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Abstract: This paper constructs the small-gain theorem upon a general class of Sturm-Liouville systems. It appears that the 

feedback connection of two Sturm-Liouville sub-systems is guaranteed of well-posedness, Hurwitz, dissipativity and passivity in 

L2-spaces provided the loop gain is less than 1. To construct the theorem, spatiotemporal transfer-function and geometrical 

isomorphism between the space-time domain and the mode-frequency domain are developed, whereof the H
∞

-norm is extended 

to be 2D-H
∞

 norm in mode-frequency domain. On grounds of this small-gain theorem, robust performance of any 

Sturm-Liouville plant can be formulated as robust stability of a feedback connection, whereupon feedback syntheses can be 

performed via modal-spectral μ-loopshaping. 
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1. Introduction 

The small-gain theorem says that the feedback connection 

of two systems is guaranteed of dissipativity in 2L -spaces 

provided the product of the system gains is less than 1. 

Through Small Gain theorem (SGT), robust performance of 

any generalized plant that includes performance requirements 

and modelling uncertainties can be transformed into robust 

stability of a feedback-connection of nominal plant and 

uncertainty. Thereupon feedback syntheses are performed via 

frequency-domain loopshaping or state-space bounded-real 

inequalities, which is beyond the reach of Circle or Popov 

criterion. Therefore, SGT is usually regarded as the first law 

as to Robust Control. 

Consider a feedback loop G  interconnected by two 

systems: M  and ∆  that are minimum dynamics to realize 

their input-output operations. Dependent on what types of 

systems M  and ∆  are considered, there are four classes 

of SGT organized as follows: 

(C1) In 2L -spaces, if the product of system gains 

1<∆M , then the feedback loop G  is guaranteed of 

dissipativity for generic dynamics M  and ∆  [1]. With the 

assumption that the feedback-loop is well-posed, G  is 

further guaranteed of Lyapunov passivity. 

(C2) In Banach spaces, the loop gain 1<∆M  

guarantees the feedback loop G  to be well-posed and 

dissipative, as both M  and ∆  are of linearity and infinite 

states. This can be derived from elementary functional 

analysis, say [2]. 

(C3) As both M  and ∆  are of linearity and finite states, 

the loop gain 1<∆M  in 2L -spaces guarantees the 

feedback loop G  to be well-posed, dissipative, passive and 

Hurwitz. This has been largely documented in control 

literature, say in [3-4]. 

(C4) As M  and ∆  are Sturm-Liouville dynamics in 

properly chosen spatiotemporal 2L -spaces, the loop gain 

1<∆M  guarantees the feedback loop G  to be well-posed, 

dissipative, passive and Hurwitz in some sense to be defined. 

This paper is aimed to explore this class of SGT. 

Civilization has been encountered a great quantity of 

Sturm-Liouville plants- heat transfers, acoustic waves, 

structure vibrations, quantum mechanics, electromagnetic 

waves, non-Fourier heat transfers [5-6], thermoacoustic 

vibrations [7], and so on. In a bounded region, 

Sturm-Liouville dynamics mostly behave as standing waves, 

wherein modes of larger (smaller) variations in space are 

with faster (slower) motions in time. Therefore, to track 

spatially subtle distribution under feedback control with 

pointed actuation will always be accompanied by temporally 

abrupt transience. Inasmuch as distributed sensors and 

actuators are getting well-developed nowadays [8-12], 
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distributed control is capable of remedying this situation. The 

small-gain theorem of Class C4 thus comes to play for robust 

syntheses of distributed control, on condition that the 

feedback controller is also belonging to the defined 

Sturm-Liouville dynamics. 

In this paper, a general class of Sturm-Liouville dynamics 

is defined with Spatiotemporal Transfer Function (STF) 

obtained though the composite of modal decomposition and 

Laplace transform [5-7, 13-15]. The values of STF along 

imaginary axis thus define mode-frequency responses, 

whereon a 2D- ∞H  norm is created in mode-frequency 

domain that is employed to prove the small-gain theorem in 

Class C4. This newly developed mode-frequency domain 

makes possible to loop-shape feasible Sturm-Liouville 

controllers to guarantee dissipativity, well-posedness, 

passivity and exponential stability of the resulting 

closed-loop. Without the small-gain theorem in Class C4, 

robust control of Sturm-Liouville plants can merely be based 

on the small-gain theorem in Class C2 or C3, which will 

results in less vigorous robustness or performance, which is 

discussed in more detail in the next paragraph. 

