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1. Introduction 

In this chapter, we construct a new method to find a 

solution of the nonlinear fuzzy integral equation. 

	u��x� = f	�x� + λ � k��x, t�u��t��dt�
�                        (1) 

where 		u�	, f		and	k�	are	fuzzy	functions . Park et al., consider 

the existence of solution of fuzzy integral equations in 

Banach spaces. But unfortunately, we could not see the proof 

of the existence theorem, For this reason, we prove the 

existence theorem for the solution of fuzzy integral equations 

by extending the existence theorems for ordinary integral 

equations, and we think that our approach different from the 

approach of those authors. So we need some background 

material about fuzzy metric space, fuzzy contraction mapping 

and related mathematical notions. These notions are 

fundamental, and absolutely essential in proving the 

existence and uniqueness of (1) .We will discuss some 

method in order to find the solutions of nonlinear fuzzy 

integral equation of second kind. 

2. Basic Concepts 

Let X be a space of object , let A" be a fuzzy set in X then 

one can define the following concepts related to fuzzy subset 

A" of X [1,6] : 

1- The support of A" in the universal X is crisp set , denoted 

by : 

S�A"� = $x ∈ X|μ)"�x� > 0	,. 
2- The core of a fuzzy set A" is the set of all point x ∈ X, 

such that μ)"�x� = 1 

3- The height of a fuzzy set A" is the largest membership 

grade over X, i.e hgt(A"� = sup0∈1μ)"�x� 

4- Crossover point of a fuzzy set A" is the point in X whose 

grade of membership in A" is 0.5 

5- Fuzzy singleton is a fuzzy set whose support is single 

point in X with μ)"�x� = 1 

6- A fuzzy set A" is called normalized if it’s height is 1; 

otherwise it is subnormal 

Note: 

A non-empty fuzzy set A"  can always be normalized by 

dividing 

μ)"�x�	by	sup0∈1μ)"�x� 

7-The empty set ϕ	and	X	are	fuzzy	set	, then: for	all	x ∈
X	, μ7�x� = 	0	, 	μ0�x� = 1	respectively 

8- A = B	if	and	only	if	μ)�x� = μ9�x�for all x∈ X 

9- A ⊆ B	if	and	only	if	μ)�x� ≤ μ9�x� for all x∈ X 

10-A"< is a fuzzy set whose membership function is defined 

by 	μ)"=�x� = 1 − μ)"�x�	for	all	x ∈ X 

11-Given two fuzzy sets, A"and	B" , their standard 

intersection, 	A"⨅B"	, and	the	standard	union	A"⨆B", are fuzzy 

sets and their membership function are defined for all 

x ∈ X	, by	the	equations: 
∀x ∈ X	, μ)∪9�x� = MaxEμ)�x�, μ9�x�F 
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∀	x ∈ X	, μ)∩9�x� = MinEμ)�x�, μ9�x�F 

3. H – Cut Sets 

Definition 1: (α − cut	set� The α-cut set AJ of a fuzzy set 

A is made up of membership whose membership is not less 

than α, [3,5,9] 

AJ = $x ∈ X ∶ μ)�x� ≥ α,, ∀x ∈ X 

The following properties are satisfied for all α ∈ E0,1] 

i- �A ∪ B�J =	AJ ∪ BJ 

ii- �A ∩ B�J =	AJ ∩ BJ 

iii- A ⊆ B	gives	AJ ⊆ BJ 

iv- A = B	iff	AJ = BJ	, ∀α ∈ E0,1F 
v- α ≤ αO		then	AJ ⊇ AJQ	 
Remarks 3: 

1- The set of all level α ∈ E0,1F, that represent distinct α – 

cuts of a given fuzzy set [17] 

A"	is	called	a	level	set	of	A" 

Λ�A"� = $α|μ)"(x) = α, for	some	x ∈ X} 
2- The support of A"  is exactly the same as the strong 

α − cut of A" for α = 0	, ATU = S�A"�. 
3- The core of A" is exactly the same as the α − cut	of A" for 

α = 1	, (i. e	AV = 	core	�A"�). 

4- The height of A" may also be viewed as the supremum of 

α − cut for which Aα ≠ ϕ 

5- The membership function of a fuzzy set A"  can be 

expressed in terms of the characteristic function of it is 

α − cuts according to the formula: 

μ)"(x) = supJ∈]T,V]Min	{α, μ)X(x)} 
Where 

μ)X(x) = Z 1	if	x ∈ AJ0	, otherwise\  
4. Convex Fuzzy Sets 

We can generalize the definition of convexity to fuzzy sets. 

Assuming universal set X is defined in the set of real numbers R . If all α − cut	sets	are	convex, then the fuzzy set with 

these α − cut	sets is convex [12, 20] 

Definition 2: 

A fuzzy set A" on R is convex if and only if [13] : 

μ)"(λxV + (1 − λ)x^) ≥ Min{μ)"(xV), μ)"(x^)} 
for	all	xV, x^ ∈ R	, and	all	λ ∈ [0,1] 

Remarks 4: 

Assume that A"  is convex for all α	and	let	α =μ)"(xV), μ)"(x^)  then if xV, x^ ∈ AJ  and moreover λxV +(1 − λ)x^ ∈ 	AJ  for any λ ∈ [0,1]  by the convexity of A" . 

Consequently 

μ)"(λxV + (1 − λ)x^) ≥ α = μ)"(xV) =	Min{μ)"(xV), μ)"(x^)}.  
Assume that A" satisfies equation (1), we need to prove that 

For any α ∈ [0,1], AJ	is	convex	. Now	for	any	xV, x^ ∈ AJ 

and for any λ ∈ [0,1] by equation (1) 

μ)"(λxV + (1 − λ)x^) ≥ Min{μ)"(xV), μ)"(x^)} ≥ Min{α, α} = α  

i.e λxV + (1 − λ)x^ ∈ AJ	, therefore	AJ	is	convex	for	any	α ∈[0,1], A" is convex. 

Definition 3. (Extension of fuzzy set ) Let f: X ⟶ Y, and	A 

be a fuzzy set defined on X,	then we can obtain a fuzzy set f(A)	in	Y	by	f	and	A [14, 23] 

∀y ∈ Y	, μb())(y) =
Zsup	{μ)(x)	if	fcV(y) ≠ ϕ	, ∀x ∈ X	, y = f(x)}0	if	fcV(y) = ϕ	 \  

Definition 4: (Extension Principle) We can generalize the 

per-explained extension of fuzzy set. Let X  be Cartesian 

product of universal set X = XV × X^ × ………×Xf	and	AV, A^, …… . . , Af be r- fuzzy sets in the universal set. 

