Ω +
        (40) 

For (40), the following Assumption 3. holds: 
Assumption 3. For (40), there exist the nonlinear functions 
( )2 if  and ( )3 if  such that: 

11 2 2
0

1 1 2 2 3
0

ˆ( ( ) )

ˆ( ( ) )

r

j j j j y
j

r
T T
j j j j j j

j

z f

z f

τ τ

τ τ

κ ς

ϑ α κ ϑ α ς

=

=


∑ Ω + Ω ≥ ∆Θ



 ∑ + ≥


          (41) 

where 1
1

jp

j Rϑ ∈  and 2
2

jp

j Rϑ ∈ are the unknown constant 

vectors, 1 ( )ijΩ  and 2 ( )ijΩ  are the nonlinear function. 

1 2( ) ( ), ( ), , ( )i i i … i
ij

T

ij ij ij ijpα α α α   =   
 for 1,2i = , there exist 

the functions 1 ( )ijiα , 2 ( )ijiα and 2 ( )ijΩ  such that 
2 2 2
1 1( ) ( )ji jia a aα α≤ , 2 2 2

2 2( ) ( )ji jia a aα α≤ and 2 2 2
2 2( ) ( )j ja a aΩ ≤ Ω . 

Theorem 3. For the system (36), there exists a dynamic 
compensator (38) satisfying (39), design the controller 

1( ) ( ) ( )u k g y u k−=  

where 

2 2
1 20 2

21 2
2 2

1

2
2

1 1
( ) ( , ) ( ) ( )

2 2
1

(1 ) ( ( ) ( ))
2

( )1 1
( ) ( ) ( ( ))

2 2

j

j

r
c

j j j
j

u k y

e

W c k
c

δ

τ

δ ς α ς ς ς

ς τ α ς ς

α ς
ςα ς ϑ ς

µ

∗ −

=

= ∆Θ Ω − − Ω

− ∑ − + Ω

− − +
ϒ − −

 (42) 

in which µ  and c  are the positive scalars satisfying 

0 cµ< ϒ − − , ( )iW  is a positive increasing function satisfying 

(43). The adaptive law is designed as 
2

( 1) ( ) ( )k d k d kϑ ς σ ϑ+ = −  with 0d > , 0σ >  and d cσ > , 

then the solutions of the close-loop system converge to a 
bounded region. 

Proof. Consider the Lyapunov-Krasovskii functional as 
follows: 

1 2F F FU U U= +  

where 

2
1 0

1
( )d ( ( ) )

2
T V

FU W w w k
d

ς ς ϑ ϑ∗= + + −∫ , 

21 ( )
2 ( ) 1

1

2 2 2
2 1 2

ˆ(1 ) ( ( ( ( ) ))

ˆ( ( ) ) ( ( ( ) )) ( ( ) ))

j

j

r
c k c k

F j k k j
j

j j j

U e e z w

w z w w dw

τ δ
ττ α κ

α ς κ ς

∗ − −
−

=
= ∑ − ×

+ + Ω + Ω

∫
 

in which c  is a scalar, 1 1 2 2
0
(2 )

r
T T
j j j j

j
ϑ ϑ ϑ ϑ ϑ∗

=
= ∑ + + . 

Via the same way, one has 

2
2 1( )

2F F F FU cU cU cU
σ ϑ σ∗∆ ≤ − − ≤ −  

where 
2( )

2

σ ϑσ
∗

= .  

5. Simulation Example 

Consider the nonlinear discrete multiple time-delays mobile 
robot system as follows: 

( )0 0 1 1

2 2

( 1)= ( )+ ( - ( ))

+ ( - ( ))+ ( ( ) )

( )= ( )

g g g

g g

q g

q k A A q k A q k k

A q k k B u k f

y k C q k

τ

τ

 + + ∆
 +



        (43) 

where 3( )q k R∈ , 2( )u k R∈  and 3( )qy k R∈  are the state 

vector, control input and output of the mobile robot, 

respectively. 3 3
0gA R ×∈ , 3 3

1gA R ×∈ , 3 3
2gA R ×∈ , 3 2B R ×∈ , 

and 3 3C R ×∈  are the known matrices. 0gA∆  is an unknown 

matrix representing the parametric uncertainty. 
where 
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( )= ( ) ( ) ( )
T

x yq k q k q k q kθ 
  , ( )= ( ) ( )

T

q pu k v k kω 
 

, ( )xq k  

and ( )yq k  are the robot position coordinate, ( )q kθ  is the robot 

direction angle, ( )pv k  and ( )p kω  are the linear velocity and 

angular velocity of the robot, respectively. 