There were candidate approaches to Sturm-Liouville 

dynamics control. Some are based on order-truncated plants, 

for examples [16-20], which can employ the small-gain 

theorem in Class C3. Thereof, the spatiotemporally robust 

performance is not guaranteed at the stage of 

finite-dimensional syntheses. Another two types are involved 

in modelling with infinite-order transfer-functions [21-24] 

and identification with fraction-order transfer-functions 

[25-29], respectively, which can apply the small-gain 

theorem in Class C2 toward robust performance with merely 

well-posedness and dissipativity. Besides, they were not 

developed originally for distributed sensing and actuation. 

The other is nD state-space robust control [30-35] extended 

from 1D robust state-space synthesis to nD version in 

space-time domain. It can merely employ the small-gain 

theorem in Class C2 to guarantee well-posedness and 

dissipativity. For these reasons, this work show how the 

small-gain theorem in Class C4 leads to modal-spectral 

loopshaping of Sturm-Liouville controllers to guarantee 

Hurwitz, dissipativity, passivity and well-posedness, which is 

beyond the capacities of the above approaches. 

Including this introduction section, this paper is organized 

into seven sections. Section 2 defines through spatiotemporal 

transfer-functions the fraction-order class of Sturm-Liouville 

dynamics. Section 3 develops mode-frequency responses. 

Therein the ∞H -norm is extended to be 2D- ∞H  norm in 

mode-frequency domain and geometrical isomorphism is 

created between space-time domain and mode-frequency 

domain. With such a 2D- ∞H  norm, Section 4 proves that 

Hurwitz, passivity and dissipativity are equivalent to one 

another for the defined class of Sturm-Liouville dynamics. 

On grounds of the above sections, Section 5 proves the 

small-gain theorem of Class C4. Section 6 applies this 

theorem into µ -loopshaping in mode-frequency domain. 

Section 7 concludes the present work. 

2. Fraction-Order Sturm-Liouville 

Dynamics 

Consider the following two types of Sturm-Liouville 

operator A  operated in bounded regions Ω : 

Type I: )()/1( φρφ ∇⋅∇−= kA  in Ω ,  

0ˆ =⋅∇+ nφβαφ  on Ω∂ ;           (1) 

Type II: )()/1( 22 φρφ ∇∇= kA  in Ω , 

0ˆ =⋅∇+ nφβαφ ∧ 0ˆ)( 22 =⋅∇∇+∇ nkk φβφα  on Ω∂ , (2) 

where 0)( >xρ , 0)( >xk , Ω∈∀x , and 0)()( ≥⋅ xx βα  

for all Ω∂∈x . Here we are concerned with von-Neumann, 

Dirichlet and Robin types of boundary conditions. The 

spatial operator A  above is positive-definite and 

self-adjoint under the inner-product: 

∫ΩΩ
= dVxxx )()()(, * ψφρφψ ,       (3) 

and its inverse is a compact operator in )(2 ΩL . Thus, its 

eigenvalues are all positive, and its eigenfunctions can 

constitute an real, feasible, orthonormal, and complete basis 

of )(2 ΩL . Here we denote by Λ  the countable set of A ’s 

eigenvalues and by { } Λ∈λλφ  the set of corresponding 

eigenfunctions, i.e.  

λλ λφφ =A  in Ω , 0ˆ =⋅∇+ nλλ φβαφ  on ∂Ω . 

With respect to the eigenfunctions set { } Λ∈λλφ , Galerkin 

transform G  from spatial functions to modal functions, 

)]([)( xfF G=λ , is defined by 

∫Ω≡ dxxfxxF )()()()( λφρλ . 

Completeness and orthonormality of { } Λ∈λλφ  jointly 

imply that the Galerkin transform G  has a unique inverse 

1-
G ,  

)]([)( 1 λFxf −= G : 

∑
Λ∈

≡
λ

λφλ )()()( xFxf . 