Cartesian product of fuzzy sets AV, A^, …… . . , Af  yields a 

fuzzy set [14,24,19] AV, A^, …… . . , Afdefine as 

μ)g,)h,……..,)i(XV × X^ × ………× Xf) =Min	(μ)g(XV), ……… . , μ)i(Xf))  
Let function f be from space X	and	Y 

f(XV × X^ × ………× Xf): X → Y  

Then fuzzy set B	in	Y can be obtained by function f and 

fuzzy sets AV, A^, …… . . , Af as follows: 

μ9(y) = kSup{Min(μ)g(XV), ……… . , μ)i(Xf)|xl ∈ Xl \	, i = 1,2,3… . . , n	, y = f(xV × … . .× xf)}o	, if	fcV(y) = ϕ \  
Here, fcV(y)  is the inverse image of y , μ9(y)  is the 

membership of = f(xV × … . .× xf) 
In following example, we will show that fuzzy distance 

between fuzzy sets can be defined by extension principle. 

5. Intervals 

“real number” implies a set containing whole real numbers 

and “positive numbers” implies a set holding numbers 

excluding negative numbers. “positive number less than 

equal to 10 (including 0)” suggests us a set having numbers 

from 0 to 10. That is [1,4,11,22] 

A={x|0 ≤ x ≤ 10	, x ∈ R} 
Or 

μ)(x) = Z1, if	0 ≤ x ≤ 10	, x ∈ R0, if	x < 0	pq	r > 10	 \ 
Since the crisp boundary is involved, the outcome of 
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membership function is one or zero. In general, when interval 

is defined on set of real number R this interval is said to be a 

subset of R. For instance, if interval is denoted as A =[aV, as], aV, as ∈ R, aV < as, we may regard this as one kind 

of sets. Expressing the interval as membership function is 

shown in the following . 

μ)(x) = t 0	, if	x < aV1	, if	aV ≤ x ≤ as0	, if	x > as
\ 

If aV = as, this interval indicates a point. That is 

[aV, aV] = aV 

 

Fig. 1. Interval u = [vV, vs]. 
Definition 5: (fuzzy number) If a fuzzy set is convex and 

normalized, and its membership function is defined in w and 

piecewise continuous, its is called as fuzzy number so fuzzy 

number (fuzzy set ) represents a real number interval whose 

boundaries is fuzzy Fig 2, [3,26,5,6]. 

 

Fig. 2. Sets denoting intervals and fuzzy number. 

Fuzzy number should be normalized and convex. Here the 

condition of normalization implies that maximum 

membership value is 1 

∃	r ∈ w	, yz(r) = 1 

The convex condition is that the line by { − |}~  is 

continuous and { − |}~	 interval satisfies the following 

relation: 

u� = [vV� , vs�] 
({O < {) ⟹ (vV�Q ≤ vV�	, vs�Q ≥ vs�) 

This condition may also be written as, 

({O < {) ⟹ (u� ⊆ u�́) 

 

Fig. 3. {-cut of fuzzy number. 

5.1. Operation of H − ��� Interval 

Operation on fuzzy numbers can be generalized from that 

of crisp interval. First of all, we referred to α − cut interval 

of fuzzy number A = [aV, as] as crisp set	[8,11,10], 
AJ = [aJV, aJs], ∀α ∈ [0,1], aV, as, aJV, aJs ∈ R 

So AJ is a crisp interval. If α − cut interval BJ  for fuzzy 

number B is given 

BJ = [bJV, bJs], ∀α ∈ [0,1], bV, bs, bJV, bJs ∈ R 

operation between AJ  and BJ  can be described as follows 

[6,15]: 

1- Addition 

AJ⨁BJ=[aJV, aJs]⨁[bJV, bJs] = [aJV + bJV, aJs + bJs] 
2- Subtraction 

AJ ⊝ BJ=[aJV, aJs] ⊝ [bJV, bJs] = [aJV − bJs, aJs − bJV] 
3- Multiplication 

AJ ⊙ BJ = [aJV. bJV, aJs. bJs] 
4- Division 

AJ/BJ=[aJV/bJV, aJs/bJs] 
5- Invers 

AcVJ = [1/aJV, 1/aJs] 
6- Minimum 

AJ ∧ BJ=[aJV, aJs] ∧ [bJV, bJs] = [aJV ∧ bJV, aJs ∧ bJs] 
7- Maximum 

AJ ∨ BJ=[aJV, aJs] ∨ [bJV, bJs] = [aJV ∨ bJV, aJs ∨ bJs] 
5.2. Operation on Fuzzy Numbers 

Let �(w) be the set of all fuzzy numbers on real line R. 

Using extension principle. A binary operation * can be 
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extended into (*) to combine two fuzzy numbers A and B. 

Moreover, if yz	v��	y�  are the membership functions of A 

and B assumed to be continuous functions on R [2,7,16] 

μ)(∗)9(z) = Sup	{Min(μ)(x), μ9(y)|∀x, y ∈ R	, z = x ∗ y} (2) 

Theorem 1: Let A, B and C be a fuzzy numbers. The 

following holds [9]: 

1- u(�⨁�) = (u. �)⨁(u. �) 
2- -(-A)=A 

3- A\1=A 

4- A/B=A.1/B 

5- q(u⨁�) = qu⨁q� 

6- (-r)A=-(rA) 

7- (-A)B=-(A.B)=A(-B) 

8- A/r=(1/r)A 

9- u⨁(−�) = u − � 

6. Other Types of Fuzzy Numbers 

Carrying out computations with fuzzy quantities and in 

particular with fuzzy numbers, can be complicated. There are 

some special classes of fuzzy numbers for which 

computations of their sum, for example .is easy. One such 

class is that of triangular fuzzy number, another one is that of 

trapezoidal fuzzy number. 

In this paper we discuss about new type for fuzzy number 

name finite level fuzzy number[11,17,21]. 

