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Abstract: This paper considers a second-order multi-agent system for solving the non-smooth convex optimization problem, 

where the global objective function is a sum of local convex objective functions within different bound constraints over 

undirected graphs. A novel distributed continuous-time optimization algorithm is designed, where each agent only has an access 

to its own objective function and bound constraint. All the agents cooperatively minimize the global objective function under 

some mild conditions. In virtue of the KKT condition and the Lagrange multiplier method, the convergence of the resultant 

dynamical system is ensured by involving the Lyapunov stability theory and the hybrid LaSalle invariance principle of 

differential inclusion. A numerical example is conducted to verify the theoretical results. 
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1. Introduction 

The distributed optimization of a sum of local convex 

functions has been widely investigated in a variety of 

scenarios in recent years. Examples include multi-agents 

system, resource allocation in communication networks and 

localization in sensor networks [1-18], to just name a few. 

Numerous distributed optimization algorithms are designed to 

be in a discrete-time fashion to search the optimal solutions of 

the optimization problem in [3, 5, 8], while continuous-time 

strategies due to its relatively complete theoretical framework 

have been widely applied to the distributed optimization 

problems in [10-12]. 

Distributed algorithms are characterized by high reliability, 

scalability and reduced communication capabilities, which 

attract many researchers to intensively study the distributed 

optimization algorithms (see e.g. [13-24]). Nedić and 

Ozdaglar [25] was the first to systematically put forward the 

distributed optimization problems. A projection-based 

distributed algorithm was developed in [7], and the further 

investigations with respect to set constrained optimization 

were show in [26-27]. What is worth mentioning is that 

Bianchi and Jakubowicz [26] presented a distributed 

constraint non-convex optimization algorithm which consists 

of two steps: a local stochastic gradient descent at each agent 

and a gossip step that drives the network of agents to a 

consensus. Different from the above, a distributed 

optimization problem subject to the (in-)equality constraint or 

set constraint was investigated in [28]. The authors proposed 

two distributed subgradient algorithms for muilt-agent 

optimization problems, where the goal of agents is to 

minimize a sum of local objective functions. Motived by [28], 

the primal-dual subgradient algorithm was studied in Yuan et 

al. [29] and Zhu et al. [24] for muilt-agent optimization 

problems with set constraints. Furthermore, in order to solve 

an un-constrained optimization problem, where the objective 

function is formed by a sum of convex functions available to 

individual agent, a second-order distributed dynamic was 

given in [10], while a similar second-order continuous-time 

distributed algorithm was proposed to solve the convex 
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optimization problem in [11]. 

Inspired by the works of [7, 10, 11, 19], a novel distributed 

second-order continuous-time multi-agent system is proposed 

to solve a distributed convex optimization problem, where the 

objective function is a sum of local objective functions, and 

each one can only know its local information. That is to say, all 

the agents cooperatively reach the optimal solution of the 

optimization problem. To tackle the optimization with box 

constraints, a logarithmic barrier penalty function is used, 

which is different from previous studies that are mainly based 

on the projection algorithm. In comparison with the existing 

distributed optimization methods, the proposed method in this 

paper has the following three advantages. Firstly, this paper 

designs a novel distributed continuous-time algorithm to solve 

more general distributed convex optimization problems. 

Secondly, the proposed algorithm can solve the convex 

optimization problem with a sum of convex objective 

functions with local bound constraints. Meanwhile, it does not 

require the objective function to be smooth, which is required 

in the most existing recurrent neural network algorithms. 

Thirdly, the box constraints are treated with a logarithmic 

barrier penalty function, which makes the proposed algorithm 

has a faster convergence speed to obtain the approximate 

solutions. This has a sufficient accuracy to satisfy most of the 

actual demands comparing with the projection algorithms. 

