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Abstract: This article presents an algebraic background in solving the angle trisection problem using origami-folding. 

Origami has been originally the art of paper folding, and recently aroused strong interest in a wide discipline of science and 

technology owing to its deep mathematical implication. Origami is also known to be an efficient tool for solving the trisection 

problem, one of the three famous problems of ancient Greek mathematics. Emphasis in this article is put on the way how the 

origami-based construction of the trisection corresponds to obtaining a solution for a cubic equation. 
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1. Introduction 

“Origami”, a traditional game (or art) passed down 

through the ages, involves the creation of various shapes by 

folding a single sheet of paper. Variations in the created 

pieces are diverse and range from the imitation of animals, 

plants and tools, used in daily life, to abstract and complex 

three-dimensional structures. Beautiful works devised by 

implementing different techniques delight the eyes of 

beholders [1]. 

The origin of origami in Japan can be traced back to a 

record of the origami culture in a historical document from 

the 17th century. Furthermore, it has also been known that 

an origami culture, independent from the one in Japan, 

existed in European countries, such as Germany and Spain, 

at least by the 19th century. The origami culture, which 

developed independently in individual countries and 

separate regions, has mutually amalgamated over a long 

period of time since the 20th century and as a result it is 

now attracting attention as a formative art that surpasses the 

realm of simple games.  

A strong interest has emerged in the mathematics that lie 

deep within the techniques of origami, aside from the 

pleasure of “folding paper to create works of art”, 

particularly since the beginning of the 21st century [2]. 

Furthermore, proposals for application technologies, 

inspired by the process and also by the forms of origami 

created works, are starting to be made in a broad range of 

science and technology fields. Structural mechanics [3,4,5], 

material chemistry [6,7], computational design [8] and 

physics of the early universe [9] can be cited as just a few 

such academic examples. It would be fair to say that such 

origami-inspired science and technology is still in its early 

stages of development and that the discovery of the 

usability of the knowledge of origami from a variety of 

perspectives is likely to continue in the future.  

When considering the relevance of origami in the field of 

mathematics in particular, the most interesting topic would 

be a solution to the three famous problems of ancient Greek 

mathematics using origami drawings. The so called three 

famous problems of ancient Greek mathematics involve 

trisecting an angle, duplicating a cube and squaring a circle, 

which in any case are impossible to draw when using only 

a straight edge and a compass [10]. From the algebraic 

viewpoint the reason the two former problems cannot be 

solved lies in the fact that they require a solution to a cubic 

equation. In other words, these two problems both require 

drawing a segment with a length of the third root √��
 in 

relation to the segment with length x. A drawing method 

based on the use of a straight edge and compass alone, 

however, can only draw a segment of a line with a length 

that is a square root √� (in other words it is possible to 

solve only up to a quadratic equation). On the other hand, 

origami-based drawing through the process of “folding 

paper” enables us to find a solution to a cubic equation and 

to trisect any arbitrary angle. This fact was demonstrated in 
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a concise manner by H. Abe in 1980 [11], though already 

implied by M. Beloch in 1936 [12]. Since Abe’s work was 

published in a document written in Japanese, it initially did 

not draw a lot of attention. But as soon as it was presented 

in English afterword, its importance was recognized 

instantly and it became known throughout the world [13].  

 

Figure 1. Appearance in process of trisection by Origami. The symbols and 
lines drawn in the paper correspond to those defined in Fig. 2. 

 

Figure2. Diagram of drawing the trisector (= the segment OO’) of the 

given angle XOA. 

This paper presents multiple algebraic ways to prove 

Abe’s method for solving the trisection problem, as well as 

a concise explanation on how the method corresponds to 

obtaining a solution for a cubic equation. The mathematical 

derivation used are limited to an undergraduate level; 

therefore, it is content that would be suitable as teaching 

materials for elementary geometry intended for students in 

their freshman year at university. I would like to invite the 

readers to actually take a piece of paper and fold it to truly 

experience the advanced mathematics hidden beneath.  

2. Trisection Process 

Let’s just start with, prepare a piece of palm-sized paper 

with square shape. For convenience, the one-side length of 

the square is supposed to be unit, and the origin O(0,0) is 

assigned to one vertex of the square. Fig.2 illustrates the 

definitions of variables and symbols used in the following 

discussion. 

