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Abstract: This paper develops the variants of Chebyshev’s method by applying Lagrange interpolation and finite difference
to eliminate the second derivative appearing in the Chebyshev’s method. The results of this research show that the modified
eight-order method has the efficiency index 1.5157. Numerical simulations show that the effectiveness and performance of the
new method in solving nonlinear equations are encouraging.
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1. Introduction

The solution of nonlinear equations is very important
problem in numerical analysis. One of the problems in
nonlinear equations is to determine the roots of the equation
fix) = 0 so that the sophisticated iteration method to solve it
is in need. Many iteration methods can be used to solve the
problem. Newton’s method is the oldest and widely used
method written as

Xn+1 = Xp

f(xn)

- . 1
f(xn) (1)
To accelerate the convergence of (1) many authors have

modified it as we can see in [6, 8, 10, 11]. If we expand

f (x) about x = x, using Taylor expansion and ignoring the

term of containing the third order, we obtain Chebyshev’s
method in the form of

Xn+1 = Xp

pieD) (

1 G (o)
7 Gen) P n) )

2 (f'(xn))?

which has third-order convergence [1, 3]. Kou et al. [7]
proposed a method which is free from second-derivative by

approximating f "(xn) in (2) by a finite difference as follows

fGxn)
Yo =y =050, 3)

This method has a third-order convergence [8]. The other
methods modified from (2) having a four-order convergence
can be seen in [2, 4, 5].

In this paper, we present the combination of Newton’s
method and Chebyshev’s method into a three-step iteration
method. We also incorporate finite difference to approximate
the second derivative in second step and Lagrange
interpolation to approximate the first derivative in the third
step. The discussion of the new method and their
convergence and analysis are carried out in Section 2. Then,
in Section 3 we perform numerical simulations using some
test functions, and compare the new method with some other
methods, such as Newton’s method, Halley’s method, and
Chebyshev’s method.

2. Proposed Methods

In this section, for construction of the new iterative
method, we use the iterative methods given by equations (1)
and (2). We consider the following three-step method

f(xn)
Yn =Xp — T;;), Q)
_ _ f(n) lf(Yn)f”(J’n)
n=dn f’(yn)( 2 (' om)? ) ®)
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which requires one evaluation of the second derivative of the
function. To remove this derivative, firstly we replace " (y,,)
in (6) with a finite difference [10], that is

" ’( n)_ ’( n)
£ (yn) ~ LT ) ®)

Yn—Xn

where y, is equation (1).
Secondly, we approximate f’(z,) by a derivative of
Lagrange interpolation polynomial L,(x) passing the points

(xnaf(xn))a (ynaf(yn)): and (Zn5ﬂ271))7 that ls

2Zn - (Yn + Zn)

Z(xn _(Yn) (xn _) Zn)
Zy — (X + 2
(yn - xn)(yn - Zn) f(yn)

L,z (Zn) = f(xn)
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Simplifying equation (9) yields

Ly(20) = flxn 20] + D 2a] = [l 3l (10)
where
[l 2] = FELn) (11)
[ 2] = FETC) (12)
Flxy,y, ] = Lo ) (13)

Yn—Xn

Let f'(z,) = L,(z,), and substituting equation (8) into (6)
and (10) into (7), we get

_ . few)
Yn - xn f’(xn), (14)
Fn) £ o) ) F ) = F ) (' Gen))?
= —_ —_ ) 1
“n = In f’(yn)( 2 o) (F ()2 ) (15)
f(zn)

(16)

Xn+1 = Zn = f[xnrzn]+f[Yn‘Zn]_f[xnrYn]'

We can see that the new scheme (14), (15), and (16) are
free from second derivative. For the method defined by
scheme (14), (15), and (16), we have the following analysis
of convergence.

Theorem 1 Assume that function f is sufficiently
differentiable and f'has a simple root a € I. If the initial point
X is sufficiently close to a, then the method of iteration in
equations (14)-(16) has eighth-order convergence and
satisfying the following error equation:

_(3.3.2),8 9
€nt+1 = (ECZ CS) en + O(en)'

where e = fPO@)/k! f'(a), k =
2,3,..,8.
Proof. Let @ be a simple root of the equationf(x) =0,

then f'(a) # 0. Furthermore, using Taylor expansion of the

ep =x, —a and

f(x,) about x,, = a, we obtain

(x - @)?
f) = £(@) + (¢ = (@) + 57— F"(@)

+-+0(x, — a)°. (17)

Because f(a) = 0 equation (17) can be rewritten in the
form of

fxp) = f’(“)(en +cyeh +czen o+ 0(93))' (18)

0
where ¢, = {df,((z)),k =2,3,..,8.

