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Abstract: This paper develops the variants of Chebyshev’s method by applying Lagrange interpolation and finite difference 

to eliminate the second derivative appearing in the Chebyshev’s method. The results of this research show that the modified 

eight-order method has the efficiency index 1.5157. Numerical simulations show that the effectiveness and performance of the 

new method in solving nonlinear equations are encouraging. 
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1. Introduction 

The solution of nonlinear equations is very important 

problem in numerical analysis. One of the problems in 

nonlinear equations is to determine the roots of the equation 

f(x) = 0 so that the sophisticated iteration method to solve it 

is in need. Many iteration methods can be used to solve the 

problem. Newton’s method is the oldest and widely used 

method written as 

���� = �� − �(	
)
��(	
)

.                                 (1) 

To accelerate the convergence of (1) many authors have 

modified it as we can see in [6, 8, 10, 11]. If we expand 

( )f x  about x = xn using Taylor expansion and ignoring the 

term of containing the third order, we obtain Chebyshev’s 

method in the form of 

���� = �� − �(	
)
��(	
)

�1 + �
�
�(	
)���(	
)
(��(	
))�

�,                  (2) 

which has third-order convergence [1, 3]. Kou et al. [7] 

proposed a method which is free from second-derivative by 

approximating ( )'' nf x  in (2) by a finite difference as follows 

	�� = �� − � �(	
)
��(	
)

,                                   (3) 

���� = �� − �1 + �
��

�(�
)���(	
)
��(	
)

� �(	
)
��(	
)

,              (4) 

This method has a third-order convergence [8]. The other 

methods modified from (2) having a four-order convergence 

can be seen in [2, 4, 5]. 

In this paper, we present the combination of Newton’s 

method and Chebyshev’s method into a three-step iteration 

method. We also incorporate finite difference to approximate 

the second derivative in second step and Lagrange 

interpolation to approximate the first derivative in the third 

step. The discussion of the new method and their 

convergence and analysis are carried out in Section 2. Then, 

in Section 3 we perform numerical simulations using some 

test functions, and compare the new method with some other 

methods, such as Newton’s method, Halley’s method, and 

Chebyshev’s method.  

2. Proposed Methods 

In this section, for construction of the new iterative 

method, we use the iterative methods given by equations (1) 

and (2). We consider the following three-step method 

	�� = �� − �(	
)
��(	
)

,                                  (5) 

	�� = �� − �(�
)
��(�
)

�1 + �
�
�(�
)���(�
)
(��(�
))�

�,                 (6) 
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���� = �� − �(�
)
��(�
)

,                          (7) 

which requires one evaluation of the second derivative of the 

function. To remove this derivative, firstly we replace ���(��) 
in (6) with a finite difference [10], that is 

���(��) ≈ ��(�
)���(	
)
�
�	


,                       (8) 

where yn is equation (1). 

Secondly, we approximate f’(zn) by a derivative of 

Lagrange interpolation polynomial L2(x) passing the points 

(xn, f(xn)), (yn, f(yn)), and (zn, f(zn)), that is 

 �� (��) =
2�� − (�� + ��)

(�� − ��)(�� − ��)
�(��)

+ 2�� − (�� + ��)
(�� − ��)(�� − ��)

�(��) 

+ ��
�(	
��
)
(�
�	
)(�
��
)

�(��).                            (9) 

Simplifying equation (9) yields 

 �� (��) = �"�� , ��# + �"��, ��# − �"�� , ��#,           (10) 

where 

�"�� , ��# = �(�
)��(	
)
�
�	


,                    (11) 

�"�� , ��# = �(�
)��(�
)
�
��


,                    (12) 

�"�� , ��# = �(�
)��(	
)
�
�	


.                    (13) 

Let ��(��) ≈  �� (��), and substituting equation (8) into (6) 

and (10) into (7), we get 

	�� = �� − �(	
)
��(	
)

,                            (14) 

	�� = �� − �(�
)
��(�
)

�1 − ��(�
)��(	
)�(�
)��(�
)(��(	
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��(	
)(��(�
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#��"	
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#

.              (16) 

We can see that the new scheme (14), (15), and (16) are 

free from second derivative. For the method defined by 

scheme (14), (15), and (16), we have the following analysis 

of convergence. 

Theorem 1 Assume that function f is sufficiently 

differentiable and f has a simple root $ ∈ &. If the initial point 

x0 is sufficiently close to $, then the method of iteration in 

equations (14)-(16) has eighth-order convergence and 

satisfying the following error equation: 

'��� = �(�)�
()(�� '�* + +('�,), 

where '� = �� − $  and )- = �(-)($) .! ��($)⁄ , . =
2, 3, … ,8. 

