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Abstract: Fractal dimension is a measure for the degree of complexity or that of fractals. An alternative to fractal dimension 

is ht-index, which quantifies complexity in a unique way. Back to your question, the physical meaning of fractal dimension is 

that many natural and social phenomena are nonlinear rather than linear, and are fractal rather than Euclidean. We need a new 

paradigm for studying our surrounding phenomena, Not Newtonian physics for simple systems, but complexity theory for 

complex systems, Not linear mathematics such as calculus, Gaussian statistics, and Euclidean geometry, but online 

mathematics including fractal geometry, chaos theory, and complexity science in general. A channel is characterized by its 

width, depth, and slope. The regime theory relates these characteristics to the water and sediment discharge transported bye the 

channel empirically. Empirical measurements are taken on channels and attempts are made to fit empirical equations to the 

observed data. The channel characteristics are related primarily to the discharge but allowance is also made for variations in 

other variables, such as sediment size. 
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1. Introduction 

Bank full discharge is generally considered to be the 

dominant steady flow which would generate the same regime 

channel shape and dimensions as the natural sequences of 

flows would. This is because investigation on the magnitude 

and frequency of sediment transport have determined that for 

stable rivers the flow which in the longer term transports 

most material has the same frequency of occurrence as 

bankfull flow. For stable gravel-bed rivers, this is considered 

to be the 1. 5-year flood. 

The objective of regime theory is to predict the size, shape, 

and slope of a stable alluvial channel under given conditions. 

A channel is characterized by its width, depth, and slope. The 

regime theory relates these characteristics to the water and 

sediment discharge transported bye the channel empirically. 

Empirical measurements are taken on channels and attempts 

are made to fit empirical equations to the observed data. The 

channel characteristics are related primarily to the discharge 

but allowance is also made for variations in other variables, 

such as sediment size. 

For practical purposes, rivers are preserved to be in 

equilibrium (in regime) or in quasi-equilibrium of this 

characteristics have not changed over a long period of time. 

Canals usually maintain constant discharge and regime 

relations may, therefore, be established using field data. 

However, field measurements for rivers are not usually 

suitable for establishing laws for rivers in regime. 

If you use a ruler of k = 1000 meteres you will need K 

rulers to run entire river meander curvature. If you use a ruler 

of l = 500 meters you need L rulers and sucessivily. What is 

the physical meaning of fractal dimension? 

The numbers of rulers necessary to measure a meander 

curvature line M is proportional the length of ruler m with a 

exponent D, where here D is a constant that define the 

dependence between the number of rules and the length of 

ruler and is knowed as fractal dimension for measure a river 

meander curvature. 

It is intended to calculate fractal dimension slightly 

undulating line. It is found one code from net on boxcounting 

method [3] and used for slightly undulating surface that is not 

given correct answer. I also have x and z value of 

corresponding line. Is it possible to calculate from these 

value by any software/ code [3], A characteristic feature of 

fractals is their fine structure. An object is known to have fine 

structure if it has irregularities at arbitrarily small scale. 

‘Fractal dimension’ attempts to quantify the fine structure by 



27 Levent Yilmaz:  Meandering Fractals in Water Resources Management  

 

measuring the rate at which increased detail becomes 

apparent as we examine a fractal ever more closely. Fractal 

dimension indicates the complexity of the fractal and of the 

amount of space it occupies when viewed at high resolution. 

All definitions of dimension depend on measuring fractals in 

some way at increasingly fine scales. 

 

Figure 1. Both the ht- index and fractal dimensions, characterizing fractals 
from different perspectives [1]. 

A Fractal, strictly speaking, has no 'physical meaning". It 

is like asking about some curve we see on some Cartesian 2D 

coordinate frame "what is its physical meaning? Or the curve, 

the function which we may have available to help us 

understand it and the frame of reference are all constructs of 

what we can now say for purposes of brevity is our intuition 

and our urge to express ourselves in ways that somehow help 

us deal with or cope with actions we have to take either now 

or in the future. 