Then, Laplace-Galerkin transform H  from 

spatial-temporal functions to modal-complex functions is 

defined by the composite of Galerkin transform and Laplace 

transform:  

GLLGH == ; 

explicitly, 

dxdttxfxxetxfsF st ),()()()],([),(
0∫ ∫
∞

Ω

−
−

=≡ λφρλ H . (4) 
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Here the domain of one-side Laplace transform, denoted 

by Γ , is an infinite line parallel to the imaginary axis, 

whereon the integral in (4) is converged. Accordingly, the 

inverse of Laplace-Galerkin transform 1−
H  is the 

composite of the inverse of Laplace transform and that of 

Galerkin transform, that is,  

11111 −−== GLLGH
--- ; 

explicitly, 

∑∫
Λ∈

Γ
=≡

λ
λφλ

π
λ dsexsF

j
sFtxf ts- )(),(

2

1
)],([),( 1

H .  (5) 

There are two basic properties about Galerkin and Laplace 

transforms: 

)],([)],([ txftxf GAG λ=  

based on Green’s identity, and  

)],([)],([ txfstxft LDL = , 

where tD  denotes the temporal differentiation. Following 

these two properties, the Laplace-Galerkin transform H  is 

of  

)],([),()],()([ txfshtxfh t HDA,H ⋅= λ ,      (6) 

where h  is a ratio of two expressions of finite or some 

infinite length constructed from two independent variables, 

one standing for space and the other for time, allowing for 

the operations of addition, subtraction, multiplication, integer 

exponents in time, and fraction-order exponents in space. For 

example, 

),()],([
2/1

2/1

sF
s

s
txf

t

t λ
λ
λ

+
−=

+
−

AD

AD
H .    (7) 

This work considers a general Sturm-Liouville dynamics 

P̂  including the feedback controller that is to be 

synthesized: 

qNM tt ),(),( DADA =ψ  in [0, )Ω × ∞ ,    (8) 

0)( 1 =− ψj
AB , ⋯,2,1=j  on ),0[ ∞×Ω ,    (9) 

where the operator B  indicates the Robin boundary 

condition defined in Type I and Type II Sturm-Liouville 

operators. Therein M  and N  are of temporal 

integral-order and allow for spatial fraction-order of A , but 

the spatiotemporal orders of N  is not larger than that of 

M . Performing Laplace-Galerkin transform H  on the 

Sturm-Liouville dynamics in (8)-(9) yields its spatiotemporal 

transfer function:  

),(

),(
),(

sM

sN
sP

λ
λλ = .               (10) 

For any proper dynamics P̂  as described in (10), it is 

defined that the set { }Λ∈∀= λλ ,0),(: sMs  contains all 

poles of P , and similarly to zeros. Note that unstable 

poles-zeros cancellation is not considered in this work. 

Besides, the impulse response of P̂  is defined by 

)],([),( 1 sPtxp λ−= H . 

3. Geometrical Isomorphism 

Define the Fourier-Galerkin transform R  by the 

composite of Galerkin transform and Fourier transform, that 

is, GFFGR == ; explicitly, 

dxdttxftxx

txfF

),(),,,()(

)],([),(ˆ

*

∫ ∫
∞

∞− Ω
=

≡

ωλϕρ

ωλ R
.      (11) 

where the kernel : Cφ Λ × ℜ× Ω× ℜ →  is 

)(
2

),,,( x
e

tx
tj

λ

ω

φ
π

ωλϕ ≡ .          (12) 

Accordingly, the inverse of Fourier-Galerkin transform 
11111 −−== GFFGR

---  is explicitly 

∑∫
Λ∈

∞

∞−
=≡

λ
ωωλωλϕωλ dFtxFtxf - ),(ˆ),,,()],(ˆ[),( 1

R . (13) 

Fourier-Galerkin transform for one-side temporally spatial 

functions can be calculated by Laplace-Galerkin transform in 

(4)-(5) with the infinite line Γ  being the imaginary axis, 

provided that the underlying integral in (11) is converged. 

Consider a proper dynamics P̂  with the spatiotemporal 

transfer function ),( sP λ , and denote its input by f  and 

output by y , i.e. ),(/),(),( sFsYsP λλλ = . Then, 

),(ˆ),(),(ˆ ωλωλωλ FjPY ⋅= ,       (14) 

where  

),(ˆ ωλY = )],([ txyR = ),(2/1 ωλπ jY , 

),(ˆ ωλF = )],([ txfR = ),(2/1 ωλπ jF , 

and ),( ωλ jP  defines the mode-frequency response of the 

dynamics P̂ . 

