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Abstract: A line version of the KSOR method is introduced, LKSOR method. Comparison of the performance of some 

different iterative techniques with their line format (Jacobi – Gauss Seidel and SOR) are considered. Implementation of LKSOR 

method for several different formulas in different mesh geometries is discussed. The proposed method considers the advantages 

of the LSOR in addition to those of the KSOR. A graphical representation of the behavior of the spectral radius near the optimum 

value illustrates the smoothness in the selection of relaxation parameters. 
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1. Introduction 

The successive overrelaxation (SOR) method and its line 

variants [1, 2, 3] are among the most popular and efficient 

iterative methods used for solving large and sparse linear 

systems. Large linear systems appears in many areas of 

science and engineering, especially from the discretization of 

elliptic partial differential equations equation (3). The 

popularity of SOR algorithms is a great measure due to their 

simplicity from the programming and computational points 

of view, [4, 5, 6]. 

 

Figure 1. Natural ordering of line 8 � 8 mesh points. 

The paper is devoted to describe a new version of efficient 

iterative algorithm for solving systems of linear equations, 

the line KSOR, LKSOR. The LKSOR method is adapted 

from the KSOR method by the same philosophy as done in 

the line successive overrelaxation method, LSOR, [1, 3, 4, 5, 

6]. It is well- known that, the line Jacobi method performs 

like the point Gauss Seidel method for some classes of linear 

algebraic systems, [2, 7, 8, 9]. 

 

Figure 2. Red black ordering of line 8 � 8 mesh points. 
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In addition, the line Gauss Seidel performs faster than the 

point Gauss Seidel method. Moreover, the LSOR method can 

be adapted to give the same improvement done in the SOR, it 

is well known that the LSOR is asymptotically faster by a 

factor of √2 over the point SOR, [7]. Our main objective in 

this work is to introduce the line version of the KSOR 

method introduced in 2012, [4] as well as the comparison of 

its performance. 

Implementation of LKSOR algorithms for several different 

grid labelling (natural and red black ordering) formulas in 

different mesh geometries are discussed. We also analyze the 

convergence behavior. 

As usual, the discussion of the treatment is introduced 

through a well-known model problem, equation as 

� ���
�	� � ���

�
� � ��, ��.             (1) 

Let, P denote a typical grid point of the grid defined in 

Figure (1) or Figure (2), R denote to the point to the right of 

the point P and L denote to the point to the left of the point P 

along the horizontal grid line similarly, T denote to the point 

above the point P and B denote to the point below the point P 

along the vertical grid line as shown in figure (3), [1, 2]. 

 

Figure 3. Typical grid point. 
Accordingly, equation (1) can be approximated at the point 

P by the equation, 

4�� �  �� �  �� �  �� � �� � ����, ���,       (2) 

this is known as the five point formula. 

2. Line Iterative Methods 

Partitioning large linear system into block forms is a 

problem in itself, in many cases the matrix of the smaller 

system has properties which make its solution particularly 

convenient, [2, 10, 11]. The treatment of partitioned systems is 

easier than the treatment of the overall system, since the 

subsystems are much smaller than the original system. Also, 

block iterative techniques is faster than the corresponding 

point wise form. In line iterative methods, one considers the 

linear systems obtained from the discretization of PDE over 

grids as described in Figure (1) or Figure (2). The unknowns 

are labeled as in the above figures, and the equations are 

collected along each grid line. 

In addition, the partitioned system has properties, which the 

original system does not has. These properties, which the 

partitioned matrix has, very useful. For example, the 2-cyclic 

property of the coefficient matrix (14) which corresponding to 

Figure (1) enable one to obtain an eigenvalue functional 

relation (10) which can be used to calculate the ω optimum. 

Consider a system of linear equations 

� � !,                       (3) 

where �  is " � "  matrix, is completely determined by a 

block partition of "-vectors into blocks. Specifically, suppose 

the "-vector   is decomposed into sub-vectors 

 �  #,  $, % ,  &�' .                 (4) 

In addition, each  ( is itself an ")-vectors associated with 

the * points on the horizontal + line. 

The line Jacobi iterative scheme is 

�(( (,-.#/ � � ∑ �()&)1#)2(
 ),-/ 3 4( , 1 6 + 6 7,       (5) 

moreover, the corresponding iteration matrix is 

8�9 � :;#< 3 =�,                   (6) 

where, : is the block diagonal part, � < is the block lower 

triangular part and –  = is the block upper triangular part of 

the coefficient matrix �. 

Also, the line Gauss-Seidel scheme is 

�(( (,-.#/ � � ∑ �()(;#)1#  ),-.#/ � ∑ �() ),-/&)1(.# 3 4( , (7) 

1 6 + 6 ?, 
the corresponding iteration matrix is 

8�@A � : � =�;#<.                (8) 

While the line successive overrelaxation (LSOR) method 

with relaxation parameter ω is 

�(( (,-.#/ 3 B CD �()
(;#
)1#  ),-.#/ 3 D �() ),-/&

)1(.# E
3 B � 1��(( (,-/ � B4(  

and the corresponding iteration matrix 

8�AF� � : � B<�;#B= 3 1 � B�:�,          (9) 

where ω ∈ (0, 2) is a relaxation parameter. ω = 1, gives the 

line Gauss-Seidel method. 

The rate of convergence of the SOR method depends on the 

choice of B . For certain classes of matrices (consistently 

ordered with property A), the optimum value can be obtained 

with the help of the eigenvalue functional relation Young: 

G( 3 B � 1�$ � B$H($G(,              (10) 

where G(IJ  are the eigenvalues of the 8AF�  the iteration 

matrix of the SOR method and H(IJ are the eigenvalues of the 

Jacobi iteration matrix 89. 