Thus the lines we see on the graph paper have no physical 

meaning, perse. But that does not mean they have no 'use' In 

fact "use" is perhaps the best notion of "meaning". Their use if 

those who may be ablet to co further with those constructs and 

incorporate them into models they might work with in regard 

to various inquiries in scinece. Unfortunatelly, there has been 

litte inquiry into just how and in which way and why fractals 

may be of use We only tend to 'look at the computer screens" 

and think that we 'are seeing " something beyond some 

interesting calculations in complex number space. 

In the end, complex numbers and their spaces are of far 

more use than real numbers and Euclidean style geometries. 

Hopefully we will be able to hone our intuitions to make use 

of them and of fractals in a wide range of pursuits and, 

among them, would be those understandings of ourselves and 

matters of human engagement which cannot begin to be 

approached with real number spaces and Eu6clidean 

assumptions about "reality". 

"Reality" itself is an entirely flawed concept which is 

rooted in our intuitions and imaginations being locked into a 

limited 'real number/Euclidean/ Cartesian' model of thinking 

and expressing ourselves. When we then speak of 'reality." 

we are expressly bringing up the intrincis nonsense and 

pardox of Cartesian coordinates and the real numbers. 

Fractals are the first message or signal to us that we can, in 

the long run, learn more about the universe and about 

ourselves via the creative "use; of complex numbers and 

indeed of complex number spaces and those number spaces 

further down the road of honing of intuitions such as 

quaternions and octonions as well. Their beauty is a great 

lure and clue that there is much more than meets the eyes in 

our numbers and that complex numbers can enable us and 

our mind's eye to see what real numbers cannot [6]. 

That is then the first step to using them and using fractal 

awarenss within our other engagements with the so called 

'physical world". 

2. Method 

Most of the objects found in nature possess irregular 

shapes that can notbe quantified with the help of standard 

Euclidian geometry. In many cases these objects have a 

peculiar character of self similarity where the part of the 

object looks like the whole [1]. Such objects are known as 

fractals and the associated degree of complexity of shape, 

structure and texture is quantified interms of Fractal 

dimension (Figure 2). Natural fractals do exhibit self 

similarity and scale invariance, however this is present to a 

limited extent [2], For example part of a cauliflower may 

look like the whole, if a further division is made the resulting 

part may not resemble much with the original cauliflower 

after several steps. The concept of fractal was first introduced 

by Mandelbrot in the year 1980 [3] he showed that the 

concept of fractal can be used to quantify the complexity of 

shape associated with irregular geometry. 

 

Figure 2. Examples of naturally occurring fractal patterns in natüre [2]. 

2.1. River Meander Curvature Fractals 

Fractal dimension of the curve is found from the slope of 

the best fitting straight line to the data as (Fractal dimension 

= 1 – m), where m is the slope of the straight lime. 

 

Figure 3. Irregular shape of a line is analysed using ruler method. 

Richardson’s plot technique using rulers or segments of 

different sizes [4]. 

It is seen from Figure 3 that for a given line with irregular 

shape, the number of segments or rulers of a given size 

increases as the size of the ruler is decreased. This results in 
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different measures of the length of the curved line the 

complexity of the shape is related to this difference. For a 

straight line the measurements made using different sizes of 

rulers or line segments result in the same length where as for 

complex curves the measured distance is larger and larger as 

smaller and smaller ruler sizes are used. The fractal 

dimension is related to the complexity of shape associated 

with the curve and a higher fractal dimension stands for a 

higher degree of complexity of the pattern analysed. 

 

Figure 4. River meander curvature fractals [7]. 

If the object can be represented by a two-dimensional 

binary images in a computer screen or a matrix, which can be 

input from a digital camera or a image scanner the fractal 

dimension estimation can be described as follows. 