The remainder of this paper is outlined as follows. Some 

preliminaries about the graph theory, the non-smooth analysis, 

and the stability of differential inclusions are presented in 

Section 2. Section 3 formulates a convex optimization 

problem and proposes a distributed continuous-time algorithm. 

In Section 4, a complete convergence proof is conducted to 

indicate that the dynamic system is convergent and stable 

meanwhile the agent’s estimates are convergent to the same 

optimal solution. A numerical example for illustration is given 

in Section 5. Conclusions are finally drawn in Section 6. 

2. Mathematical Preliminaries 

In this section, some preliminaries about the graph theory, 

the non-smooth analysis, and the stability of differential 

inclusion are introduced. 

A. Algebraic Graph Theory 

A weighted undirected graph ( , , )=G V AE consists of a 

vertex set 1
{ ,..., }

n
ν ν=V , an undirected edge set ⊆ ×E V V 

and a weighted adjacency matrix [ ] n n

ija ×= ∈ℝA . Here, 

0ija >  if and only if ( , )i jν ν ∈E ; 0ija = , otherwise. An 

undirected path between i
ν  and jν  is denoted by 

( , )i jν ν ∈E , which means that i
ν  and jν  can exchange 

information with each other [30]. We assume that the 

communications between agents are bidirectional and the 

weights are positive, which indicates that the connection 

weights between i
ν  and jν  in graph G  satisfy 

0ij jia a= >  if and only if there exists an edge ( , )i jν ν ∈E ; 

otherwise, 0ij jia a= = . The degree matrix is defined as: 

1 21 1 1
{ , ,..., }

n n n

j j njj j j
D diag a a a

= = =
= ∑ ∑ ∑ , so the Laplacian 

matrix of the undirected graph G  is defined as L D= − A. 

An undirected graph is connected if there exists a path 

between any pair of distinct nodes. Especially, L  for an 

undirected graph is symmetric positive semi-definite. 

However, for a directed graph, L  does not have this property. 

B. Non-smooth Analysis 

Let X  be a space of Banach, ⋅  be Euclidean norm of X , 

*X  be the conjugate space of X , and D  be a subset of X . 

Definition 2.1: There exist a 0ε >  and a ( , )x xσ ε∈  such 

that f  satisfies the following: 

| ( ) ( ) | || ||f y f y L y y′ ′− ≤ −  

The function :f D → ℝ  is called Lipschitz near x D∈ , 

where L  represents the Lipschitz constant. If f  is 

Lipschitz near any point x D∈ , then f
 
is also said to be 

locally Lipschitz in D . 

Definition 2.2: Assume that :f D → ℝ  is Lipschitz near 

x . The generalized directional derivative of f  at x  in the 

direction v X∈  is given by: 

, 0

( ) ( )
( ; ) lim sup

y x t

f y tv f y
f x v

t+→ →

+ −=�
 

Definition 2.3: The generalized gradient of f  is defined as: 

*( ) { | , ( ; ) , , }f x X f x v v v Xζ ζ ζ∂ = ∈ ≥ 〈 〉 ∀ ∈�
 

Lemma 2.1: If f  is Lipschitz near any point x D∈ , then 

( ) {lim ( ) | , }i i i f
i

f x co f x x x x
→∞

∂ = ∇ → ∉ Ω  

where co  is the convex closed hull, and 
fΩ  is the null 

measure set, which is composed by the undefined points of the 

generalized gradient of V . 

C. Stability of Differential Inclusion 

For an autonomous differential inclusion system: 

( )x F x∈ɺ                     (1) 

where , : ( )
n n n

x F P∈ →ℝ ℝ ℝ  is an upper semi-continuous 

set-valued mapping with compact convex values and 0 is a 

balance point of (1). That is to say, 0 (0).F∈  

Definition 2.4: Let ( )x t  be a solution of (1). If there is a 

sequence { }it  
satisfying: 

( ) ,
n

i ix t q t→ ∈ → +∞ℝ  

then q  is the -ω limit point of the solution ( )x t  of (1). All 

the -ω limit-points make up the limit-set, which is donated as 

( )xΩ . 