Proof. Let $  be a simple root of the equation�(�) = 0, 

then ��($) ≠ 0. Furthermore, using Taylor expansion of the 

�(��) about �� = $, we obtain 

�(��) = �($) + (� − $)��($) + (� − $)�
2! ���($) 

	+⋯++(�� − $),.                          (17) 

Because �($) = 0  equation (17) can be rewritten in the 

form of 

�(��) = ��($)7'� + )�'�� + )('�( +⋯++('�,)8,    (18) 

where )- = 9(:)(;)
:!9�(;), . = 2, 3, … ,8. 

Similarly, carrying out the Taylor expansion again for 

��(��) about �� = $, after simplification, we obtain 

��(��) = ��($)71 + 2)�'� + 3)('�� +⋯+ +('�*)8.  (19) 

Dividing (18) by (19) gives us 

�(	
)
��(	
)

= '�−)�'�� + 2()�� − )()'�( +⋯+ +('�,).	   (20) 

Substituting (20) into (14), we get  

	�� = $ + )�'�� + 2()( − )��)'�( +⋯+ +('�,).     (21) 

Moreover, the Taylor expansion of �(��)  about �� =
$	respectively are given by 

�(��) = ��($)()�'�� + 2()( + )��)'�( +⋯+ +('�,)8,	  (22) 

Repeating the above process, we can find approximation to 

�′(��) as follows: 

��(��) = ��($)(1 + 2)��'�� + 4()�)(−)�()'�( 

+⋯+ +('�*)8.                                (23) 

Now dividing (22) by (23), we obtain 

�(�
)
��(�
)

= )�'�� + 2()( − )��)'�( +⋯+ +('�,).         (24) 

From (18), (19), (22) and (23), we get 

	��(��)��(��)�(��) − �(��)(��(��))� = (��($))((−2)��'�( 

+(2)�( − 7)�)()'�? +⋯+ +('�,)).              (25) 

Using (18) and (22), we obtain 

2�(��)(��(��))� = (��($))((2'� + 2)��'�� + 2(4)�� + )()'�( 

+⋯+ +('�,)8.                                   (26) 

Furthermore, dividing (25) by (26), we have 

��(��)��(��)�(��) − �(��)(��(��))�
2�(��)(��(��))�

= −)��'�� + (2)�( 

−@
�)�)(8'�( +⋯+ +('�,).	                      (27) 

Substituting (21), (24) and (27) into (15), we obtain 

�� = $ − (
�)�

�)('�A + �2)�A − 6)�)(� − 2)��)? + �(
� )�

C� '�? 
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+⋯+ +('�,).                            (28) 

Applying Taylor expansion of �(��) about �� = $, we get 

�(��) = ��($) �−(
�)�

�)('�A + (2)�A − 6)�)(� − 2)��)? 

	+DE
� )�C8'�? +⋯++('�,)8                      (29) 

To obtain the �"�� , ��#, we substitute (18), (28) and (29) 

into (11), that is 

�"��, ��# = ��($)71 + )�'� + )('�� + )?'�( +⋯++('�,)8. (30) 

Using the same strategy, �"��, ��#  can be obtained by 

substituting (21), (22), (28) and (29) into (12), that is 

�"��, ��# = ��($)71 + )��'�� + (2)�)( − 2)�()'�( +⋯+ +('�,)8. (31) 

To obtain �"�� , ��#, we substitute (18), (21) and (22) into 

(13), that is 

�"��, ��# = ��($)�1 + )�'� + ()�� + )()'�� +⋯++('�,)�. (32) 

Using the equations (30), (31) and (32), we get  

�"�� , ��# + �"�� , ��# − �"��, ��# = ��($)(1 − )�)('�� 

+⋯+ +('�,)8                                  (33) 

Dividing (29) by (33), we have 

�(��)
�"��, ��# + �"�� , ��# − �"�� , ��#

= �(�)�
�)('�A + (2)�A 

−6)�)(� − 2)��)? + DE
� )�()(8'�C +⋯+ +('�,)        (34) 

Substituting equations (28) and (34) into (16), we obtain 

���� = $ + �(� )�
()(�� '�* + +('�,).                (35) 

Putting '��� = ���� − $, then from equation (35) we get 

'��� = �(� )�
()(�� '�* + +('�,).                   (36) 

This means that the method defined by scheme (14), (15), 

and (16) has eighth-order convergence. The proof is 

completed. 

Schemes (14), (15), and (16) require three evaluations of 

the functions and two of their first derivative per iteration. So 

that, if we consider the definition of eficiency index as F D
G, 

where p is the order of the method and m is the number of 

functional evalations per iteration required by the method. 