For an object in two-dimensional Euclidean space, the 

mass-radius (MR) relation is expressed as the mass included 

is proportional to the square of the circle of radius r or: 

M�r�  �  ��                                      (1) 

 

Figure 5. Meander Curvature in Nature as defining the Fractal Dimensions 
[7]. 

As an example, the area of a square measured by using 

circular discs of increasing sizes is directly proportional to 

the square of the radius of the disc used for the measurement. 

The power law exponent “2” is therefore the Euclidean 

dimension (a square is two-dimensional); however, the mass 

of a fractal object changes with a fractional exponent such 

that (1 < D < 2) as: 

D M�r�  �  r                                    (2) 

From this power law the fractal dimension “D” of the 

object can be found as log (r). 

log�M�r��  �  D                                  (3) 

Here D is the slope of the straight line describing the log 

(M (r)) versus log (r). the two-point correlation function (C 

(r)) is related to the MR relation which can be used to 

determine the fractal dimension. For a fractal, C (r) decays as 

per the power law of a measuring distance (ruler size) r: 

D C (r) = R 

where D is the fractal dimension. 

Since the ruler has a finite length, the details of the curve 

that are smaller than the ruler get skipped over and therefore 

the length we measure is normally less than the actual length 

of the curve. This can be seen in Figure 4 where, three rulers 

of different lengths are used to determine the length of the 

curve. The fractal dimension is estimated by measuring the 

length L of the curve at various scale. Also it is true that as 

has been discussed in the use of ruler method starting point 

or origin position affects the count or number of boxes 

required, here too estimated value of L may vary depending 

on starting position. It is recommended that the same 

procedure be repeated at different starting position [4]. This 

method of determining the fractal dimension of a boundary 

or a curve is also referred as “structured walk”. Longley and 

Batty [5] discuss number of variants of this basic procedure. 

Normant and Tricot [6] have described an alternative 

estimation algorithm, termed the 'constant deviation variable 

step (CDVS) method that emphasizes the local behavior of 

the curve [8-15]. 

2.2. Self-similarity (Concept) 

The term self similarity came into existence about 40 years 

ago that too in a relation to Fractals and Fractal Geometry [4]. 

Fractal structures are said to be self–similar, when part of 

object looks like the whole object under fractal Dimension 

and Self-Similarity appropriate scaling i.e. the structure looks 

like a reduced copy of the full set ona different scale of 

magnification. The beauty of these clusters is that, each of 

these smaller clusters again is composed of still smaller ones, 

and those again of even smaller one. The second, third, and 

allthe following generations are essentially scaled down 

versions of the previousones. However this scaling can not be 

indefinitely extended, after certain stage the smaller pieces 

may not perfectly represent the original shape, this is the 

characteristic of natural fractals. In general this is termed as 

self-similarity or statistical self–similarity. Thus natural 

fractals exhibit self-similarity over a limited range and 

naturally occurring fractals usually exhibit statistical 

selfsimilarity [5] where as mathematical fractals exhibit self 

similarity at all length scales and thus are strictly self-similar. 

Fractals are also strictly self-similar if it can be expressed as 

a union of sets. Geometric fractals may be composed of exact 

replicas of the whole object they are strictly self-similar [6]. 

After selecting the rectangular section of Figure 1 that 

exhibits the fractal properties of selfsimilarity, MATLAB was 
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used to create a binarized version of the image (Figure 6) 

where any pixel above a certain threshold of color intensity 

was passed through as a one (true, shown in white) and the 

pixels below the threshold were passed through as a zero 

(false, shown in black). Passing this image through F. 

Moisy’s box count package, boxcount. m [3]. 

 

Figure 6. Sierpiniski triangles and Koch curve [8]. 

3. Results 

By contrast, statistical fractals are self-affine, or 

statistically self-similar; they are composed of statistically 

equivalent replicas of the whole object. Examples of strictly 

self-similar fractals are Sierpiniski triangles, Koch flake etc 

as shown in Figure 6, the most fractal looking in nature do 

not display this precise from. The presence of self-similarity 

in the objects characterizes them as Fractal. 
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