Distribution and morphometric characters of the Mediterranean brown ray, *Raja miraletus* (Chondrichthyes: Rajidae) in the Gulf of Gabes (Tunisia, Central Mediterranean)

Hasna Kadri¹,² *, Sondes Marouani¹,², Mohamed Nejmeddine Bradai¹, Abderrahmen Bouaïn², Eric Morize³

¹Institut National des Sciences et Technologies de la Mer, Centre de Sfax, B.P. 1035, Sfax 3018, Tunisie
²Faculté des Sciences de Sfax, B.P. 802, Sfax 3028, Tunisie
³Lemar/IRD 230 Broennou, 29870 Landédé, France

Email address: hasnakadri@yahoo.fr (H. KADRI)

To cite this article:

Abstract: To determine some morphometric characters of the Mediterranean brown ray *Raja miraletus* Linnaeus, 1758 in the Gulf of Gabes (Tunisia), samples were analysed and described on data from the commercial trawl at monthly intervals between December 2006 and January 2007. A total of 501 male and 629 female specimens were collected during the sampling period. The largest (in terms of Total length: TL) female and male were 58 cm and 56 cm, respectively. Some various morphometric characters were measured. Relationships between the characters were defined separately for both sexes. Morphometric characters were strongly correlated with total length but the nature of allometry differed according to the characters.

Keywords: *Raja Miraletus*, Morphometric and Numeric Characters, Gulf of Gabes, Mediterranean Sea

1. Introduction

Skates (order Rajiformes) are one of the most speciose elasmobranch orders and include at least 27 genera and more than 245 species (Ebert and Compagno 2007). Skates are important elements of the marine biodiversity, but they are highly vulnerable to commercial Exploitation (Barbara 2010). The brown ray, *Raja miraletus* Linnaeus, 1758 is a medium-sized skate inhabiting the Mediterranean Sea and the western African coast (Séret and Opic 1990; Serena et al. 2010). Despite the increasing fishing pressure, there is a paucity of information on the life history of *R. miraletus* resulting in an assessment of ‘minor preoccupation’ on IUCN Red List assessments for chondrichthyan s in the Mediterranean Sea (Cavanagh and Gibson 2007).

Information on distribution species is reported for some Mediterranean areas (Capapé and Quignard 1974a; 1974b; 1975; Capapé and Azouz 1975; Abdel-Aziz 1992; and Relini et al. 1999) including the Central Adriatic Sea (Zupanovic 1961; Jardas 1973; Jardas 1981), but data from Southern Tunisia are scanty. Therefore, morphometric conversions are particularly helpful when, for example, a specimen is damaged, or when dealing with commercially preprocessed specimens, in which not all morphometric traits can be measured. As conversion factors differ between species, they may also serve as a tool for species identification, or for accurate identification of problematic specimens. This is particularly important at landing ports where fish need to be identified on site.

In the present paper some features of the brown ray biology in the Southern Adriatic are reported, in order to add information referring to the just mentioned basin. These data were compared with results from other Mediterranean marine areas, in order to highlight possible intraspecific variations of life parameters among different populations. The present work focuses on some morphometric characters.
The present study aimed to (i) estimate relationships between different body measurements to increase the information available for the brown ray in Tunisian waters, and (ii) investigate the ability of these measurements to discriminate between species to provide additional tools for assisting in the identification of *R. miraletus* on the Gulf of Gabes.

This study reported the first description of biometric relationships for *R. miraletus*, which would be useful for the sustainable conservation of this rear fishery in the Gulf of Gabes and also other countries.

2. Materials and Methods

2.1. Study Area

The Gables region is located in southern Tunisia and in southern Mediterranean Sea. It extends along 750 km representing 58% of the Tunisian coast (Bradai et al. 1992). It extends from the city of Chebba (35.3°N) in the north of the region to the Island of Djerba (33.8°N) in the south, a distance of 200 km. In breadth, it extends from 10°E to just under 11.2°E. The annual cycle of water temperature is very pronounced (13°C to 29°C) and resembles that of a lagoon. In summer, the particularly high tide which attains 1.8 m, the highest in the Gulf of Gabes and also other countries.

2.2. Sex Ratio and biological sample

A total of 1130 *R. miraletus* specimens were collected monthly in the Gulf of Gabes between December 2006 and January 2007 from commercial bottom-trawl landings in the Gulf of Gabes and using a beam trawl lasted for 2 h, during both day and night. Specimens were captured using a 22-mm stretched-mesh size cod-end, operating at over 30m depth (Figure 1).