Remarks 5: 

Lets talk about the operation of trapezoidal fuzzy number 

as in the triangular fuzzy number 

1. Addition and Subtraction between trapezoidal 

(triangular )fuzzy numbers become trapezoidal 

(triangular ) fuzzy number 

2. Multiplication, Division and inverse need not be 

trapezoidal (triangular) fuzzy numbers 

3. Max and Min operation of trapezoidal (triangular) fuzzy 

numbers is not always in the form of trapezoidal 

(triangular) fuzzy numbers 

But in may cases, the operation results from multiplication 

or division are approximated trapezoidal shape. As I 

triangular fuzzy number, addition and subtraction are simply 

defined, and multiplication and division operations should be 

done by using membership function 

i- u⨁B = [aV, as]⨁[bV, bs] = [aV + bV, as + bs] 
ii- A ⊖ B = [aV, as] ⊖ [bV, bs] = [aV − bs, as − bV] 
iii- A ⊙ B = [aV, as] ⊛ [bV, bs] = [aV. bV, as. bs] 
iv- symmetric	image	 − (A) = [−as, −aV] 
The multiplication and the addition of two triangular 

( trapezoidal) fuzzy numbers is not a triangular (trapezoidal) 

fuzzy number , so it will not form a group structure. Now, we 

will construct a new of fuzzy numbers ( which we shall call it 

finite level fuzzy numbers), such that the addition and 

multiplication of two finite level fuzzy numbers will be also 

finite level fuzzy number. The construction of this new type 

of fuzzy numbers will as follows [25,14,20]: 

Given n ,N be two positive integers n < N	, and	αV, α^, ……… , α� ∈ [0,1]such	that 
αV < α^ < ⋯ . . < α�cV < α� = 1 

α� < α�cV < ⋯ . . < α�UV < α� = 1 

Let F(R�) be the set of all fuzzy numbers A = {(xl, αl)}� 

defined on R , such that xV < x^ < ⋯ . . < x� 

The operations of this type of fuzzy numbers can be 

defined by 

Let A	and	B ∈ F(R�)  such that A = {(xl, αl)}�	and	B ={(yl, αl)}� 

According to equation (2) we have 

μ)(∗)9(z) = Sup	{Min(μ)(x), μ9(y)|∀x, y ∈ R	, z = x ∗ y} 
= Max{Min(αl, α�)|z = xl ∗ yl}                        (3) 

If we perform the * operation between A and B, we will 

get the following table 

* ��																																											��            ��																																		�� rV {V																																																													{V																																				{V r^ 	{V																																																												{^																						{^                    [Min{{� , { }] 
r¡ 

{¡																																											{¡                                                        1 ¢£¤�¥{� , { ¦§																							{¨cV																																																								{¨cV												r¨ 	{¨																																													{¨																																																																																	{¨ 

Now, from this table it is clear that the convex of A*B is 

yz(∗)�(©) =
ª«¬
« {V	®¯°	±g∗²g³´³±h∗²h�h	µ¶·	¸h∗¹hº»º¸¼∗¹¼..g	µ¶·	»½¸¾∗¹¾¿¾Àg	µ¶·	¸¾∗¹¾º»º¸¾Àg∗¹¾Àg..¿Á	µ¶·	¸ÁÂg∗¹ÁÂgº»º¸Á∗¹Á

\                 (4) 

According to equation (3 and 4) in this case can be written 

as 

yz(∗)�(©) = {�, ¤Ã	© = r� ∗ Ä�                             (5) 

where 

yz(∗)�(©) = 1, ¤Ã	© = r¡ ∗ Ä¡ 

and 

©V < ©^ < ⋯… < ©¡ = r¡ ∗ Ä¡	v��	r¡ ∗ Ä¡ = ©¡ < ©¡UV < ⋯ < ©¡ 

So Å� = {(©� , {�}¨ is fuzzy number and Å� ∈ �(w¨) 

7. Fuzzy Equations 

A fuzzy equation is an equation whose coefficients and / or 

variable are fuzzy sets of R. The concept of equation can be 

extended to deal with fuzzy quantities in several ways. 

Consider the simple equation vr + Æ = r	ÇℎÉqÉ	(v, Æ) ∈

w, r	¤Ê	v	qÉvË	ÌvqÉ¤vÆËÉ, v��	v ≠1	, Êp	~ℎv~	~ℎÉ	}�¤Í}É	ÊpË}~¤p�	¤Ê	r = ÎVcÏ , then the fuzzy 

equation 

v�r� + Æ� = r�	, v�, Æ� ∈ Ð�(w)	, r ∈ w               (6) 

means that the fuzzy set v�r� + Æ� is the same as r�. Note that it 

is forbidden to shift terms from one side to another . For 
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instance, the equation v�r� + Æ� = r� is not equal to v�r� + Æ� −r� = 0 ∶	the first may have solution, while the second surely 

dose not, since v�r� + Æ� − r� is fuzzy and 0 is scalar. 

We can solve the fuzzy equation (6) if we consider the 

fuzzy variables and the fuzzy coefficient as a fuzzy numbers 

of the form u = {(r� , {�)}¨	. In another word[15], 

v�, Æ�, r� ∈ �(w¨) 
v� = {(v� , {�)}¨	,Æ� = {(Æ� , {�)}¨	, r� = {(r� , {�)}¨ (7) 

again using equation (7) to solve equation (6) 

v�r� + Æ� = {(v�r� + Æ� , {�)}¨                    (8) 

Finally the fuzzy equation 

v�r� + Æ� = r� 

implies that ∀{� ∈ [0,1], ¤ = 1,… . , Ñ 

v�r� + Æ� = r� → r� = ÎÒVcÏÒ , v� ≠ 1               (9) 

So the solution of the fuzzy equation (6) is a fuzzy number 

r� = {( ÎÒVcÏÒ , {� 	)}¨                       (10) 

Fuzzy function of crisp Variable 

Two points of view can be developed depending on 

whether the image of r ∈ Ó is a fuzzy set Ã	(r) on Ô, or r is 

mapped to Ä through a fuzzy set of functions . 