Definition 2.5: For any point 0x  in Ω , if there exists a 

maximal solution of the system in Ω , then Ω  is called the 

weakly invariant set of the system (1). 
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Theorem 2.2: (Lasalle invariance principle of differential 

inclusion) Assuming : nV →ℝ ℝ  is a positive definite and 

locally Lipschitz regular function for almost all t , it satisfies 

( ) 0
d

V x
dt

≤  

If there exists a constant 0l >  such that 

{ | ( ) }
n

lL x V x l= ∈ ≤ℝ  bounded, then for any solution ( )x t  

passing through 
0 l

x L∈ , we have that 

( ( ), ) 0, ,dist x t M t→ → +∞
 
where M  is the largest weakly 

invariant subset of 
V lZ L∩ . Here, 

VZ  is the closure of 

{ , | 0 ( , )}mn mn

V
Z x V xλ λ= ∈ ∈ ∈ ɺℝ ℝ . 

Remark 2.1: If all the conditions of Theorem 2.2 hold, and 

{0}
V

Z = , then the trivial solution of the autonomous 

differential inclusion systems (1) is asymptotically stable. 

3. Problem Formulation and 

Optimization Algorithm 

A. Problem Formulation 

Consider a network of n agents that interact with each other 

over a connected graph G . Each agent has a local objective 

function if  and a local bound constraint iΩ  for all 

{1,..., }i n∈ . The muilt-agent group cooperatively solves the 

following distributed optimization problem: 

n

i=1

1

minimize    ( ) ( )

subject to    

i

n i

i

f x f x

x =

=

∈ Ω
∑

∩
          (2) 

where 
i nΩ ⊆ ℝ  is the closed convex set, and 

1

n i

i=Ω = Ω∩  

has nonempty interior points. The local objective function 

:i nf →ℝ ℝ  is convex and not necessarily smooth. Here, 

T

1 2[ , ,..., ] n

nx x x x= ∈ℝ  is a column vector. 

We give some meaningful results, which will be used in this 

paper: 

Assumption 3.1. The optimization problem (2) has at least 

one finite optimal solution 
*

x . 

Assumption 3.2. At least one of the local objective 

functions ( ), 1, 2,...,if x i n=  has a positive definite Hessian 

matrix. 

Assumption 3.3. The weighted graph G  is undirected and 

connected. 

Under Assumption 3.3, we have that 0 is a simple 

eigenvalue of Laplacian L  and 1n  is an eigenvector of nL
 

corresponding to the simple zero eigenvalue. Moreover, 

1 0nL = , T1 0n nL = . 

B. Optimization algorithm 

Denote , 1, 2,..., ,n

ix i n∈ =ℝ  as an estimation of agent i , 

1 2( , ,..., ) m n

nx x x ×= ∈ℝx  as a matrix with column vector ix , 

and T T T T

1 2vec( ) ( , ,..., ) nm

nx x x x= = ∈ℝx . The objective of 

optimization problem (2) is to achieve the global minimizer 

* arg min ( )x f x= . 

Next, we will provide an equivalent optimization problem 

of (2). 

Lemma 3.1: Let nm nm

n mL L I ×= ⊗ ∈ℝ , where n n

nL ×∈ℝ  is 

a symmetric and positive semi-definite Laplacian matrix of 

connected graph G , ⊗  is the Kronecker product and mI  

denotes the identity matrix in m m×
ℝ . Then, the equivalence 

problem of (2) is described as: 

1

minimize ( ) ( )

subject to 0

n
i

i

i

f x f x

Lx

x

=
=

=
∈Ω

∑
             (3) 

where 1

n i

i=Ω = Ω∏  is the Cartesian product. 