Since both Fourier transform and Galerkin transform are 

geometric isomorphic, i.e. one to one, linear and 

inner-product conserved, the pair of Fourier-Galerkin 

transforms ( R , 1-
R ) is of geometric isomorphism between 

space-time domain and mode-frequency domain. Specifically 

it implies 2-norm conservation, that is,  

∑∫∫ ∫
Λ∈

∞

∞−

∞

Ω
=

λ
ωωλρ dFdtdxtxfx

2

0

2
),(ˆ),()( ,    (15) 
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or succinctly written by Ff ˆ= . Further to define the 

2D- ∞H  norm of P  by 

),(max
,

ωλ
ωλ

jPP
+ℜ∈Λ∈∞

≡ . 

Then, based on the 2-norm conservation in (15), the 

2L -gain of the dynamics P̂  equals the 2D- ∞H  norm of 

P , since  

≤=≡
F

Y

f

y
P

Ff ˆ

ˆ

supsupˆ
ˆ

),(max
,

ωλ
ωλ

jP
+ℜ∈Λ∈ ∞

= P ,  (16) 

where the equality holds when F̂  is a Dirac distribution in 

the mode-frequency domain at the argument of the maximum. 

With (16), γ<
∞

P  corresponds to the following 2L -gain 

performance in space-time domain: 

∫ ∫∫ ∫ ΩΩ
<

TT

dtdxtxfxdtdxtxyx
0

22

0

2
),()(),()( ργρ , ),0[ ∞∈∀T . (17) 

4. Spatiotemporal Stability 

The legitimacy of 2D- ∞H  norm as a metric of robustness 

is justified by the proof that bounded 2D- ∞H  norm implies 

Hurwitz, passivity, and dissipativity. 

Definition 1: Hurwitz of a proper dynamics P̂  is defined 

by that all of its poles are in the left-half plane, which implies 

exponential decay. Passivity is defined by that its impulse 

response ℜ→ℜ×Ω +:p  has 0),(lim =
∞→

txp
t

 for almost 

everywhere Ω∈x  in the sense of )(2 ΩL . Dissipativity is 

defined by bounded 2L -gain, i.e.  

1

ˆsup
f

Pf +
+Ω×ℜ

Ω×ℜ=
< ∞

. # 

It follows to prove that Hurwitz, passivity, and 

dissipativity are equivalent to one another. 

Lemma 1: Hurwitz and passivity are equivalent to each 

other. 

Proof. For a proper dynamics P̂ , its impulse response 

p  is known as  

∑
Λ∈

−−− =≡=
λ

λλλ φλ )()()]([)],([),( 111 tpxtpsPtxp GLG  (18) 

By Definition 1, if P̂  is not Hurwitz, then there exists at 

least one pole on the imaginary axis or in the right-half plane. 

This implies that some λ -mode response )(tpλ  will not 

converge to zero as the time ∞→t . Since { } Λ∈λλφ  is a 

linearly independent set because of being orthogonal to one 

another, the impulse response ),( txp  will not converge to 

zero for all Ω∈x  as ∞→t . That is, passivity implies 

Hurwitz. 

Since { } Λ∈λλφ  is an orthonormal, complete basis of 

)(2 ΩL , (18) implies  

∑
Λ∈

Ω
=

λ
λ

22
)()( tptp , 

for any time t . If the dynamics P̂  is Hurwitz, then there 

exist bounded values 0>λc , 0<λa , 0≥λt  such that 

ta
ectp λ

λλ ≤2
)(  as λtt ≥  for all Λ∈λ , which is known 

from 1D stability. This furthers to imply 

∑
Λ∈

Ω
≤

λ

λta
ectp 0

2
)(  for 0tt ≥∀ , 

where λλ
tt

Λ∈
≡ max0  and λλ

cc
Λ∈

≡ max0 . The set { }Λ∈λλ :a  

can be chosen to have distinct members, therefore there 

exists 0>ε  small enough such that  

)()(
)2()(

0

2
000

⋯+++≤ −−
Ω

tatata
eeectp

εε
 for 0tt ≥∀ , 

where λλ
aa

Λ∈
≡ max0 . The above equation implies 

t

ta

e

e
ctp ε−Ω −

≤
1

)(
0

0

2
 for 0tt ≥∀ , 

thereby 0)(
2 →
Ω

tp  as ∞→t . That is, 0),(lim =
∞→

txp
t

 

for almost everywhere Ω∈x  in the sense of )(2 ΩL , so 

Hurwitz implies passivity. # 

Lemma 2: Hurwitz and dissipativity are equivalent to each 

other. 