Definition 6: 

A fuzzy mapping ��  is a mapping from X	to	the	set	non	empty	fuzzy	sets	on	X	 , namely Ð�(r).	 In 

other words, to each r ∈ Ó , corresponds a fuzzy set ��(r) 

defined on Ó, whose membership function is yÕ�(±) and [8] 

μÖ"(0): X → I 
A fuzzy set of mapping F  can be constructed in the 

following way, 

Define a function F: X → P"(x)  such that μÖ: R0 → I , 

( where R0 is the set of all functions f: X → R	) 

μÖ(f) = Inf{μÖ"(0)(f(x)|x ∈ X, 
Definition 7: Given a fuzzy set of mappings F  with 

μÖ: R0 → I , we can construct a fuzzy function F�: X →
P"�x�such	that	F��x� is a fuzzy set , as follows[21]: 

μÖ"�0��y� = Zsup$μÖ�f�|x ∈ fcV�y�, 	when	fcV ≠ ϕ
0	, when	fcV = ϕ	 \ 

Definition 8: 

Given a fuzzy function set Fon X  with μÖ: X → I  and a 

function T: X → Y	.  Then there exists a fuzzy function 

T"�F�: Y → P"�y�	with	μÚ"�Ö�: Y → I such that[25] 

∀	Ä ∈ Ô	, yÛ��Õ��Ä� = Ü}Ý$yÕ�r�|∀	r ∈ Ó	, Ä = Þ�r�, 

 

Fig. 4. fuzzy function Þ����. 
Definition 9: Given a fuzzy set of mappings � 

withyÕ: w± → ß and a functional 

à: w± → w  . Then we can construct a fuzzy functional 

à́: w�± → w� such that[27] 

à́���� = à�	��� 

Therefore ∀	Ä ∈ w 

yá́�Õ���Ä� = yá��Õ��Ä� = Ü}Ý$yÕ�Ã�|Ã ∈ w± 	, Ä = à�Ã�, 

 

Fig. 5. fuzzy functional. 

Example 1: 

Let G be the set of all integrable functions. The integration 

� : G ⊆ R0 → R	,0  can be considered as a functional where 

� f	 ∈ R.0  

Then the fuzzy integral � :	R"0 → p��R�0  can be defined the 

equation above 

Given a fuzzy mapping 

F�: X → P"�x�, then	∃	a	fuzzy	mapping	F	with	μÖ: G ⊆ R0 → I  
such that 

μ� Ö"ã
�y� = μ� Öã

�y� = Sup$μÖ�f�|f ∈ R0	, y = � f0 ,	 (11) 

Definition 10: 

Let T be a fuzzy set such that T: X → R	,	then T will be 

finite if supp�T� = $xl,. In another word, T = $�xl, αl�,� 

where μÚ�xl� = αl	 > 0 

Definition 11: rewrite the definition 8 , if fuzzy mapping 

F�: X → P"�X� is finite , then F�can be written as 

F��x� = $�fl�x�, αl�,� 

Any fuzzy set of mapping F, constructed from �� also will 

be finite , and 

μÖ�f� = Inf¥μÖ"�0��f�x��äx ∈ X¦ = αl	if	and	only	if	f = fl 
This implies that F = $�fl, αl�,� 
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Now, if given a finite set of mappings F = {(fl, αl)}�, then 

we have 

μÖ"(0)(y) = Sup{μÖ(f)|y = f(x) 

⟹ μÖ"(0)(y) = αl	if	and	only	if	y = fl(x) 

⟹ F�(x) = {(fl(x), αl)}� 

Definition 12: 

Given a finite mapping �(r) = {(Ã�(r), {�)}¡  , and a 

functional	à: w± → w, then a fuzzy functional in this case , 

can be defined by[27] 

μǻ�Ö"�(y) = μå�(Ö)(y) = Sup{αl|∀	i = 1,2, … n	, y = ρ(fl) } (12) 

Definition 13: 

The integral of a finite fuzzy mapping � = {(Ã�, {�)}¡  is 

given by 

μ� Ö"ã (y) = μ� Öã (y) = Sup{αl|∀	i = 1,2,… n	, y = � fl0                                                           (13) 

Definition 14: Starting from the fuzzy mapping F�: X →P"(x) with μÖ"(0): X → I, for any α ∈ (0,1], we can define the α − cut	of	F�	, denoted	by	F�J as follows [17,24]: 

∀x ∈ X, F�J(x) = ¥yäμÖ"(0)(y) ≥ α¦	                 (14) 

For a fuzzy set of mappings F with μÖ: R0 → I	, the	α −cut	of	F	is	the	ordinary	set	FJ  and it can be constructed 

using (13) as 

FJ = {f: X → R|∀x ∈ X	, f(x) ∈ F�J(x)} 
{f: X → R|Inf0∈1μÖ"(0)�f(x)� = μÖ(f) ≥ α}            (15) 

Theorem 2: [19]Let A be a fuzzy set such hat A ∈P"(x), and	f: X → Y then 

f(A) =∪J αf(AJ)                                 (16) 

Theorem 3: [11] let F�: X → P"(x) be a fuzzy function.Due to 

above theoerm we always ha 

� F� =∪J α(� F�)0 J0 =∪J α(� FJ)0                  (17) 

8. H- Level Fuzzifying Function ç�(è) 
Consider a fuzzy function, which shall be integrated over 

the crisp interval. The fuzzy function f	(x) is supposed to be 

fuzzy number; we shall further assume that α - level 

curves[3,8,17]: 

μb	(0) = α	, ∀α ∈ [0,1]                            (18) 

have exactly two continuous solutions: 

y = fUJ́(x)	and	y = fcJ(x)	, for	all	α ≠ 1 

and only one solution: 

y = f(x)	for	α = 1                     (19) 

which is also continuous ; fUJ́(x)	and	fcJ(x) are defined 

such that 

fUJ́(x) ≥ fUJ(x) ≥ f(x) ≥ fcJ(x) ≥ fcJ́(x), ∀	α, ά	with	α ≤ α	é                                                (20) 

These functions will be called α- level curves of f	 
Definition 15: 

Let a fuzzy function f	(x): [a, b] ⊆ R → R, such that for all x ∈ [a, b], f	(x)  is a fuzzy number and fUJ	and	fJc
 are α − level	curves as defined in equation (20), [22,27] 

The fuzzy integral of f	(x)over	[a, b] is then defined as the 

fuzzy set 

I	(a, b) = {(IcJ + IUJ,α)|α ∈ (0,1]} 
where I	cJ = � fJc(x)dx	and	�� IUJ = � fUJ�� (x)dx  and + 

stands for the union opertors 

Remark 5: 

1- A fuzzy mapping having a one curve will be called a 

normalized fuzzy mapping 

2- A continuous fuzzy mapping is a fuzzy mapping f	(x)	such	that	μb	(0)(y)  is continuous for all x ∈ I ⊂R, and	all	y ∈ R 
3- The concept of fuzzy interval is convex, normalized 

fuzzy set of R whose membership function is 

continuous. 

 

Fig. 6. { −level fuzzifying function. 