Proof: According to Assumption 3.3, let 1nx x= ⊗ , we 

have the following: 

( ) ( )(1 )

( 1 ) ( )

0

n m n m n

n n m

Lx L I x L I x

L I x

= ⊗ = ⊗ ⊗
= ⊗
=

 

Denote A, B, and C as matrices with approximate 

dimensions. In virtue of the properties of Kronecker product 
Tvec( ) ( ) vec( )ABC C A B= ⊗ , it is clearly that: 

( )

( ) vec( )

vec( )

n m

n m

m n

Lx L I x

L I

I L

= ⊗
= ⊗
=

x

x

 

If 0Lx = , then 0m nI L =x , which implies T 0nL =x . 

According to Assumption 3.3, we have T T= 1nα ⊗x , where 

( 1,2,..., )i i mα =  is any real number and 

T m

1 2( , ,..., )mα α α α= ∈ℝ  is a column vector. Then, 

T

1

T

T 2

T

1

1
1

...

1

n

n

n

m n

α
αα

α

 
 
 = ⊗ =  
 
 
 

x  

where each column vector 
i

x of x  satisfies 
i

x α= . We 

have vec( ) 1
n

x α= = ⊗x . 

Based on the above analysis, we have that 0Lx =  if and 

only if 1
n

x x= ⊗  for some 
n

x ∈ℝ . Since 1
n

x⊗ ∈ Ω , we 

have 
i i

x ∈Ω , which implies 
1

n i

ix =∈ Ω∩  and 

(1 ) ( )nf x f x⊗ = . Therefore, the problem (2) is equivalent to 

the problem (3). 

Remark 3.1: In this paper, we mainly consider the case that 

x ∈Ω  is the box constraint ,min ,maxk k k

i i ix x x≤ ≤ . Let 

1 2 T[ , ,..., ]m m

i i i ix x x x= ∈ℝ , min 1,min 2,min ,min T( , ,..., )m m

i i i ix x x x= ∈ℝ , 

and max 1,max 2,max ,max T( , ,..., )m m

i i i ix x x x= ∈ℝ  for 1,...,i n= . 
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Denote min min T min T min T T

1 2[( ) , ( ) ,..., ( ) ] mn

nx x x x= ∈ℝ  and 

max max T max T max T T

1 2[( ) , ( ) ,..., ( ) ] mn

nx x x x= ∈ℝ . Then the problem 

(3) can be rewritten as: 

1

,min ,max

minimize ( ) ( )

subject to 0

, 1,...,

n
i

i

i

k k k

i i i

f x f x

Lx

x x x k m

=

=

=

≤ ≤ =

∑
     (4) 

where k

ix  stands for the matrix entry in the k-th row and i-th 

column of x . 

Then, combining with the optimization problems (3), a new 

optimization problem based on the method of augmented 

Lagrangian is proposed as follow: 

T

1

,min ,max

1
minimize ( ) ( )

2

subject to 0

, 1,...,

n
i

i

i

k k k

i i i

f x f x x Lx

Lx

x x x k m

=

= +

=

≤ ≤ =

∑
     (5) 

where nm nm

n mL L I ×= ⊗ ∈ℝ , n n

nL ×∈ℝ  is the Laplacian of 

graph G , and the quadratic penalty term in the objective 

function plays a damping role. 

Building on the Theorems 3.25 and 3.27 in [25], the 

following results are obtained. 

Lemma 3.1: Assume that Assumption 3.1 and 3.2 hold. 

Denote 
* mnν ∈ℝ  as the multiplier for the equality constraint, 

and * mnη ∈ℝ , * mnµ ∈ℝ  as the Lagrangian multipliers for 

inequality constraints. Then, 
* mn

x ∈ℝ  is the optimal solution 

of optimization problem (4) if and only if the following KKT 

condition is established: 

* *T * *T * min *T max *

* *

* min max *

*T * min *T max *

* *

( ) ( ) ( ) 0,

0, 0

0, 0,

( ) 0, ( ) 0,

0, 0.

f x Lx x x x x

Lx

x x x x

x x x x

ν µ η
ν

µ η
µ η

∇ + + − + − =
= ≥

− ≤ − ≤
− = − =

≥ ≥

，

 (6) 

Lemma 3.2: Assume that Assumptions 1-3 hold. If 

optimization problem (4) has the optimal solution 
* * *( ,..., )x x x= , then it is also the optimal solution of (5). 