![Figure 1. Map of the study area, indicating the sampling location (Gulf of Gabes, Southern Tunisia, Central Mediterranean).](image)

The (TL) was measured to the nearest centimeter. The total body mass (TM) of each specimen was weighted to the nearest 10 and 0.01g respectively for large and small Specimens. Numeric characters tooth were also counted directly on specimens by making incisions at the jaw angles to expose the teeth, the tooth shape was noted (the number of Tooth rows lower, the number of the tooth rows upper jaw, number of pectoral fin rays (NP), number of nictitating lamellae (NL), number of pseudo-branchial lamellae (NPL), the number of the trunchal vertebrae. The parameters of distribution (average) and parameters of dispersion (minimum, maximum, ecartype, interval of confidence) of this morphometric characters were calculated.

2.3. Morphometric characters measurement

On the other hand, the size frequency was analyzed at a 5 cm interval standard length class using a histogram to determine the type of distribution, which characterizes the fish population. Length-frequency distributions of females and males were compared using the Kolmogorov–Smirnov two-sample test.

3. Results and Discussion

This study provides morphometric information for the Mediterranean brown ray *Raja miraletus* in southern Tunisian waters (Gulf of Gabes). A total of 1130 *Raja miraletus* collected 629 were females (13.5-56 cm TL; [8.5 to 35 cm DW] and 7-980g TM) whereas 501 were males (13.5-58cm TL; [9 to 37 cm DW]; 8-850g TM). Although males and females covered similar length ranges, the distribution of length within these ranges was significantly different (Kolmogorov–Smirnov test, D=0.088, n=1130, p=0.02) (Figure 2). The variation in the proportion of both sexes, depending on the size, showed a highly significant difference (χ^2 cal = 137.37, P < 0.001). There was no significant difference in the regression slopes between sexes for the TL and DW relationship (ANCOVA, F1, 1167=3.13, P ≤ 0.05) (Figure 3). The combined sex TL and DW (cm) relationship is described by (Figure 3). The TM-TL relationships was significantly different between sexes (ANCOVA, F1, 1151= 29.17, P<0.05) (Figure 4). Therefore, the nonlinear relationship of TL-TM is presented separately for each sex.
A study led by Ungaro in 2004 showed that in the Southern Adriatic Sea (Mediterranean basin), there are not significant differences in length-weight between sex. The same indication came from Stergiou and Moutopoulos (2001), while other authors report two different curves (male and female) (Jardas 1973; Capapé and Quignard 1974a; Relini et al. 1999). The length/width-weight relationships have many benefits for indicators of the condition and can be used to calculate biomass and to estimate the recovery of edible meat from crabs of various sizes (Lagler 1968). Previously, we demonstrated that differences in growth between sexes are a common feature in Raja species. Females typically attain larger size than males, but they grow more slowly (Kadri et al. 2012; 2013 a; 2013 b). It is important to mention that weight-size relationships can provide useful information about the increase in weight of a population and this parameter could also be important for comparative studies between populations (Mori et al. 1990).

This study provides morphometric information for the Mediterranean brown ray Raja miraletus in southern Tunisian waters (Gulf of Gabes). The number of females in all seasons was higher than males, there is statistical significance (Table 1). Our results are in accordance with Capapé et al. 2010 who reported a 1:0.95 ratio of male and female of R. miraletus on the coast of Senegal (eastern tropical Atlantic). Similarly, (Ezzat et al. 1987) shown higher numbers of females sampled in Mediterranean waters of Alexandria in each month. The sex ratio in Southern Adriatic basin is an expected result of 1:1.39 in favor of females (ungaro 2004).

Table 1. Variation in the proportion of male and female Raja miraletus according to season in the Gulf of Gabes (Tunisia), and comparison through a t-Student test (p<0.05; bold values: statistically different). NS: not significant, SS: significant.

<table>
<thead>
<tr>
<th></th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
<th>Spring</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>148</td>
<td>111</td>
<td>122</td>
<td>120</td>
<td>501</td>
</tr>
<tr>
<td>Females</td>
<td>154</td>
<td>158</td>
<td>173</td>
<td>144</td>
<td>629</td>
</tr>
<tr>
<td>Total</td>
<td>302</td>
<td>269</td>
<td>295</td>
<td>264</td>
<td>1130</td>
</tr>
<tr>
<td>%Males</td>
<td>27.25</td>
<td>35.35</td>
<td>48.72</td>
<td>46.08</td>
<td>37.02</td>
</tr>
<tr>
<td>%Females</td>
<td>50.99</td>
<td>58.74</td>
<td>58.64</td>
<td>54.55</td>
<td>55.66</td>
</tr>
<tr>
<td>X² cal</td>
<td>0.12</td>
<td>8.21</td>
<td>8.82</td>
<td>2.18</td>
<td>11.91</td>
</tr>
<tr>
<td>P</td>
<td>0.73</td>
<td>0.004</td>
<td>0.003</td>
<td>0.14</td>
<td><0.001</td>
</tr>
<tr>
<td>significance</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>SS</td>
</tr>
</tbody>
</table>

In our study, these individuals were measured 13.5 to 58 cm in Total length, 8.5 to 37 cm in disk width and 7 to 980 g in weight. In the Gulf of Tunis (Capapé and Quignard 1974a), Raja miraletus was measured 32 to 33 cm in the maximum disk width, 54 to 57 cm in maximum total length of males and females respectively, and 151 to 1338g in weight. The (TL) range was 165-510 mm and 150-495 mm TL for female and male individuals respectively, and the weight ranged between 20-750g in the Southern Adriatic basin (Ungaro 2004), but in Senegalese coast, the weight for R.miraletus was 1205 to 1336 g (Capapé et al. 2007).