Definition 16:.A fuzzy mapping F�  such that F�: X → p�(X) , 

in other words, to each  

x ∈ X, corresponds	a	fuzzy	F�(x)	deëined	on	X,whose	membership	function	is		μÖ": X → I.  
A fuzzy set of mapping F can be constructed in the 

following way, Define a function F: X → p�(X)  such that 
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μÖ: R0 → I , ( where	R0 is the set of all functions f: X → R). 
yÖ(Ã) = inf	{	yÕ�(±)(Ã(r))|r ∈ Ó,\              (21) 

9. Fuzzy Operator 

In the Eq(21) . we consider a fuzzy mapping �� such that 

��: Ó → Ý��Ó� with yÕ: Ó → ß	. The functional of à over X was 

defined as a fuzzy set à∗����. 
In this part , we shall deal with the operator of fuzzy 

function F, which will denoted ì∗����E5,13,26F 
In this part , we shall deal with the operator of fuzzy 

function F, which will denoted ì∗����E5,13,26F 
Definition 17 : Given a fuzzy function ��: Ó → Ð��Ó� with 

yÕ�: Ó → ß and an operator 

ì: w± → w±  . Then we can construct a fuzzy operator 

ì∗: w�± → w�± such that 

ì∗���� = 	ì	��� 

Therefore ,∀Ä ∈ w	, ∀r ∈ Ó 

yì∗�Õï��±��Ä� = yì	�Õ��±��Ä� = Ü}Ý	$yì		�Õ��ð�|∀ð ∈ w± 	, Ä =
ð�r�,  

= Sup	$sup μÖ�f�|∀f, g ∈ R0	, y =ì�f�,y = g�x�   (21) 

When ì is non=-to-one operator then equation (21) will be 

μì∗�Ö"��0��y� = Sup$μÖ�f�|∀f ∈ R0, y = ì�f��x�, 
Lemma1: 

Let F be a fuzzy mapping μÖ: X → I, Let T and H be two 

operator such that T: X → Y	, H: Y → Z , and H is one-to-one 

then we have 

H"T"�F� = HT�F�                               (22) 

proof: 

∀∈ Z 

μó"Ú"�z� = Sup$μÚ"�y�|∀y ∈ Y	, z ∈ H�y�
= Sup$sup$μÖ�x�|∀x ∈ X	, y = T�x�	, ∀z = H�y�,, 

Since H is one –to-one , then 

μó"Ú"�z� = Sup$μÖ�x�|∀x ∈ X	, z = H�T�x�� = �HT��x�,
= μóÚ�z� 

Theorem 4: [8] 

Let F�  be a fuzzy mapping μÖ": X → I , 	and	I, ì  be two 

operators I, ì: R0 → R0  where ì  is one-to-one . Then there 

exist a fuzzy operators I∗, ì∗: R"0 → R"0such that 

ì∗I∗�F�� = �Iì�∗�F�� 

Proof: 

ì∗I∗�F�� = ì∗�I	�F� = ì	 ôI	�F�õ = �Iì�∗�F�� 
By Lemma , we have 

ì	I	�F� = ìI�F� 
ì∗I∗�F�� = ì	I	�F� = ìI�F� = �Iì�∗�F�� 

Definition 18. Given a finite fuzzy set of mappings 

= $�fl, αl�,� , and an operator 

ì: R0 → R0. The fuzzy operator ì∗:	R"0 → R"0  of F can be 

defined by 

∀	y ∈ R0 

μì∗�Ö"��y� = μì	�Ö��y� = Sup$αl|for	all	i = 1, … , n	y = ì�fl�,                                                (23) 

If ì is a one –to-one equation (90) will be 

μì∗�Ö"��y� = μì	�Ö��y� = αl	if	and	only	if	y = 	ì�fl� 
⟹ ì∗�F�� = 	ì∗$�fl, αl�,� = $�ì�fl�, αl�,�                                                                 (24) 

Remarks 6:[25] 

Given a fuzzy mapping F�	and	G" . Then we have 

i- �F� + G"��x� = F��x� + G"�x� 

ii- �F�. G"��x� = F��x�. G"�x� 

iii- �cF���x� = cF��x� 

Theorem 5: let F�	andG" be real fuzzy mapping from X to 

the set P"�x� such that 

F� = $�fl, αl�,�	, G" = $�gl, βl�,�. Then 

i- ì∗�F� + G"� = ì∗�F�� + ì∗�G"� 

ii- ì∗�� F��x − t�G"�t�dt� =0
T ì∗�F���s�. ì∗�G"��s� 

Proof : 

(i) 

�F� + G"��x� = F��x� + G"�x� = $�fl + gl�, γl�, 
Where γl� =	Maxl,�$Min�αl, β��, 
(ii) 

ì∗�ø F��x − t�G"�t�dt� =
0

T
ì∗�ø �$fl�x − t�, αl,. $gl�x�, β�,�

0

T
dt

= ì∗ ø $fl�x − t�. g��x�, γl�
0

T
,dt 

$ì ø fl�x − t�. g��t��dt,
0

T
γl�, 
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= {ì(fl(x). ì ôg�(t)õ , γl�} 
= {ì(fl)(s), αl}. {ì(g�(s), β�} 

= ì∗�F��(s). ì∗�G"�(s) 

Definition 19: 

Let R be the set of real number and P"(R) all fuzzy subsets 

defined on R . G.Zang defined the fuzzy number a� ∈ F(R) as 

follows : a� is normal , that is there exists x ∈ R such that μ��(x) = 1 

Foe every α ∈ (0,1], aJ = {x: μ��(x) ≥ α}  is closed 

interval , denoted by 

[acJ, aUJ] 
Using Zaheh’s notation a� ∈ F(R)  is the fuzzy set on R 

defined by 

a� =∪J∈[T,V] aJ =∪J∈[T,V] α[acJ, aUJ] 
Definition 20: 

Let a�, b�	and	c� ∈ F(R) we define the following operation as 

[1,7,20]: 

1- c� = a� + b� ifccJ = acJ + bcJ	and	cUJ = aUJ + bUJ	, forevery	α ∈ [0,1] 
2- c� = a� − b� ifccJ = acJ − bUJ	and	cUJ = aUJ − bcJ	, forevery	α ∈ [0,1] 
3- c� = a�. b� ifccJ = Min[acJ. bcJ, acJ. bUJ, aUJ, bcJ, aUJ. bUJ] cUJ =	Mxa[acJ. bcJ, acJ. bUJ, aUJ, bcJ, aUJ. bUJ]	, forevery	α ∈ (0,1]  
4- 	c� = a� b�⁄ if	ccJ = Min[acJ ∕ bcJ, acJ ∕ bUJ, aUJ ∕ bcJ, aUJ ∕ bUJ] , cUJ =	Mxa[acJ ∕ bcJ, acJ ∕ bUJ, aUJ ∕ bcJ, aUJ ∕bUJ]	, forevery α ∈ (0,1]	, excludinghecase	bcJ = 0	or	bUJ = 0 