Let *

iν , *

iη  and *

iµ  be defined as that in Lemma 3.1. 

Similar to Lemma 3.1, * * *( ,..., )x x x=  is the optimal 

solution of optimization problem (5) if and only if the 

following KKT condition is established: 

* *T * *T * *T * min *T max *

* *

* min max *

*T * min *T max *

* *

1
( ) ( ) ( ) 0,

2

0, 0

0, 0,

( ) 0, ( ) 0,

0, 0.

f x x Lx Lx x x x x

Lx

x x x x

x x x x

ν µ η

ν

µ η
µ η

∇ + + + − + − =

= ≥
− ≤ − ≤

− = − =

≥ ≥

，

 (7) 

Remark 3.2: Supposing that Assumptions 1 and 3 hold, then 

the Slater condition is established for problem (5), implying 

that there exist Lagrangian multipliers satisfying KKT 

condition (7). 

To deal with the inequality constraints of problem (5), by 

means of the logarithmic-barrier method, it follows that: 

,min ,max

1 1

1
minimize ( ) ( )+  ( [ ] [ ])

2

subject to 0, 1,...,

n n
i T k k k k

i i i i i

i i

f x f x x Lx In x x In x x

Lx k m

θ
= =

= + − + −

= =

∑ ∑
           (8) 

where θ  is a small enough positive real number. 

Let 
mnλ ∈ℝ  be the lagrangian multiplier of equality constraint Lx  in (8), then the Lagrange function of (8) is: 

,min ,max

1 1

1
( , ) ( )+  ( [ ] [ ])

2

n n
i T k k k k T

i i i i i

i i

L x f x x Lx In x x In x x Lxλ θ λ
= =

= + − + − +∑ ∑                  (9) 

The corresponding Lagrange dual function is: 

,min ,max

1 1

1
( ) inf ( , ) inf ( )+  ( [ ] [ ])

2

n n
i T k k k k T

i i i i i
x x

i i

g L x f x x Lx In x x In x x Lxλ λ θ λ
∈Ω ∈Ω = =

 = = + − + − + 
 
∑ ∑      (10) 

Remark 3.3: Since the Slater condition deduced from Assumption 3.1 holds and there exists a nonempty interior point in Ω  

satisfying ,min ,maxk k k

i i ix x x< < , then the optimal solution of Lagrange dual problem (10) is equivalent to the optimization 

problem (8). 

To solve the original optimization problem (2), the dynamics of multi-agent network is designed as: 

,min ,max
1 1

1

( ) 1 1
( ) ( ) ( )

( ), 1,..., , 1,...,

n n
k k k k ki

i ij i j ij i jk k k k k
i ii i i i i

n
k k k

i ij i j

i

f x
x a x x a

x x x x x

a x x i n k m

λ λ θ

λ

= =

=

∂
∈ − − − − − + −

∂ − −

= − = =

∑ ∑

∑

ɺ

ɺ

              (11) 
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Let 
T

1 1,min 1,max 1 2 2,min 2,max 2 ,min ,max

1 1 1 1 1 1 1 1

1 1 1 1 1 1
[( ), ( ,..., ( )]

m m m m

n n n n

z
x x x x x x x x x x x x

θ= − − −
− − − − − −

. Then (11) can be written in a 

compact form: 

( )x f x Lx L z

Lx

λ

λ

∈ −∇ − − +

=

ɺ

ɺ
                                    (12) 

4. The Convergence Analysis 

In this section, a complete convergence proof of dynamic 

system (11) [or (12)] is provided in the following theorems. 