Similarly, carrying out the Taylor expansion again for
f'(xy,) about x,, = a, after simplification, we obtain

f'(x,) = f’(a)(l + 2c,e, + 3c3e2 + -+ O(eﬁ)). (19)
Dividing (18) by (19) gives us
f(xn)

o = en—Ce2 4+ 2(c2 —c3)ed + -+ 0(e)). (20)
Substituting (20) into (14), we get
Yo = a+c ez +2(c; —ced+ -+ 0(e)). (21)

Moreover, the Taylor expansion of f(y,) about y, =
a respectively are given by

FOm) = f(@)(c 82 + 2(cs + ces + -+ 0(ep)), (22)

Repeating the above process, we can find approximation to
f'(y) as follows:

f'On) = f1 (@)@ + 2cfe + 4(czc3—c3)ey

+-+0(ed)). (23)
Now dividing (22) by (23), we obtain
%= e+ 2(c; —ced + -+ 0(ed). (24)

From (18), (19), (22) and (23), we get

' Of ) f ) = FOR ' (e))? = (f (@) (—2cien
+(2c3 — 7cyc5)en + -+ 0(ep)). (25)
Using (18) and (22), we obtain
2f ) (f' ))? = (f'(@))* (2en + 2c5ef + 2(4cS + ca)eid
+-+ 0(e)). (26)
Furthermore, dividing (25) by (26), we have

f’(Yn)f’(xn)f(Yn) - f(Yn)(f,(xn))z —
2f ) (f (r))?

—Zcyc3)en + -+ 0(en).

—c2e? + (2c3

27)
Substituting (21), (24) and (27) into (15), we obtain

3 13
Zn=a— EC22C367§L + (2c25 — 6C,¢2 — 2¢3c, + 7c26) ey
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+ -+ 0(e). (28)

Applying Taylor expansion of f(z,) about z, = a, we get
f(z) = f'(@) (—Sccef + (265 — 6c,c3 — 2c3c,
+2c8)er + -+ 0(ep)) (29)

To obtain the f[x,, z,], we substitute (18), (28) and (29)
into (11), that is

flxn za] = f'(@)(1 + cen + c32 + che + -+ 0(ep)). (30)

Using the same strategy, f[yn, Z,] can be obtained by
substituting (21), (22), (28) and (29) into (12), that is

f[yn' Zn] = fl(a)(l + szerzl + (ZCZC3 - 2C;’)€73{ +t 0(9‘2)) (31)

To obtain f[x,, y,], we substitute (18), (21) and (22) into
(13), that is

Flnn] = F/(@)(1+ coen + (c3 + c5)ek + -+ 0(eD)). (32)
Using the equations (30), (31) and (32), we get
flxn 2] + fyn 2a] = flxn yul = £/ (@1 = cac3e7
++0(ep) (33)
Dividing (29) by (33), we have

f(zy)
f[xn' Zn] + f[yn' Zn] - f[xn' yn]

—60,¢% — 2c3c, + 2c3c3)en + -+ 0(ey)

3
= —ciczen + (2¢3

(34)
Substituting equations (28) and (34) into (16), we obtain

Xp1 = A+ (2 02303?) el + 0(ep). (35)

Putting e,,41 = x,+1 — @, then from equation (35) we get

ens1 = (5c3c3) el + 0(eD). (36)
This means that the method defined by scheme (14), (15),
and (16) has eighth-order convergence. The proof is
completed.
Schemes (14), (15), and (16) require three evaluations of
the functions and two of their first derivative per iteration. So

that, if we consider the definition of eficiency index as p%,
where p is the order of the method and m is the number of
functional evalations per iteration required by the method.
We have that the method obtained by schemes (14), (15), and

1.5157, which is

~
=~

(16) has the efficiency index equal to 8%

better than the Newton’s method having
index 22 ~ 1.4142 , Halley’s method 33
Chebyshev’s method 33 ~ 1.4422.

the efficiency
~ 1.4422 and

~
=~

3. Numerical Expriments

In this section some numerical simulations are performed
to compare Chebyshev-Lagrange method to some other
methods, such as Newton’s method, Halley’s method, and
Chebyshev’s method. The functions used are as follows:

f(x) = 10xe™* — 1, a € (1.5,2.0),
fo(x) = x5+ x* + 4x? — 15, € (1.0, 1.5),
f:(x) = e* — 4x%, a € (0.5,1.0),
fi(x) = sin?(x) — x? + 1,a € (1.0, 1.5),
fs(x) = cos(x) — x, a € (0.5,1.0),
fo(x) = (x—1)*—1,a € (15,2.5).