5- forevery k ∈ R	anda� ∈ F(R), ka� =∪J∈[T,V] α[kacJ, kaUJ]	if	k ≥ 0 

= ∪J∈[T,V] α[kaUJ, kacJ]	if	k < 0 

6- a� ≤ b�	if	acJ ≤ bcJ	and	aUJ ≤ bUJforevery	α ∈ (0,1] 
7- a� ≤ b�	ifacJ ≤ bcJ	and	there	exists	α ∈ (0,1]	such	that	acJ < bcJor aUJ < bUJ 

8- aUJ = bUJ	ifa� ≤ b�	and	b� ≤ 	 a�	forevery	α ∈ (0,1] 
Definition 21: Let u	 ⊂ �(w) 

1- If there exists M" ∈ F(R)  such that a� ≤ M"  for every a� ∈ A", then A" is said to have an upper bound M". 
2- If there exists m� ∈ F(R)  such that m� ≤ a�  for every a� ∈ A" ,then A" is said to have an lower bound m�. 
3- A"is said to be bounded if A" has both upper and lower 

bounds. A	sequence	{a��} ⊂ F(R)is said to be bounded if the set {a��|n ∈ N} is bounded 

Definition 22: Let(X, d) be a metric space , and let H(x) be 

the set of all non-empty compact subset of X. The distance 

between A and B , for each A, B ∈ H(x) is defined by the 

Hausdorff metric [18,27] 

D(A, B) = Max{Sup�∈)Inf�∈9d(a, b), Sup�∈9Inf�∈)d(a, b)} 
Theorem 6. (H(x),D) is a metric space 

Definition 23: A fuzzy set A": X → I is compact if all its 

level sets AJ is compact subset in the metric space (X,d) 

Definition 24: Let H(F(x))  be the set of all non-empty 

compact fuzzy subset of X. the distance between A", B" ∈H(F(x)) defined by 

D": H�F(x)� × H�F(x)� → RU ∪ {0} 
such that 

D"�A", B"� = SupT³J³VD(AJ, BJ) = SupT³J³V{Max¥Sup�∈)XInf�∈9Xd(a, b), Sup�∈9XInf�∈)Xd(a, b)¦} 
where D is the Haousdorff metric defined in H(x) 

Theorem 7: (H(F(x), D") is a metric space , if (X, d) is a 

metric space 

Theorem 8: (H(F(x), D") is complete metric space ,if (X,d) 

is a complete metric space. 

Now, when X = R  and d(u, v) = |u − v|	for	all	u, v ∈ R , 

since for each fuzzy number a� ∈ F(R) we know that a�J is a 

closed interval [acJ, aUJ], then a�T is compact , and hence a� is 

a non-empty compact subset in R 

Definition 23. The distance between fuzzy numbersa�, b� ∈F(R) is given by 

D"�a�, b�� = SupT³J³V{Max{Sup�∈[�ÂX,�ÀX]Inf�[∈�ÂX,�ÀX]|a − b|	, 
Sup�∈[�ÂX,�ÀX]Inf�∈[�ÂX,�ÀXd(a, b)|a − b|}} = SupT³J³V{Max{|acJ − bcJ|, |aUJ − bUJ|}} 

Theorem 5.(F(R), D") is a metric space 

Theorem 6. If a�, b�, c� ∈ F(R)	thenD"�a� + c�, b� + c�� = D"(a�, b�) 

Proof: 

D"�a� + c�, b� + c�� = SupJ∈(T,V](D(a� + c�)J, �b� + c��J) = SupJ∈(T,V](D[acJ + ccJ, aUJ + cUJ)J, [bcJ + ccJ, bUJ + cUJ)J) =SupJ∈(T,V]Max{ä(acJ + ccJ) − (bcJ + ccJ)ä, |(aUJ + cUJ) − (bUJ + cUJ)|}= SupJ∈(T,V]Max{|acJ − bcJ|, |aUJ − bUJ|} =D"(a�, b�) 
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definition 25. Let {a��} ⊂ F(R), a� ∈ F(R) . Then the sequence {a��} is said to converge to a� in fuzzy distance D", denoted by 

lim�→ü a�� = a� 

if for any given ε > 0  there exists an integer N >0	Ê}|ℎ	~ℎv~	D"(a��, a�) < þ  for n ≥ N.  A sequence {a��}	in	F(R) is said to be a Cauchy sequence if for every ε > 0	, there exists an integer N > 0 such that 

D"(a��, a��) < þ 

For n	,m > Ñ. A fuzzy metric space (F(R), D) is called the 

complete metric space if every Cauchy sequence in F(R) is 

converges . 

Theorem 7. The sequence {a��}	in	F(R) is converge in the 

metric D" if and only if {a��}is a Cauchy sequence . 

Theorem 8. �F(R), D"�is	a	complete	metric	space 

Definition 26: A fuzzy mapping F�: X → F(R) is called 

levelwise continuous at tT ∈ X  if the mapping F�J  is 

continuous at t = tT with respect to the Hausdorff metric Don F(R) for all α ∈ (0,1]. As	a	special	case	whenX = [a, b] ⊆ R , 

this definition can be generalized to [a, b] × [a, b]	as	follows: 
Definition 27: A fuzzy mapping f	: X × X → F(R) is called 

levelwise continuous at point (xT, tT) ∈ X × X provided , for 

any fixed α ∈ [0,1] and arbitrary ε > 0 there exists δ(ε, α) >0 such that 

D(äf	(x, t)äJ, äf	(xT, tT)äJ) < þ 

whenever 

|t − tT| < �	, |x − xT| < � 

for all x, t ∈ X 

Definition 28: 

Let 

F�: X → F�R�, the	integral	of	F�	over	X =
Ea, bF	denoted	by	 � F��t�dt0  is defined levelwise by the 

equation 

�ø F��t�dt
0

�
J
= ø F�J�t�dt	for	all	0 < { ≤ 1

0
 

�ø F�cJ0
�t�dt, ø F�UJ�t�dt0

� 
Theorem 9. If F�: X → F�R�  levelwise continuous and 

Supp(F�� is bounded , then F is integrable 

Proof: Directly from definition (27) 

Theorem 10.Let F, G: X → F�R�  be integrable and ∈ R  . 