Lemma 4.1: Under the Assumptions 1-3, the trajectories of 

dynamic system (11) [or (12)] with any finite initial points are 

bounded. 

Proof : In order to proof the stability of the dynamic system 

system (11) [or (12)], we construct a Lyapunov function as 

follow: 

* 2 * 2

2 2

1 1
( , ) || || || ||

2 2
W x x xλ λ λ= − + −              (13) 

Obviously, ( , ) 0W x λ ≥ . In view of the chain rule, the time 

derivative of ( , )W x λ  along the trajectories of dynamic 

system (11) [or (12)] is : 

* *

* *

( , )
( ) ( )

[ ( , )] ( ) [ ( , )] ( )

TT

T T

x

dW x
x x x

dt

L x x x L xλ

λ λ λ λ

λ λ λ λ

= − + −

= −∇ − + ∇ −

ɺɺ
 

Since ( , )L x λ  is convex in x , and concave in λ , 

combining with the properties of convex function, we have: 

* *[ ( , )] ( ) ( , ) ( , )T

x L x x x L x L xλ λ λ−∇ − ≤ −  

* *[ ( , )] ( ) ( , ) ( , )TL x L x L xλ λ λ λ λ λ∇ − ≤ −  

Based on Remark 3.3 and the Saddle point theorem, then 

* *

* * * * * *

( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

0

dW x
L x L x L x L x

dt

L x L x L x L x

λ λ λ λ λ

λ λ λ λ

≤ − + −

= − + −
≤

 

Hence, the Lyapunov function (13) is monotonic, 

non-increasing and has a lower bound, i.e., trajectories are 

bounded. Let ( (0), (0))x λ  represent the initial point of 

( , )x λ , then we have ( , ) ( (0), (0))W x W xλ λ≤ , which 

indicates that there exists a positive invariant compact set such 

that the solution of (11) [or (12)] satisfy: 

{ , | ( , ) }mn mn

lL x W x lλ λ= ∈ ∈ ≤ℝ ℝ    (14) 

Lemma 4.2: The trivial solution of the dynamic system (11) 

[or (12)] is asymptotically stable. 

Proof: Define a function: 

1 1
( , ) , ,

2 2
V x x xλ λ λ= < > + < >ɺ ɺ ɺɺ ɺ ɺ  

Then the time-derivative of ( , )V x λɺɺ  is: 

2

2

2

( , ) 1 1
, ,

2 2

= { [ ( )] [ z] }

[ ( )] [ z]

[ ( )] [ z]

0

T T

T T T T T

T T T

dV x
x x

dt

x diag f x x Lx L diag x Lx

x diag f x x x Lx x L x diag x Lx

x diag f x x x Lx x diag x

λ λ λ

λ λ

λ λ

= < > + < >

−∇ − − + ∇ +

= −∇ − − + ∇ +

= −∇ − + ∇
<

ɺɺ ɺ ɺɺɺ ɺɺ

ɺ ɺɺ ɺ ɺ ɺ ɺ

ɺ ɺɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ ɺ ɺ

                   （15） 

where 
1 1,min 2 1,max 1 2 ,min 2 ,max 2

1 1 1 1

[ ]= [ ,..., ]
( ) ( ) ( ) ( )

m m m m

n n n n

diag z diag
x x x x x x x x

θ θ θ θ∇ − − − −
− − − −

. 

With Assumption 3.2, at least one of the local objective 

functions ( ), 1,...,if x i n=
 
of ( )f x

 
has a positive definite 

Hessian matrix. Then 2[ ( )]diag f x−∇  is negative definite, 

which implies T 2{ [ ( )] 0x diag f x x−∇ <ɺ ɺ . Since L  is a 

positive semi-definite matrix, then 
T

0x Lx− ≤ɺ ɺ . In addition, 

due to [ z] 0diag −∇ < , the last step of (14) holds. 