We also calculate the computational order of convergence
(COC) of the method using the following equation:

In|(x,., -a)/(x, -a)
In|(x, - @)/ (x,- - a)

The calculation is carried out using software with 800
digits accuracy and tolerance € = 1.0 X 1071%°, The stoping
criteria of the iteration are |x,,.; — X,| and |f(x,41)|. The
value x,,,, is taken as the exact root .

In Table 1, we give initial value (x,), number of iterations
(N), and the computational order of convergence (COC). An
asterisk (*) on the number of iterations indicates that the
method converges to different roots. Table 1 shows a
comparison of the number of iterations and COC several
methods to resolve the above functions including Newton’s
method (NM), Halley’s method (HM), Chebyshev’s method
(CM), and Chebyshev-Lagrange method (CLM) for some
given initial values.

Based on Table 1 it is generally known that the CLM has
the number of iterations less when compared to the other
methods. This means that CLM has a better efficiency in
computing process than other methods. From Table 1 we
observe that the COC perfectly coincides with the theoretical
results at Theorem 1. The results presented in Table 1 show
that the CLM has higher convergence order compared to the
other methods.

COC = 37)

Tabel 1. Comparison of the number of iterations and COC.

£ x N CoC
0 NM HM CM CLM NM HM CM CLM
0.9 9 6 5 3 2.0000 3.0000 3.0000 8.0029
1.3 8 5 5 3 2.0000 3.0000 3.0000 8.0000
A 1.5 7 5 5 3 2.0000 3.0000 3.0000 8.0000
2.0 8 5 6 3 2.0000 3.0000 3.0000 8.0000
fo(x) 0.5 12 6 32 4 2.0000 3.0000 3.0000 8.0008
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£ %o N coc
NM HM CM CLM NM HM CM CLM
1.0 9 5 6 3 2.0000 3.0000 3.0000 7.9999
1.5 7 5 5 3 2.0000 3.0000 3.0000 8.0000
2.0 9 6 6 3 2.0000 3.0000 3.0000 8.0001
0.4 8 5 7 3 2.0000 3.0000 3.0000 8.0000
1.6 7 5 5 3 2.0000 3.0000 3.0000 8.0000
f3(0) 1.0 8 5 5 3 2.0000 3.0000 3.0000 8.0000
1.4 8 5 6 3 2.0000 3.0000 3.0000 8.0000
0.4 12 7 12% 4 2.0000 3.0000 3.0000 7.9997
0.8 9 6 5% 3 2.0000 3.0000 3.0000 7.9973
fa(x) 1.6 7 5 5 3 2.0000 3.0000 3.0000 8.0000
2.0 8 5 6 3 2.0000 3.0000 3.0000 8.0000
-1.0 11 7 6 4 2.0000 3.0000 3.0000 8.0000
0.0 8 5 6 3 2.0000 3.0000 3.0000 8.0000
fs(0) 1.0 7 5 5 3 2.0000 3.0000 3.0000 8.0000
2.0 7 5 6 3 2.0000 3.0000 3.0000 8.0000
1.7 11 6 6%* 4 2.0000 3.0000 3.0000 8.0000
1.9 8 5 5 3 2.0000 3.0000 3.0000 8.0000
fe(0) 24 9 6 6 3 2.0000 3.0000 3.0000 8.0029
2.6 10 6 7 4 2.0000 3.0000 3.0000 7.9996

Table 2 shows a comparison of the absolute difference |x,,; — x,| and absolute value of the functions |f (x,41))| of several
methods to resolve the above functions including Newton’s method, Halley’s method, Chebyshev’s method, and Chebyshev-

Lagrange method for some given initial values.

