The Application of Matrix in Control Theory

Yuanyuan Zhang
College of Science, China Three Gorges University, Yichang, China
Email address: mathzhyy@163.com

To cite this article:

Received: June 21, 2016; Accepted: July 21, 2016; Published: July 25, 2016

Abstract: This paper presents a new way to justify the controllability of linear ordinary systems. This way is based on the maximum geometric multiplicity of eigenvalues for the coefficient matrix of the linear ordinary equation. This method is equivalent to other discrimination laws for controllability.

Keywords: Controllability, Ordinary Differential Equation, Geometric Multiplicity, Eigenvalues

1. Introduction

The controllability problems of ordinary differential equations have been a great interest for decades due to their practical applications [1-5]. There are a lot of literatures on this issue (see for instance [6-15]). The current paper presents a new way to justify the controllability of linear ordinary systems. This way is based on the maximum geometric multiplicity of eigenvalues for the coefficient matrix of the linear ordinary equation.

The rest of the paper is organized as follows: Section 2 presents a necessary and sufficient condition for justifying the controllability of the linear ordinary differential system. Section 3 gives several examples to show the efficiency of the new method. Section 4 is the conclusion of this paper.

2. Main Results

Let A and B be two matrix in $\mathbb{R}^{n \times n}$ and $\mathbb{R}^{m \times m}$ respectively, where $n, m \in \mathbb{N}$. Consider the following controlled ordinary differential equation:

$$\begin{cases} y'(t) + Ay(t) = Bu(t), \\ y(0) = y_0. \end{cases} \quad (1)$$

Here $y_0 \in \mathbb{R}^n \setminus \{0\}$ and u is a control function in the following admissible set:

$$\mu_M = \{v : [0, +\infty) \rightarrow \mathbb{R}^m, \|v(t)\|_2 \leq M \}, \quad (2)$$

where M is a positive constant. Throughout this paper, we use (A,B) to denote the linear differential system given by equation (1). The main result of the paper is as follows:

Theorem The linear differential system (A,B) is controllable if and only if the number of columns of the matrix B is no less than the maximum geometric multiplicity of eigenvalues for the coefficient matrix A.

Proof. Suppose the system (A,B) is controllable, and $\lambda_1, \lambda_2, \ldots, \lambda_q$ are the eigenvalues of the matrix A with the geometric multiplicity m_1, m_2, \ldots, m_q and algebraic multiplicity n_1, n_2, \ldots, n_q. Then there exists an invertible matrix P such that

$$\hat{A} = P^{-1}AP = \begin{pmatrix} J_1 \\ J_2 \\ \vdots \\ J_q \end{pmatrix}, \quad (3)$$

where

$$J_k = \begin{pmatrix} L_1^k \\ L_2^k \\ \vdots \\ L_m^k \end{pmatrix}, \quad (4)$$

In equation (4) L_j^k represents the Jordan’s block corresponding to λ_k, ($k = 1, 2, \ldots, q$).

Suppose the order of the Jordan block L_j^k is l_j^k, and

$$l_1^k + l_2^k + \cdots + l_m^k = n_k, \quad (k = 1, 2, \ldots, q). \quad (5)$$

Let $\hat{B} = P^{-1}B$. We use (P_3) to represent the system...
$\lambda E - A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda^2 (\lambda - 1) \end{pmatrix}$, \hspace{1cm} (13)

$\lambda E - A_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & (\lambda - 2)^2 \end{pmatrix}$ \hspace{1cm} (14)

So the Jordan’s normal form of matrix A is as follows

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$$. \hspace{1cm} (15)

From equation (15), it is obvious that the maximum geometric multiplicity of the eigenvalues of the matrix A is 2, and the number of the non-zero columns of the matrix B is 3.

According to the given method in section 2, system (10) is controllable.

Example 2. Let

$$A = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 0 & a_2 & \cdots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_1 \end{pmatrix}_{n \times n}, \hspace{1cm} B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}_{n \times 2}$$. \hspace{1cm} (16)

Our aim is to prove that system (16) is controllable.