Proof. As the signal )()(),( tvxtxf λφ=  with a specific 

Λ∈λ  is input to the dynamics P̂ , it will output 

)()()()()(),(
0

tyxdvtpxtxy
t

λλλλ φτττφ ≡−= ∫ −
. 

Suppose some roots s  of 0),( =sM λ  are on imaginary 

axis or in right-half plane, then λp  is not exponentially 

bounded. Known from 1D convolution, λy  will be 

unbounded in the sense of )(2

+ℜL  as v  is bounded by 

1=+ℜ
v . Since ++ ℜℜ×Ω

= λyy  in such a case, this 

furthers to imply that y  is )(2

+ℜ×ΩL  -unbounded as 

1== ++ ℜℜ×Ω
vf . Therefore, the dynamics P̂  is not 

dissipative if it is not Hurwitz, that is, dissipativity implies 

Hurwitz. As of such, for any non-Hurwitz Sturm-Liouville 

dynamics, its 2D- ∞H  can be defined to be unbounded. 

Suppose the dynamics P̂  to be Hurwitz, that is, all poles 

of P  are in the left-half plane. This implies that its 2D- ∞H  

norm ),(max
,

ωλ
ωλ

jPP
+ℜ∈Λ∈∞

≡  is bounded, since there is no 

singularities +ℜ×Ω∈),( ωλ  in the denominator ),( ωλ jM . 



Applied and Computational Mathematics 2014; 3(5): 217-224 221 

 

Since the 2L -gain of P̂  equals the 2D- ∞H  norm of P , 

as shown in (16), the dynamics P  is dissipative. That is, 

Hurwitz implies dissipativity. # 

Based on Lemma 1 and Lemma 2, we conclude the above 

discussion with the following theorem:  

Theorem 1: For a proper Sturm-Liouville dynamics, 

Hurwitz, passivity, dissipativity, and bounded 2D- ∞H -norm 

are equivalent to one another. # 

For a finite-dimensional, matrix-valued dynamics P̂  with 

all entries being proper Sturm-Liouville dynamics, the 

2D- ∞H  norm of P  is defined by  

)),((max
,

ωλσ
ωλ

jPP
+ℜ∈Λ∈∞

≡ ,         (19) 

where σ  denotes the singular value of the underlying 

matrix. As of such, the 2L -gain of P̂  is equal to the 

2D- ∞H  norm of P , since  

ℜ×Λ

ℜ×Λ

ℜ×Ω

ℜ×Ω =≡
+

+

F

Y

f

y
P

Ff ˆ

ˆ

supsup
ˆ

)),((max
,

ωλσ
ωλ

jP
+ℜ∈Λ∈

=
∞

≡ P . (20) 

Definition 2: Any finite-dimensionally matrix-valued, 

proper Sturm-Liouville dynamics is defined to be 

spatiotemporally stable if all of its entries are Hurwitz, 

passive or dissipative. # 

Due to Pythagorean Proposition, a Sturm-Liouville 

dynamics matrix has bounded 2L -gain if and only if all of 

its entries are dissipative. Therefore, Theorem 1 still holds as 

Sturm-Liouville dynamics expands on being 

finite-dimensionally matrix-valued. 

5. Small Gain Theorem 

Suppose a nominal dynamics M  is feedback-connected 

by an unstructured uncertainty ∆  bounded by 2D- ∞H  

norm, 
1−

∞
≤∆ γ , as shown in Figure 1, then the closed-loop 

dynamics is guaranteed to be well-posed and 

spatiotemporally stable if and only if γ<
∞

M . This is an 

equivalent statement of the small-gain theorem of Class C4, 

and proved here. 

 
+ 

d

θ  
+ 

e  

y  

M  

∆
 

Figure 1. For Spatiotemporal Small Gain theorem 

Theorem 2: Consider the closed-loop dynamics 

feedback-connected by any two proper Sturm-Liouville 

dynamics M̂  and ∆̂  with compatible matrix dimensions. 

If γ<
∞

M  and 
1−

∞
≤∆ γ , the closed loop must be of 

well-posedness and spatiotemporal stability. 

Proof. Define the loop gain A  by ∆= MA  or MA ∆= . 

Firstly, we prove that if 1<
∞

A , then firstly the inverse of 

AI −  is uniquely existent and has bounded 2D- ∞H  norm. 