Then 

1- � �F�t� + G�t�dt = � F�t�dt0 + � G�t�dt00  

2- � λF�t�dt = λ � F�t�dt00  

Theorem 10: 

(Existence and uniqueness For a Solution Of fuzzy 

nonlinear integral Equation ) 

Assume the following conditions are satisfied 

1 − f: Ea, bF → E�is	countinuous	and	bounded 

2 − K:∆→ E�	is	a	continuous	function 

3 − if	u, v: Ea, bF
→ E�are	contious	, then	the	lipschitz	condition 

DôK�x, t, u�t��,K�x, t, v�t��õ ≤ LD�u�x�, v�x�� 

is	satisëied	, with	0 < 
 < 1
b − a	. where	∆= $�x, t, u, v�|a ≤ x, t ≤ b, −∞ ≤ v ≤ ∞, −∞ ≤ u ≤

v,. 

10. Solution of Fuzzy Nonlinear Integral 

Equations 

Our treatment of fuzzy nonlinear volterra ntegral equation 

centerel mainly on illustrations of the known methods of 

finding exact, or numerical solution. In this paper we present 

new techniques for solving fuzzy nonlinear volterra integral 

equations by using Honotopy analysis method . 

9.1. Homotopy Analysis Method 

Consider 

ÑE}F = }�r� − Ã�r� − � ��r, ~�}�~��~±
Ï            (24) 

Where Ñ is an operator ,Ã�r� is known function and x is 

independent variable. 

Let }T�r ) denoted an initial guess of the exact solution 

}�r� , ℎ ≠ 0  an auxiliary parameter, ��r� ≠ 0  an auxiliary 

function , and 
	auxiliary linear operator ,with the property 
Eq�r�F = 0	ÇℎÉ�	q�r� = 0.	 Then using Í ∈ E0,1F  as an 

embedding parameter , we construct such a homotopy. 

�1 − Í�
E�r, Í� − }T�r�F − Íℎ��r�ÑE�r, Í�F =��E�r, Í�;}T�r�,��r�ℎ, ÍF    (25) 

It should be emphasized that we have great freedom to 

choose the initial guess }T�r�the auxiliary linear operator 
 , 

the non-zero auxiliary parameter ℎ  , and the auxiliary 

function ��r�. 

Enforcing the homotopy (25) to zero, i.e 

��E�r, Í�;}T�r�,��r�ℎ, ÍF =0 

we have the so – called zero- order deformation equation 

�1 − Í�
E�r, Í� − }T�r�F = Íℎ��r�ÑE�r, Í�F    (26) 

When Í = 0 , the zero-order deformation equation (26) 

becomes 

�r; 0� = }T�r�                              (27) 

and when Í = 1 since ℎ ≠0 and ��r� ≠ 0 , the zero-order 

deformation equation (26) is equivalent to 

∅�r, 1� = }V�r�                              (28) 
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Thus according to (27) and (28), as the embedding 

parameter Í  increases from 0 to 1, ∅(r, Í)  varies 

continuously. From the initial }T(r) the exact solution (r). 

Such a kind of continuous variation is called deformation in 

homotopy . 

By Taylor’s theorem ∅(r, Í)  can be expanded in power 

series of Í as follows 

∅(r, Í) = }T(r) + ∑ }�(r)Í�ü��V              (29) 

Where 

}�(r) = V
�!

���(±,�)
��� |��T                     (30) 

If the initial guess }T(r), the auxiliary linear parameter 
, 

the non zero auxiliary parameter h , and the auxiliary 

function �(r) are property chosen so that the power series 

(29) of (r, Í)  converges at Í = 1 , we have under these 

assumptions the solution series . 

}(r) = (r, 1) = }T(r) + ∑ }�(r)Í�ü��V     (31) 

}�(r) = ��}�cV(r) + ℎ[}�cV(r) − Ã(r)
− ø �(r, ~)}�cV(~)�~±

Ï  

�� = Z0	¤Ã	� ≤ 11	¤Ã	� > 1\ 
Finaly we get 

}T(r) = (r, 0) 

}V(r) = −ℎÃ(r) 

}�(r) = (1 + ℎ)}�cV(r) − ℎ[ø �(r, ~)}�cV(~)�~±
Ï ] 

Where 

� ≥ 2 

Hence , the solution of equation (24) 

}(r) = lim�→V }(r, Ý) = � }�(r)ü
��V

 

we denoted the nth- order approximation to solve }�(r) =∑ }�¡��V (r) 
9.2. Solve Fuzzy HAM 

Consider the fuzzy nonlinear integral equation with fuzzy 

difference kernel 

}�(r) = Ã	(r) + ø ��(r − ~)}�(~)�~±
Ï  

Where }�(r) = {(}�(r), {�)}¡	, Ã	(r) = {(Ã�(r), {�)}¡	v��	��(r −~) = {(��(r − ~), {�)}¡ 

Then 

{(}�(r), {�)}¡ = {(Ã�(r), {�)}¡ 	
+ ø {(��(r − ~), {�)}¡{(}�(~), {�)}¡	�~±

Ï  

Now , make use equation (7), we get 

{(}�(r), {�)}¡ = {(Ã�(r), {�)}¡+{�ø ��(r±
Ï− ~)}�(~)�~ , {��}¡ 

and	by	equation	(8) 
{(}�(r), {�)}¡ =	 {(Ã�(r) + ø ��(r − ~)}�(~)�~±

Ï , {�)}¡ 

which implies that for each ∀{� ∈ [0,1] 
}�(r) = Ã�(r) + � ��(r, ~)}�(~)�~±Ï 	∀	¤ = 1,2, … . . , � (32) 

Now , we can apply the HAM to equation (32) , we get 

Ñ[}] = }�(r) − Ã�(r) − ø ��(r, ~)}�(~)�~±
Ï  

Let Í ∈ [0,1] 
(1 − Í)
[�(r, Í) − }�T(r)] − Íℎ�(r)Ñ[�(r, Í)]= ��[�(r, Í);}�T(r),�(r)ℎ, Í] 

��[�(r, Í);}�T(r),�(r)ℎ, Í] =0 

(1 − Í)
[�(r, Í) − }�T(r)] = Íℎ�(r)Ñ[�(r, Í)] 
When q=0 

�(r; 0) = }�T(r) 

when q=1 

∅�(r, 1) = }�V(r) 
∅�(r, Í) = }�T(r) + � }��(r)Í�ü

��V
 

Where 

}��(r) = 1
�¤! �

���(r, Í)�Í�� |��T 

}�(r) = �(r, 1) = }�T(r) + � }��(r)Í��ü
��V

 