The b value for the weight/total length relationship for female Raja miraletus sampled in this study (3.38), and were higher than that for males (3.33). Ungaro 2004 reported a positive allometric growth pattern of R. miraletus (146 individuals) collected from the Southern Adriatic basin.

The b values vary according to species, sex, age, seasons
and feeding. Furthermore, many parameters were described to affect the growth exponent such changes in physiological conditions or different amounts of available food life span or growth increment (Le Cren 1951; Ricker 1975).

Weight-size relationships can provide useful information about the increase in weight of a population and is also important for comparative studies between populations (Mori et al. 1990).

The maximum size for males and females in this work (65 and 80 cm TL, respectively) is greater than the previously recorded maximum size in other studies (Capapé and Quignard 1974a; Consalvo et al. 2010).

Morphometric characters were strongly positively correlated except for TL-LD and LT-MO and show negative allometric growth (figures 4 and 8). Other numeric counts characters are also presented (Table 2).

In this study, the counts of numeric characters for *R. miraletus* were similar with results observed in the Gulf of Tunis (Capapé and Quignard 1974 a) (Table 3).

Table 2. Morphometric characters of the Mediterranean brown ray (*Raja miraletus*) in the Gulf of Gabes (Tunisia). number of nictitating lamellae (NL), number of pectoral fin (NP), number of pseudobranchial lamellae (NPL), number of the Tooth rows (NT) (upper jaw, lower jaw), minimum (Min), maximum (Max) and average Mean±SE.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>NV (NL)</th>
<th>(NP)</th>
<th>(NPL)</th>
<th>NT upper jaw</th>
<th>lower jaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>22</td>
<td>11</td>
<td>77</td>
<td>10</td>
<td>28</td>
</tr>
<tr>
<td>Max</td>
<td>26</td>
<td>13</td>
<td>84</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>Mean±SE</td>
<td>23.24±0.44</td>
<td>12.14±0.14</td>
<td>78.96±0.34</td>
<td>12.28±0.25</td>
<td>36.48±0.95</td>
</tr>
</tbody>
</table>

Table 3. Comparison of numeric counts various of other studies in the Mediterranean.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Capapé and Quignard (1974) (Gulf of Tunis)</th>
<th>Quignard (1965) (Gulf of Tunis)</th>
<th>Present study (Gulf of Gabes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the truncal vertebrae</td>
<td>24-26</td>
<td>23-25</td>
<td>22-26</td>
</tr>
<tr>
<td>Number of the nictitating lamellae (NL)</td>
<td>11-13</td>
<td>11-13</td>
<td>11-13</td>
</tr>
<tr>
<td>Number of the pectoral fin (NP)</td>
<td>76-80</td>
<td>76-79</td>
<td>77-84</td>
</tr>
<tr>
<td>Number of pseudobranchial lamellae (NPL)</td>
<td>12-14</td>
<td>10-12</td>
<td>10-15</td>
</tr>
<tr>
<td>Number of the upper jaw</td>
<td>38-48</td>
<td>41-49</td>
<td>28-44</td>
</tr>
<tr>
<td>Number of the lower jaw</td>
<td>40-50</td>
<td>40-43</td>
<td>32-44</td>
</tr>
</tbody>
</table>

Figure 5. Relationship between Total length (TL) and Disc width (DW) of *Raja miraletus* in the Gulf of Gabes (Tunisia). $r^2 = $ Coefficient of determination.

Figure 6. Relationship between Total length (TL) and snout tip to eye (SE) of *Raja miraletus* in the Gulf of Gabes (Tunisia). $r^2 = $ Coefficient of determination.
In conclusion, this study shows that there was a strong relationship between DW, SE, WM, SD1, H and TL for the *R. miraletus* population in the Gulf of Gabes in southern Tunisia.

This study would be an effective tool for fishery biologists, managers and conservationists to initiate management strategies and regulations for the sustainable conservation of the remaining stocks of this species in the Gulf of Gabes (Southern Tunisia) ecosystem. In addition, results of this study provide invaluable information for the online FishBase database, as well as an important baseline for further studies.

Acknowledgements

This work was undertaken with the aid of funds provided by National Institute of Sciences and Technologies of the sea (INSTM, Sfax Center). The authors are also grateful to the anonymous referees whose suggestions and comments improved the submitted manuscript.

References