We have that the method obtained by schemes (14), (15), and 

(16) has the efficiency index equal to 8D
H ≈ 1.5157, which is 

better than the Newton’s method having the efficiency 

index 2D
� ≈ 1.4142 , Halley’s method 3D

E ≈ 1.4422  and 

Chebyshev’s method 	3D
E ≈ 1.4422. 

3. Numerical Expriments 

In this section some numerical simulations are performed 

to compare Chebyshev-Lagrange method to some other 

methods, such as Newton’s method, Halley’s method, and 

Chebyshev’s method. The functions used are as follows: 

��(�) = 10�'�	� − 1, $ ∈ (1.5, 2.0), 
��(�) = �A + �? + 4�� − 15, $ ∈ (1.0, 1.5), 

�((�) = '	 − 4��, $ ∈ (0.5, 1.0), 
�?(�) = sin�(�) − �� + 1, $ ∈ (1.0, 1.5), 

�A(�) = cos(�) − �, $ ∈ (0.5, 1.0), 
�C(�) = (� − 1)C − 1, $ ∈ (1.5, 2.5). 

We also calculate the computational order of convergence 

(COC) of the method using the following equation: 

( ) ( )
( ) ( )αα

αα
−−
−−

=
−

+

1

1

ln

ln

nn

nn

xx

xx
COC               (37) 

The calculation is carried out using software with 800 

digits accuracy and tolerance O = 1.0 × 10��QQ. The stoping 

criteria of the iteration are |���� − ��|  and |�(����)| . The 

value ���� is taken as the exact root $. 

In Table 1, we give initial value (x0), number of iterations 

(N), and the computational order of convergence (COC). An 

asterisk (*) on the number of iterations indicates that the 

method converges to different roots. Table 1 shows a 

comparison of the number of iterations and COC several 

methods to resolve the above functions including Newton’s 

method (NM), Halley’s method (HM), Chebyshev’s method 

(CM), and Chebyshev-Lagrange method (CLM) for some 

given initial values.  

Based on Table 1 it is generally known that the CLM has 

the number of iterations less when compared to the other 

methods. This means that CLM has a better efficiency in 

computing process than other methods. From Table 1 we 

observe that the COC perfectly coincides with the theoretical 

results at Theorem 1. The results presented in Table 1 show 

that the CLM has higher convergence order compared to the 

other methods. 

Tabel 1. Comparison of the number of iterations and COC. 

S(T) TU 
N COC 

NM HM CM CLM NM HM CM CLM 

��(�) 
0.9 9 6 5 3 2.0000 3.0000 3.0000 8.0029 

1.3 8 5 5 3 2.0000 3.0000 3.0000 8.0000 

1.5 7 5 5 3 2.0000 3.0000 3.0000 8.0000 
2.0 8 5 6 3 2.0000 3.0000 3.0000 8.0000 

��(�) 0.5 12 6 32 4 2.0000 3.0000 3.0000 8.0008 
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S(T) TU 
N COC 

NM HM CM CLM NM HM CM CLM 

1.0 9 5 6 3 2.0000 3.0000 3.0000 7.9999 
1.5 7 5 5 3 2.0000 3.0000 3.0000 8.0000 

2.0 9 6 6 3 2.0000 3.0000 3.0000 8.0001 

�((�) 
0.4 8 5 7 3 2.0000 3.0000 3.0000 8.0000 
1.6 7 5 5 3 2.0000 3.0000 3.0000 8.0000 

1.0 8 5 5 3 2.0000 3.0000 3.0000 8.0000 

1.4 8 5 6 3 2.0000 3.0000 3.0000 8.0000 

�?(�) 
0.4 12 7 12* 4 2.0000 3.0000 3.0000 7.9997 

0.8 9 6 5* 3 2.0000 3.0000 3.0000 7.9973 

1.6 7 5 5 3 2.0000 3.0000 3.0000 8.0000 
2.0 8 5 6 3 2.0000 3.0000 3.0000 8.0000 

�A(�) 
-1.0 11 7 6 4 2.0000 3.0000 3.0000 8.0000 

0.0 8 5 6 3 2.0000 3.0000 3.0000 8.0000 
1.0 7 5 5 3 2.0000 3.0000 3.0000 8.0000 

2.0 7 5 6 3 2.0000 3.0000 3.0000 8.0000 

�C(�) 
1.7 11 6 6* 4 2.0000 3.0000 3.0000 8.0000 
1.9 8 5 5 3 2.0000 3.0000 3.0000 8.0000 

2.4 9 6 6 3 2.0000 3.0000 3.0000 8.0029 

2.6 10 6 7 4 2.0000 3.0000 3.0000 7.9996 

Table 2 shows a comparison of the absolute difference |���� − ��| and absolute value of the functions |�(����))| of several 

methods to resolve the above functions including Newton’s method, Halley’s method, Chebyshev’s method, and Chebyshev-

Lagrange method for some given initial values. 