}��(r) = ��}��cV(r) + ℎ[}��cV(r) − Ã�(r)− ø ��(r, ~)}��cV(~)�~±
Ï  

�� = Z0	¤Ã	� ≤ 11	¤Ã	� > 1\ 
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Finally we get 

}�T(r) = �(r, 0) 
}�V(r) = −ℎÃ�(r) 

}��(r) = (1 + ℎ)}��cV(r) − ℎ[ø ��(r, ~)}��cV(~)�~±
Ï ] 

Where 

� ≥ 2 

}�(r) = lim�→V}�(r, Ý) = � }��(r)ü
��V

 

we denoted the nth- order approximation to solve }��(r) =∑ }��¡��V (r), ∀	¤ = 1,2… . , � 

Example 1 

Consider the fuzzy nonlinear integral equation 

}�(r) = Ã	(r) + ø ��(r, ~)}�^(~)�~±
Ï  

Ã	(r) = {(ÃV, 0.4), (Ã̂ , 1)} 
ÃV(r) =ln(x+1)+2ln2(1−xln2+x)−2x−

!
" ,Ã̂ (r) =sin(πx) 

��V(r, ~)}�^V(~) = (r − ~)}V^(~)	, ��^(r, ~)}�s^(~)= 15 cos(πx) sin	(πt)}s^(~) 

with the exact solution to equation is }V(r) =ln(x + 1), and 

}^(r) = sin(πx) + 20 − √3913 cos	(πx) 

by using equation (9), and (10) 

Where 

}�(r) = {(}�(r), {�)}¡	, Ã	(r) = {(Ã�(r), {�)}¡	v��	��(r − ~)= {(��(r − ~), {�)}¡ 

Then 

{(}�(r), {�)}¡ = {(Ã�(r), {�)}¡ 	
+ ø {(��(r − ~), {�)}¡{(}�(~), {�)}¡	�~±

Ï  

Now , make use equation (7), we get 

{(}�(r), {�)}¡ = {(Ã�(r), {�)}¡+{�ø ��(r±
Ï− ~)}�(~)�~ , {��}¡ 

and	by	equation	(8) 
{(}�(r), {�)}¡ =	 {(Ã�(r) + ø ��(r − ~)}�(~)�~±

Ï , {�)}¡ 

which implies that for each ∀{� ∈ [0,1] 
}V(r) = ln(x + 1) + 2ln2(1 − xln2 + x) − 2x − 5

4+ ø (r − ~)}V^(~)±
Ï �~ 

by using HAM method to solve this formula , we get 

}VT(r) = 0 

}VV(r) = −ℎ(ln(x + 1) + 2ln2(1 − xln2 + x) − 2x − 5
4 

}V^(r) = (1 + ℎ)}VV(r) − ø (r − ~)}VV^(~)±
Ï �~ 

}V�(r) = (1 + ℎ)}V�cV(r) − ø (r − ~)}V�cV^(~)±
Ï �~ 

Table 1. shows numerical result calculated according the exact solution and 

Homotopy analysis method for }V� , where h=0.5. 

&' Exact (�(&) =ln(x + 

1), 
HAM (�)(&) Exact-HAM 

0 (0,0.4) (0.00000026768,0.4) 
2.56186267595E-

8 

0.1 (0.095310179804,0.4) (0.95310206285,0.4) 
2.53309949127E-

8 

0.2 (0.182321556793,0.4) (0.182321579887,0.4) 
2.19432191028E-

8 

0.3 (0.262364264467,0.4) (0.262364280170,0.4) 
1.45529119865E-

8 

0.4 (0.336472236621,0.4) (0.336472248418,0.4) 
1.06476171213E-

8 

0.5 (0.405465108108,0.4) (0.405465120209,0.4) 
1.84023705163E-

8 

0.6 (0.470003629245,0.4) (0.470003629794,0.4) 
6.84976264597E-

9 

0.7 (0.530628251062,0.4) (0.587786677053,0.4) 
6.0872384910E-

10 

0.8 (0.587786664902,0.4) (0.587786677053,0.4) 3.5510718809E-9 

0.9 (0.641853886172,0.4) (0.641853890141,0.4) 2.8196508461E-9 

1 (0.693147180559,0.4) (0.693147181293,0.4) 4.163761557E-10 

Table 1 solution to the example 1 

}^(r) = sin(πx) + ø 15 cos(πx) sin	(πt)}s^(~)±
Ï �~ 

at	{ = 1 

by using the equation (9) and ( 10) , we get 

}^T(r) = 0 

}^V(r) = −ℎ(sin(πx)) 

}^^(r) = (1 + ℎ)}^V(r) − ø 15 cos(πx) sin	(πt)}^Vs(~)±
Ï �~ 

}^�(r) = (1 + ℎ)}^�cV(r)− ø 15 cos(πx) sin	(πt)}^�cVs(~)±
Ï �~ 
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Table 2. shows numerical result calculated according the exact solution and 

Homotopy analysis method for }^�, where h=0.5. 

è* Exact ��(è) =+',(-&) +�.c√/0�
/ 12+	(-&). HAM ��3(è) Exact-HAM 

0 (0.0754266889,1) (0.0754266889,1) 
5.53723733531E-

15 

0.1 (0.3807520383,1) (0.3807520383,1) 
5.21804821573E-

15 

0.2 (0.6488067254,1) (0.6488067254,1) 4.55191440096-15 

0.3 (0.8533516897,1) (0.8533516897,1) 3.21964677141-15 

0.4 (0.9743646449,1) (0.9743646449,1) 1.77635683940-15 

0.5 (1.0000000000,1) (1.0000000000,1) 0 

0.6 (0.9277483875,1) (0.9277483875,1) 
1.77635683940E-

15 

0.7 (0.7646822990,1) (0.7646822990,1) 
3.21964677141E-

15 

0.8 (0.5267637791,1) (0.5267637791,1) 
4.55191440096E-

15 

0.9 (0.2372819503,1) (0.2372819503,1) 
0.52735593669E-

15 

1 (-0.0754266889,1) (-0.0754266889,1) 
0.55372373353E-

15 

Table 2 solution to the example 1 

11. Conclusion 

The proposed method is a powerful procedure for solving 

fuzzy nonlinear integral equations. The examples analyzed 

illustrate the ability and reliability of the method presented in 

this paper and reveals that this one is very simple and 

effective. The obtained solutions, in comparison with exact 

solutions admit a remarkable accuracy. Results indicate that 

the convergence rate is very fast, and lower approximations 

can achieve high accuracy. 
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