Next, we shall prove 
V( , ) Z lx LλΩ ⊂ ∩ . According to the 

definition of 
l

L , we have ( , ) lx LλΩ ⊂ . Noting that 

( ( ), ( ))W x t tλ  is monotonic, non-increasing and has a lower 

bound, so lim ( ( ), ( )) 0
t

W x t t cλ
→∞

= ≥ . According to the 

continuity of ( , )W x λ , we have ( , )W x cλ = . Denoting 

( , , )x tψ λ  as a solution of ( , )x λΩ , which satisfies 

( , , 0) , ( , )x y y xψ λ λ= ∀ ∈ Ω , then ( ( , , ))W x t cψ λ =  for 

any t . Thus, it gives 

( ( , , )) 0
d

W x t
dt

ψ λ =  

For almost all t , 0 ( ( , , ))V x tψ λ∈ ɺ . It can be concluded 

that there exists { }, 0
i i

t t →  satisfying ( , , )i Vx t Zψ λ ∈ . By the 
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continuity of ψ , it yields lim ( , , ) ( , , 0)i V
i

x t x y Zψ λ ψ λ
→∞

= = ∈ . 

Hence, we have ( , ) Vx ZλΩ ⊂ . Noting that ( , )x MλΩ ⊂  is 

weakly invariant set, then (( , ), ) 0,dist x M tλ → → ∞ɺɺ . From 

the above, according to Remark 2.1, we have that the trivial 

solution of the system (11) [or (12)] is asymptotically stable 

and it is also the optimal solution of (2). 

5. Simulation 

In this section, a simulation examples are presented to 

verify the theoretical analysis of the proposed second-order 

algorithm (11)[or (12)]. 

Example: Consider optimization problem (2) with 

1 2 3 1 2 3

1 2

( ) 2

exp( ), ( 1,2,...,12)

= − − + + +
+ − =

i
f x ix ix ix x x x

ix ix i
, 

3x∈ℝ  and 

3

1 2 3{ : 22 10, / 2 26 / 2 7, / 3 14 2 11}i x i x i i x i i x iΩ = ∈ − ≤ ≤ + − ≤ ≤ + − ≤ ≤ +ℝ , 

where ( ), ( 1,...,12)if x i =  are non-smooth objective functions. 

For the above optimization problem, we first assume that 

the network topology G  is a cyclic connected network, as 

shown in Fig. 1(a). The connection weight is set to 1 if there 

exists a path between agent i  and j , otherwise 0. The 

trajectories of twelve agents are shown in Fig. 1(b). It can be 

seen that all the agents converge to the same optimal solution 
* T( 10,7.5,13)x = −  (approximate solution). Next, supposing 

that the network topology G  is fully connected, as shown in 

Fig. 2(a), and the simulation results are shown in Fig. 2(b). It 

is clearly that the tighter the network connection, the faster the 

convergence rate is. 

 

(a) 

 

(b) 

Fig. 1. (a) A cyclic connected network. (b) The trajectories of the state vector 

x  over a cyclic connected network. 

 

(a) 

 

(b) 

Fig. 2. (a) A fully connected network. (b) The trajectories of the state vector 

x  over a fully connected network. 

6. Conclusions 

In this paper, a novel distributed continuous-time algorithm 

based on the KKT condition and the Lagrange multiplier 

method has been proposed for a distributed convex 

optimization problem. It aims to minimize the sum of the 

non-smooth local objective functions with local bound 

constraints over an undirected graph. Furthermore, the 

convergence analysis of the dynamical system is accomplished 

by using the Lyapunov stability theory and the hybrid LaSalle 

invariance principle of differential inclusion. The numerical 

simulation shows the performance of the proposed algorithm. 

In the future, our works may turn to the optimization problem 

with respect to directed topology and equality constraint, 

meanwhile analysis of its convergence speed. 
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