Young [2] had illustrated that this functional relation still 
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hold between eigenvalues of the 8�AF� iteration matrix and 

the eigenvalues of the 8�9 iteration matrix. 

Parter [7, 9, 10] shown that the line SOR method with 

optimum ω converges approximately √2 as fast as the point 

SOR method. 

3. Line KSOR Iterative Methods 

Recently, Youssef [4], Youssef and Taha [6], Youssef and 

Al-Zaki [8], Youssef and Farid [12] and Youssef and Shukur 

[13], established a new forms of the SOR method, the KSOR. 

In the KSOR method, it is assumed that the current component 

can be used in the evaluation of the residue appears in the SOR 

method, in addition to the use the most recent calculated 

components used in the SOR. In the KSOR method the 

domain of the relaxation parameter B∗  is extended to L − [−2,0] instead of ω ∈ (0,2)  in the SOR. The main 

objective of this work is to introduce the LKSOR and to 

compare its performance in comparison with the point as well 

as line iterative forms. 

Using the same argument, the LKSOR method can be 

written in the form: 

�(( ([-.#] + B∗ CD �()
(;#
)1#  )[-.#] + D �() )[-]&

)1(.# + �(( ([-.#]E 

−�(( ([-] = B∗4(  ,              (11) 

+ = 1,2, ⋯ , ?;  " = 0, 1,2, ⋯ , B∗PL − [−2, 0]. 
or equivalently 

 ([-.#] =  +["] + B∗
QR
SD �((;#�()

(;#
)1#  )[-.#]TUUUUUVUUUUUW��XY'ZX

+ D �((;#�() )[-]&
)1(.#TUUUUUVUUUUUW[&X

+  ([-.#]TVWY\\�]ZX��XY'ZX _̂
` + B∗4+  

+ = 1,2, ⋯ , ?, " = 0, 1,2, ⋯ , B∗PL − [−2, 0]. 
The relaxation parameter B∗PL − [−2, 0] plays the same 

role as ω in the SOR method. 

The matrix formulation of the LKSOR method is: 

 [-.#] = 8�aAF� [-] + B∗�(1 + B∗): − B∗<�;#4,  (12) 

where 

8�aAF� = �(1 + B∗): − B∗<�;#(: + B∗=),   (13) 

Theorem (1): 

The line KSOR iterative method is consistent. 

Proof: Straightforward from formula (11). 

Theorem (2): 

The Line SOR and the Line KSOR satisfy the same 

eigenvalue functional relations as the corresponding point 

wise forms. 

4. Numerical Calculation 

We calculate the eigenvalues of the above mentioned 

iteration matrices, confirm the eigenvalue functional relations 

and represent graphically the behavior of the spectral radii. We 

consider a common linear system that arises from the 

discretization of Poisson’s equation: 

− b$�b�$ − b$�b�$ = −� 

with the initial condition 

�(�, 0) = − 16 , �(�, 1) = 0 (0 < � < 1) 

and the boundary conditions 

�(0, �) = �(1, �) = �e
6 − 16 , (0 < � < 1) 

If we use the five-point difference scheme as defined in (2) 

with grid spacing ℎ = ℎ	 = ℎ
 =  #g and with a natural line 

ordering as shown in Figure (1), we obtain a linear system of 

equations with the structure 

� =
hi
ii
ii
ij

! kk ! kk !k k!k k!k k!k k!k k! lm
mm
mm
mn
,  (14) 

where 

! =
hi
ii
ii
ij

o4
 
4o4

 
4o4  

4o4  4o4
 4o4

 
4o4

 
4o lm

mm
mm
mn
, 

and 

k =
hi
ii
ii
ij

p

 
p

 
p

 p  p  
p

 
p

 

p lm
mm
mm
mn
, 

where o = qrs� = 324, 4 = p = − #rs� = −81. 

The structure of the matrix A in the case of red-black as 

shown in Figure (2) ordering takes the form: 
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� =
hi
ii
ii
ij

! k! k k
k kk

!
kk

!
kk

!
k
!

kk
!

k

! lm
mm
mm
mn
, 

with  k and ! still the same. 

Then by applying variant line iterative methods (line Jacobi, 

line GS, LSOR, LKSOR) on the matrix (14), we get the results 

presented in Table (1). 

Table 1. Comparison between variant line iterative methods. 

 uvw Spectral radius ρ 

point Jacobi - 0.9397 

point GS 1 0.8830 

point SOR 1.4903 0.4903 
point KSOR -3.0396 0.4903 

line Jacobi - 0.8862 

line GS 1 0.7854 
line SOR 1.3669 0.3669 

line KSOR -3.7258 0.3669 

Table (1) illustrates that, the convergence rate of the line J 

method is a relatively modest improvement as compared with 

the gain achieved in replacing the Jacobi method by the GS 

method; on the other hand, the line SOR method converges 

approximately √2  times as fast as the ordinary SOR method. 

Which satisfied also by line KSOR method. The behavior of 

the spectral radius of the line SOR and line KSOR are 

presented in Figure (4) and Figure (5) respectively. 

 

Figure 4. The behavior of spectral radius of the line SOR. 

 

Figure 5. The behavior of spectral radius of the line KSOR. 

5. Conclusion 

The LKSOR has the same simple structure as the KSOR. 

The behavior of the line methods preserves the same 

characteristics of block methods. It is faster than the point 

wise methods. The line red black ordering figure (2) give the 

same results as expected as the natural line ordering figure (1). 

Table (1) confirms the results that the line versions of the 

iterative methods is faster than the corresponding point wise 

form. Moreover, it is clear that the performance of the LKSOR 

is the same as the LSOR and the LKSOR is faster than the 

KSOR by the same factor as LSOR method did with respect to 

SOR. 
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