Proof. For

$$f(\lambda) = |\lambda E - A| = (\lambda - a_1)^n$$, \hspace{1cm} (17)

then the minimum polynomials of the matrix A is

$$m_A = (\lambda - a_1)^k, \hspace{1cm} (1 \leq k \leq n)$$. \hspace{1cm} (18)

Let

$$g(\lambda) = (\lambda - a_1)^{n-1}$$, \hspace{1cm} (19)

then

$$g(A) = (A - a_1E)^{n-1} = \begin{pmatrix} 0 & \cdots & a_2^{n-1} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \neq 0$$. \hspace{1cm} (20)

So

$$m_A = (\lambda - a_1)^n$$. \hspace{1cm} (21)

From equation (21), it is easy to obtain

$$\lambda E - A = \begin{pmatrix} 1 & \cdots & a_2^{n-1} \\ \vdots & \ddots & \vdots \\ \lambda - a_1 & \cdots & (\lambda - a_1)^n \end{pmatrix}_{n \times n}$$. \hspace{1cm} (22)

So the elementary divisors of the matrix A is

$$m_A = (\lambda - a_1)^n$$. \hspace{1cm} (23)

Then the Jordan’s normal form of the matrix A is as follows
\[
\begin{pmatrix}
 a_1 & 1 & \cdots & 1 \\
 \vdots & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \vdots \\
 a_n & \cdots & \cdots & a_1 \\
\end{pmatrix}
\] (24)

From equation (24), it is easy to obtain the maximum geometric multiplicity of the eigenvalues of the matrix \(A \) is 1, and the number of the non-zero columns of the matrix \(B \) is 2. So according to the given method in section 2, system (16) is controllable.

Example 3. Let
\[
A = \begin{pmatrix}
 -5 & 1 & 4 \\
 -12 & 3 & 8 \\
 -6 & 1 & 5 \\
\end{pmatrix}, \quad B = \begin{pmatrix}
 1 \\
 0 \\
 0 \\
\end{pmatrix}.
\] (25)

Our aim is to prove that system (25) is non-controllable.

Proof. For
\[
|\lambda I - A| = (\lambda - 1)^3,
\] (26)

and the minimum polynomial of the matrix \(A \) is
\[
m_A = (\lambda - 1)^2,
\] (27)

then the invariant factors of the matrix \(A \) is
\[
d_1(\lambda) = 1, d_2(\lambda) = \lambda - 1, d_3(\lambda) = (\lambda - 1)^2.
\] (28)

So the Jordan’s normal form of matrix \(A \) is as follows
\[
A = \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
\end{pmatrix}.
\] (29)

From equation (29), it is obvious that the maximum geometric multiplicity of the eigenvalue of the matrix \(A \) is 2, and the number of the non-zero columns of the matrix \(B \) is 1. According to the given method in section 2, system (25) is non-controllable.

Example 4. Let
\[
A = \begin{pmatrix}
 a & 1 & \cdots & 1 \\
 0 & a & \cdots & 1 \\
 b & 0 & \cdots & 1 \\
 c & 0 & \cdots & c \\
\end{pmatrix}, \quad B = \begin{pmatrix}
 1 \\
 0 \\
 0 \\
 0 \\
\end{pmatrix}.
\] (30)

Proof. For system (30), there are different cases:

Case 1. When \(a = b = c \), the maximum geometric multiplicity of the eigenvalue of the matrix \(A \) is 3, and the number of the non-zero columns of the matrix \(B \) is 1. According to the given method in section 2, system (30) is non-controllable.

Case 2. When \(a = b \neq c \), the maximum geometric multiplicity of the eigenvalue of the matrix \(A \) is 2 and the number of the non-zero columns of the matrix \(B \) is 1. According to the given method in section 2, system (30) is non-controllable.

Case 3. When \(a \neq b \neq c \), the maximum geometric multiplicity of the eigenvalue of the matrix \(A \) is 1 and the number of the non-zero columns of the matrix \(B \) is 1.

According to the given method in section 2, system (30) is controllable.

In (30), if the number of the non-zero columns of the matrix \(B \) is 2, for example,
\[
B = \begin{pmatrix}
 1 & 0 \\
 0 & 1 \\
 0 & 0 \\
 0 & 0 \\
\end{pmatrix},
\] (31)

then in case 1 the system \((A,B)\) is non-controllable; in case 2 and case 3 the system \((A,B)\) is controllable.

Still in (30), if the number of the non-zero columns of the matrix \(B \) is 3, for example,
\[
B = \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 0 & 0 & 0 \\
\end{pmatrix},
\] (32)

then the number of non-zero columns of the matrix \(B \) is 3. According to the given method in section 2, whether \(a, b, c \) are equal or not, the system \((A,B)\) is controllable.

In fact, as long as the number of non-zero columns of the matrix \(B \) is no less than 3, the system \((A,B)\) is always controllable.

4. Conclusion

This paper presents a new necessary and sufficient condition for justifying the controllability of the linear ordinary differential system. This way is based on the maximum geometric multiplicity of eigenvalues for the coefficient matrix of the linear ordinary equation. This method is equivalent to other discrimination laws for controllability. Section 2 presents a necessary and sufficient condition for justifying the controllability of the linear ordinary differential system. Section 3 gives several examples to show the efficiency of the new method. Section 4 is the conclusion of this paper. This method can also be used in other linear ordinary differential systems.

References