Tabel 2. Comparison |���� − ��| and |�(����))|. 

S(T) TU 
|TV�W − TV| |S(TV�W)| 
NM HM CM CLM NM HM CM CLM 

��(�) 
0.9 6.85e-85 4.85e-53 1.73e-82 4.22e-40 1.24e-168 2.65e-157 2.51e-245 1.82e-317 

1.3 3.41e-81 6.03e-40 9.81e-36 2.19e-44 3.07e-161 5.12e-118 4.59e-105 9.59e-352 

1.5 1.46e-54 2.46e-65 3.09e-57 2.24e-67 5.61e-108 3.46e-194 1.43e-169 1.13e-533 

2.0 2.71e-55 1.76e-42 2.43e-45 2.12e-36 1.94e-109 1.27e-125 7.00e-134 7.45e-288 

��(�) 
0.5 2.08e-67 6.37e-58 8.17e-36 1.50e-18 1.71e-132 4.72e-171 3.27e-104 6.90e-142 

1.0 5.50e-97 7.04e-50 7.37e-56 6.82e-26 1.19e-191 6.38e-147 2.40e-164 1.25e-200 

1.5 2.30e-53 5.69e-80 5.14e-62 5.09e-57 2.08e-104 3.37e-237 8.17e-183 1.21e-449 

2.0 1.53e-77 2.77e-99 2.17e-63 5.33e-26 9.19e-153 3.88e-295 6.12e-187 1.76e-201 

�((�) 
0.4 5.76e-58 6.70e-35 2.20e-44 1.52e-43 9.86e-115 8.30e-103 5.47e-131 7.07e-345 

1.6 1.52e-63 4.03e-78 7.81e-65 1.99e-86 6.88e-126 1.81e-232 2.46e-192 6.11e-688 

1.0 2.55e-95 1.15e-57 7.42e-50 2.06e-56 1.94e-189 4.19e-171 2.11e-147 8.33e-448 

1.4 5.52e-62 4.21e-35 5.77e-88 5.06e-36 9.08e-123 2.05e-103 9.95e-262 1.08e-284 

�?(�) 
0.4 1.07e-88 1.16e-45 8.26e-44 1.08e-26 2.23e-176 2.02e-135 1.60e-129 2.48e-210 

0.8 5.17e-54 4.14e-68 2.22e-43 3.10e-20 5.20e-107 9.27e-203 3.09e-128 1.17e-158 

1.6 2.00e-56 3.19e-72 1.11e-61 1.65e-72 7.82e-112 4.25e-215 3.84e-183 7.71e-577 

2.0 6.51e-65 3.47e-39 4.47e-96 7.10e-44 8.24e-129 5.47e-116 2.52e-286 8.91e-348 

�A(�) 
-1.0 1.76e-71 2.68e-71 2.54e-78 5.11e-58 1.15e-142 3.75e-213 4.51e-234 5.61e-463 

0.0 1.80e-83 1.62e-43 2.54e-78 1.68e-40 1.19e-166 8.23e-130 4.51e-234 7.65e-323 

1.0 1.80e-83 4.42e-87 5.05e-83 1.05e-77 1.19e-166 1.68e-260 3.56e-248 1.86e-620 

2.0 5.63e-96 1.48e-35 6.67e-97 3.88e-75 1.17e-191 6.30e-106 8.18e-290 6.30e-600 

�C(�) 
1.7 3.21e-66 2.08e-66 8.52e-36 1.32e-38 1.54e-130 1.58e-196 3.40e-104 1.42e-300 

1.9 3.63e-72 9.81e-62 4.00e-36 9.39e-39 1.97e-142 1.65e-182 3.52e-105 9.46e-302 

2.4 1.64e-53 2.80e-71 1.31e-42 1.41e-15 4.06e-105 3.82e-211 1.24e-124 2.41e-116 

2.6 2.74e-62 3.37e-45 5.85e-71 1.28e-21 1.13e-122 6.72e-133 1.10e-209 1.13e-164 

 

The computational results presented in Table 2 show that 

in almost all of cases, the CLM has the absolute values of the 

function smaller when compared to Newton’s method, 

Halley’s method, and Chebyshev’s method. 

4. Conclusions 

In this paper we present the variants of Chebyshev’s 

method by removing the second derivative using finite 

difference. This method requires three functions and two first 

derivative evaluations per iteration. We have that the order 

convergence of this method is eight. Analysis of the 

efficiency shows that this method is better than Newton’s 

method, Halley’s method, and Chebyshev’s method. 
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