Tabel 2. Comparison |x, .1 — x| and |f (pe1))|-

fx X0 Ixn+1 — xnl If(xn+l)|
NM HM CM CLM NM HM CM CLM
0.9 6.85¢-85 4.85e-53 1.73e-82 4.22¢-40 1.24e-168 2.65e-157 2.51e-245 1.82e-317
1.3 3.41e-81 6.03e-40 9.81e-36 2.19¢-44 3.07e-161 5.12e-118 4.59¢-105 9.59¢-352
A& 1.5 1.46e-54 2.46e-65 3.09¢-57 2.24e-67 5.61e-108 3.46e-194 1.43e-169 1.13e-533
2.0 2.71e-55 1.76e-42 2.43e-45 2.12¢-36 1.94e-109 1.27e-125 7.00e-134 7.45e-288
0.5 2.08e-67 6.37e-58 8.17e-36 1.50e-18 1.71e-132 4.72e-171 3.27e-104 6.90e-142
1.0 5.50e-97 7.04e-50 7.37e-56 6.82e-26 1.19¢-191 6.38e-147 2.40e-164 1.25e-200
(%) 1.5 2.30e-53 5.69¢-80 5.14e-62 5.09¢-57 2.08e-104 3.37e-237 8.17e-183 1.21e-449
2.0 1.53e-77 2.77¢-99 2.17e-63 5.33e-26 9.19¢-153 3.88e-295 6.12e-187 1.76e-201
0.4 5.76e-58 6.70e-35 2.20e-44 1.52e-43 9.86e-115 8.30e-103 5.47e-131 7.07e-345
1.6 1.52e-63 4.03e-78 7.81e-65 1.99¢-86 6.88e-126 1.81e-232 2.46e-192 6.11e-688
EQ) 1.0 2.55e-95 1.15e-57 7.42¢-50 2.06e-56 1.94e-189 4.19¢-171 2.11e-147 8.33e-448
1.4 5.52e-62 4.21e-35 5.77e-88 5.06e-36 9.08e-123 2.05e-103 9.95e-262 1.08e-284
0.4 1.07e-88 1.16e-45 8.26e-44 1.08e-26 2.23e-176 2.02e-135 1.60e-129 2.48e-210
0.8 5.17e-54 4.14¢-68 2.22e-43 3.10e-20 5.20e-107 9.27e-203 3.09e-128 1.17e-158
i) 1.6 2.00e-56 3.19¢-72 1.11e-61 1.65e-72 7.82¢-112 4.25¢-215 3.84e-183 7.71e-577
2.0 6.51e-65 3.47e-39 4.47¢-96 7.10e-44 8.24e-129 5.47e-116 2.52e-286 8.91e-348
-1.0 1.76e-71 2.68e-71 2.54e-78 5.11e-58 1.15e-142 3.75e-213 4.51e-234 5.61e-463
0.0 1.80e-83 1.62e-43 2.54e-78 1.68e-40 1.19¢-166 8.23e-130 4.51e-234 7.65e-323
fs@) 1.0 1.80e-83 4.42¢-87 5.05e-83 1.05e-77 1.19¢-166 1.68e-260 3.56e-248 1.86e-620
2.0 5.63e-96 1.48e-35 6.67¢-97 3.88e-75 1.17e-191 6.30e-106 8.18e-290 6.30e-600
1.7 3.21e-66 2.08e-66 8.52e-36 1.32e-38 1.54e-130 1.58e-196 3.40e-104 1.42e-300
1.9 3.63¢e-72 9.81e-62 4.00e-36 9.39¢-39 1.97e-142 1.65e-182 3.52e-105 9.46e-302
f6@®) 24 1.64e-53 2.80e-71 1.31e-42 1.41e-15 4.06e-105 3.82e-211 1.24e-124 2.41e-116
2.6 2.74e-62 3.37e-45 5.85e-71 1.28e-21 1.13e-122 6.72¢-133 1.10e-209 1.13e-164

The computational results presented in Table 2 show that
in almost all of cases, the CLM has the absolute values of the
function smaller when compared to Newton’s method,
Halley’s method, and Chebyshev’s method.

4. Conclusions

In this paper we present the variants of Chebyshev’s
method by removing the second derivative using finite
difference. This method requires three functions and two first
derivative evaluations per iteration. We have that the order
convergence of this method is eight. Analysis of the

efficiency shows that this method is better than Newton’s
method, Halley’s method, and Chebyshev’s method.
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