0

0.8 0.8 0

1 0.5 2

2 1 0.5
gA

 
 =  
  

, 1

0.5 0 0.5

1 2 2

1 0.6 0.6
gA

 
 =  
  

, 2

0 0 1

1 1 0

1 2 0.8
gA

 
 =  
  

, 

0 0

1 0

0 1
gB

 
 =  
  

 and 

0 0 0

0 1 0

0 0 1
gC

 
 =  
  

 

where [ ]2 2,Tf f f= ,  

in which  

1 1 1 2 1 2( ) ( ( )) ( ( )) ( ( ))T Tf q k q k k q k k q k kχ τ χ τ τ= − + − −  

T
2 2 1 2 3 2( ( )) ( ( )) ( ) ( ( ))Tf q k k q k k q k q k kχ τ τ χ τ= − − + −  

where iχ  are the unknown scalars, 1τ and 2τ are the time-delays. 

For the system (43), design 1 [0.5 1 0.5]TE = − , 2 0.65E = , 1 {0.6, 0.6, 0.6}diagλ = , 2 {1, 1}diagλ =  and 2( ) 1M k ≤ . 

Now, employing the proposed method in this study to construct the output feedback controller. The matrices , ,l l lA B C  and lD  

are given as follows 

0.1125 5.9700 1.3100
,

1.9980 0.1683 9.8650l lB A
− 

=     − − 
, 

0.9430 0.3128 0.0455
, C

0.5025 0.3990 0.1600l lD
 

=     − 
 

With the Theorems 1 and 2, the following inequalities hold: 

2 2 2
1 1 2 1 2 2 1

1 1 1
( ) ( ( )) ( ( )) ( )

2 2 2
f q k k q k k q kχ χ τ χ τ χ≤ + − + − +  

2 2 2
2 2 3 2 2 1 3

1 1 1
( ) ( ( )) ( ( )) ( )

2 2 2
f q k k q k k q kχ χ τ χ τ χ≤ + − + − +  

With the Theorems 2 and 3, designing the controller as follows: 

1 022 012

2

( ) C ( ( ) ( )) ( ) ( ( )

1
( )) ( ) ( ) 13.8 ( ) 3 ( ) ( )

2

ɶ
l l l l

l

u k A k B y k A D CA z k

C k k z k z k z k z k

ζ

ζ ϑ

= + − − ×

+ − − −
 

with the adaptive law 2
( 1) 6.9 ( )+ ( )k k z kϑ ϑ+ = − . 

For the simulations, the initial state of the robot system is =[0 1.25 2]Tq − . With the Assumption 2, the final value of J∗
 is 

chosen as 18.5470.  
With the Lemma 2, design the parameters as follows: 

1

1 0 0

0 0 0

0 0 0

n

 
 =  
  

, 2

1 0 0

0 0 0

0 0 0

n

 
 =  
  

 and 

1 0 0

0 1 0

0 0 1

T

 
 Θ = Θ =  
  

. 

Here, design the cost function parameters as follows: 

0.2545 0.3013 0.4589

0.1528 0.2354 0.0505

0.1466 0.2597 0.4267
cA

− − − 
 = − 
 − 

, 

1.448 0.4306

0.2577 0.0580

0.4313 3.1592
cB

 
 = − 
 − − 

, 

0.1246 0.3255 5.3794

0.74 0.5897 0.4890

0.1246 0.0946 0.2246
cC

− − 
 = − 
 − − 

 

The state responses are shown in Figures 1 and 2. The control input is shown in Figure 3. From the three figures, it can be seen 
that the proposed method is effective and can stabilize the mobile robot system quickly. 
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Figure 1. The responses of system state variables xq  and yq . 

 

Figure 2. The response of system state variable qθ . 

 

Figure 3. The responses of system control inputs. 

6. Conclusions 

This paper addressed the dynamic output feedback control 
problem for a class of nonlinear system with multiple 
time-varying delay and parametric uncertainties. The 
nonlinear uncertainties are in the nonlinear form and bounded 
by nonlinear functions with gains unknown. The dynamic 

compensator is designed and the control design condition is 
relaxed. The dynamic output feedback controller is 
constructed such that the solutions of the closed-loop system 
converge to an adjustable bounded region. The result is further 
extended to the general nonlinear case. Finally, the 
simulations for the mobile robot are performed and the results 
demonstrate the effectiveness of the proposed method. 
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