For any function 2 ( )f L∈ Λ ×ℜ , the sequence 

1(( ) )n
nI A A f ∞

=+ + +⋯  is Cauchy in 2 ( )L Λ×ℜ , for if 

nm > , 

2

1 1
2 22

1

2 2
1

1

2

( ) ( )

{ }

.
1

m n

n m n m

n m r

r n

n

I A A f I A A f

A f A f A f A f

f A A f A

A
f

A

+ +
∞ ∞

∞
+

∞ ∞ ∞
= +

+
∞

∞

+ + + − + + +

= + + ≤ + +

≤ + + ≤

=
−

∑

⋯ ⋯

⋯ ⋯

⋯

 

Since 0
1 →+

∞

n
A  as ∞→n , the left-hand side tends to 

zero as ∞→nm,  with nm > . Since )(2 ℜ×ΛL  is a 

Banach space, the Cauchy sequence n

n fAAI ))(( +++ ⋯  

converges to a limit point )(2 ℜ×Λ∈ LTf . On letting 

∞→m  in the above inequality we find 

∞

+

∞

−
≤+++−

A

A
ffAAITf

n

n

1
)(

1

22
⋯ . 

This shows that 
∞

+++− )( nAAIT ⋯  is bounded, and 

hence that 
∞

T  is. Furthermore,  

∞

+

∞
∞ −

≤+++−
A

A
AAIT

n

n

1
)(

1

⋯ , 

which implies that 

TAAI n →+++ ⋯  as ∞→n . 

It remains to show that 1)( −−= AIT . For any 

)(2 ℜ×Λ∈ Lf , bounded 2D- ∞H  norm  of AI −  gives  

.lim

))((lim

)(lim)()(

1
fAf

fAAIAI

fAAIAITfAI

n

n

n

n

n

n

+

∞→

∞→

∞→

−=

+++−=

+++−=−

⋯

⋯

 

We have  

2

1

2

1

2

1 fAfAfA
nnn +

∞∞

++ ≤≤ , 

and thus fTfAI =− )( , since 01 →+ fAn  as ∞→n . 

Similarly, ffAIT =− )( , and then 1)( −−= AIT , 
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measured by the 2D- ∞H  norm. 

Secondly, the internal behavior of the closed-loop of 

Figure 1 is governed by  


















∆−∆−
∆−∆∆−

=







−−

−−

θ
d

MIMIM

MIMI

y

e
11

11

)()(

)()(
,     (21) 

On grounds of the above deduction, 

1<⋅∆≤∆
∞∞∞

MM  implies that 1)( −∆− MI  is 

uniquely existent and 2D- ∞H  norm -bounded, and similarly 

to 1)( −∆− MI . Therefore, all entries of the 22×  block 

matrix in (21) are uniquely existent and 2D- ∞H  norm 

-bounded. Further to note that the feedback connection of 

two Sturm-Liouville dynamics is also belonging to 

Sturm-Liouville dynamics. Based on Theorem 1, the 

closed-loop dynamics is of well-posedness and 

spatiotemporally stable. Moreover, there is no any structure 

constraint on the uncertainty ∆ , so 1<∆
∞

M  or 

1<∆
∞

M  for all 
1−

∞
≤∆ γ  implies γ<

∞
M . # 

6. Application to Loop Shaping 

Accommodating some extent of model uncertainties, the 

mode-frequency responses can be curve-fitted in the 

mode-Bode plot as a dense set: 

{ }1:)1( 1110 ≤∆∆+
∞

WG , 

where 0G  stands for a nominal plant. Therein the set 

{ }1: 111 ≤∆∆
∞

W  contains model uncertainties, wherein the 

robustness weighting 
1W  envelops all multiplicative 

perturbations 11∆W  in the modal-Bode magnitude plot. As 

shown in Figure 2a, the Sturm-Liouville controller K , pre- 

or post- composite to the plant, together with a negative unit 

feedback 1−  executes the feedback compensation. The 

controller K  is to guarantee specified performance for all 

uncertain plants under consideration, i.e. robust performance. 

Here the performance is specified by 2L -gain as 

),0[

),(ˆ)(),(ˆ)(
0

2

2

2

0

2

2

∞∈∀

< ∫ ∫∫ ∫ ΩΩ

T

dtdxtxwxdtdxtxzx
TT

ργρ
 (22) 

where the exogenous disturbances 2w  comprises the 

slow-time reference command and sensor noises of higher 

frequencies. Therein, the tracking error e  has been 

weighted by the performance weighting 2W , i.e. eWz 22 = .  
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Figure 2a. Construction of generalized plant 

Tracing the path of signal flow in Figure 2a, one can 

transform the interconnection of blocks in Figure 2a into the 

feedback-interconnection of three blocks: 

Generalized plant:  

P : 
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w

w
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WW

KGWKGW

y

z

z

2

1

00

22

0101

2

1

1

0

0

;      (23) 

External feedback:  

yu −= ;               (24) 

Internal feedback 1:  

1, 1111 ≤∆∆=
∞

zw .          (25) 

Therein the internal disturbance 1w  and stability variable 

1z  are induced from modelling uncertainty 1∆ . Moreover, 

if we replace the 2L -gain performance in (22) by such an 

internal feedback as 

Internal feedback 2:  

1, 2222 ≤∆∆=
∞

zw ,        (26) 

then the robust performance of the original setting in Figure 

2a is equivalent to the robust stability of the closed-loop 

system in Figure 2b. This equivalency is inferred from the 

small-gain theorem of Theorem 2. Substituting (24) into (23) 

yields the lower fractional transformation of Figure 2b, 

which is shown in Figure 2c. It becomes the 

feedback-interconnection of two blocks: 

1 1 1

2 2 2

1 1

2 2

W T W T 0
M and ;

W S W S 0

z w
z , w

z w

− ∆   
= ∆ =   − ∆   

   
= =   
   

     (27) 

where S  is the sensitivity function )1/(1 0KG+ , and T  is 

its complementary function, i.e. 1=+ TS . The first 

requirement of the controller K  is to make the sensitivity 

function S  spatiotemporally stable. 

If the ∆ -structured singular value ∆µ  is defined by 
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{ }0)det(:)(min

1
)(

=∆−∆
=∆

MI
M

σ
µ ,      (28) 

then based on Theorem 2 assisted with Theorem 1 and 

Nyquist criterion, the spatiotemporally robust stability of 

Figure 2c is guaranteed, so is spatiotemporally robust 

performance of Figure 2a, if and only if 

1)),(( ≤∆ ωλµ jM , for all +ℜ×Λ∈),( ωλ . 

Substituting (27) into (28) yields 

{ }01:),max(min

1
)(

221121 =∆−∆+∆∆
=∆

SWTW
Mµ , 

which, after careful calculation, is explicitly to be  

SWTWM 21)( +=∆µ                (29) 

Therefore, the set of sensitivity functions with 

spatiotemporally robust performance in the original setting of 

Figure 2a is 













ℜ×Λ∈∀<+

−
+

),(,1),(),(

)),(1)(,(:

2

1

ωλωλωλ

ωλωλ

jSjW

jSjWS
    (30) 

Finally, we know that any feasible loop S  is a 

spatiotemporally stable transfer function and a member of 

(30).  
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Figure 2b. Robust stability of Figure 2a 
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Figure 2c. Fractional transformation of Figure 2b 

A graphical interpretation of robust performance is shown 

in Figure 3, where the line segment of 1=+TS  inside the 

diamond of 1)( =∆ Mµ  represents the set of all feasible 

loops S . In figure 3, we also demonstrate the conservatism 

of singular value )(Mσ  and the risk of spectral radius 

)(Mρ  as metrics of robust performance. 
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Figure 3. Graphical interpretation of robust performance 

7. Conclusion 

Small Gain theorem is always regarded to the most 

fundamental as to Robust Control. This paper implants an 

elegant small-gain theorem to Sturm-Liouville systems 

control, the closed-loop of which is guaranteed of 

well-posedness, exponential decay, passivity and dissipativity. 

To approach this, it compromises:  

1. The definition of fraction-order Sturm-Liouville 

dynamics through spatiotemporal transfer-functions; 

2. The creation of geometrical isomorphism and 2D- ∞H  

norm in the mode-frequency domain; 

3. The proofs of the equivalency of Hurwitz, passivity, 

dissipativity to bounded 2D- ∞H  norm, and the 

Sturm-Liouville Small Gain theorem; and  

4. The derivation of µ -loopshaping in the 

mode-frequency domain as an application example of 

Sturm-Liouville Small Gain theorem. 
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