Here is the recipe of the trisection by origami: 

1. Set the angle ∠XOA arbitrary.  

2. Make a crease line along the slanted segment OA.  

3. Make two more crease lines BB’ and CC’’, which are 

both horizontal. Here, the point C’’ locates on the line XB’. 

The three horizontal segments, OX, BB’, and CC’’, must be 

evenly spaced with each other.  

4. Make another crease along a counterclockwise-slanted 

segment depicted in Fig. 2 (thin solid). By folding the paper 

along the crease, the points O and C are superimposed to O’ 

and C’, respectively, each of which must be located on the 

lines BB’ (colored in red) and OA (green).  

5. Consequently, the obtained segment OO’ is the trisector 

of the angle ∠XOA that was initially defined.  

Why does it become possible to perform a trisection of an 

angle when origami is used?  The key to solving the secret 

is in process 4 described above.  

In process 4, two points O and C were “simultaneously” 

relocated to the above segments BB’ and OA respectively. 

This is actually a process unique to origami and one that 

cannot be executed by Euclidean geometrical drawings that 

use a straight edge and a compass. In fact, the only 

procedure permitted in the drawing method of the latter is 

the following two:  

- Connecting two points with a straight line.  

- Drawing a circle with the center at a point.  

Therefore, the process of superimposing two different 

points onto two straight lines “simultaneously” is 

equivalent to the introduction of a new axiom that is 

beyond the scope of Euclidean geometry [14,15]. A further 

remarkable fact is that, only by introducing the additional 

axiom in the Euclidean plain geometry, we are becoming 

able to draw geometrical objects that are beyond the 

ordinary drawing method based on straightedge and 

compass. Those who are interested in the issue are 

recommended to refer to the literature [2] for instance. 

3. Algebraic Expression 

To proceed algebraic argument, we pay attention to the 

tetragon OO’C’C presented in Fig.2 and its geometric 

properties. By definition, it is a trapezoid having the two 

bases. See the panel (a) in Fig. 3, wherein the two parallel 
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Figure3. Geometric feature of the trapezoid OO’C’C. (a) Parallelism in the 

two bases OO’∥CC’, (b) Isometry in the two legs OC = O’C’; (c) 

Isogonality in the two base angles COO’= C’O’O.  

bases are highlighted by thick lines. Moreover, we observe 

that it is an isosceles trapezoid having the two legs with the 

same length [panel (b)] and the two base angles with the 

same measure [panel (c)]. 

The three properties of the trapezoid are expressed 

algebraically as follows: 

1. The parallelism in the two bases, OO’∥CC’:  

 
����

�� 	 �

 .       (1) 

2. The isometry in the two legs, OC = O’C’:  

 �� � ��� � �� � ��� 	 �2���.   (2) 

3. The isogonality in the two base angles, ∠COO’ = ∠

C’O’O:  

 


� 	 ������ ��������

������·� �������� .     (3) 

The left and right sides in (3) equal to tan(∠COO’) and 

tan(∠ C’O’O), respectively. To derive the right-side 

expression, we have used the additive theorem: tan� �!� 	 �tan  � tan !� �1 � tan  tan !�⁄  with  =∠OO’B 

and !=∠C’O’B. 

As a result, we can rephrase the trisection problem as the 

system of algebraic equations (1)-(3) with respect to x and y, 

for given constants a and b. We will see below that the 

system of three equations is reduced to one cubic equation 

with respect to x, which uniquely determines the way how 

to fold the squared paper “origami” to draw a trisector. 

4. The Cubic Equation 

To derive the key equation in terms of x, we eliminate y 

from the system of three equations aforementioned. It 

follows from (1) that  

� 	 ��


��� .       (4) 

Substitute it to (2) to yield  

�� � ���


����� � � ��



��� � ��� 	 4��,  (5) 

which can be simplified as  

�� � 3����) � 3��� � 3��� � �)� 	 0. (6) 

In a similar manner, we eliminate y from (3) to derive  

����) � 3��� � 3��� � �)� 	 0.  (7) 

The two results, given by (6) and (7), indicate that our 

remained task is to solve the cubic equation +��� 	 0 

with the definition  

+��� 	 �) � 3��� � 3��� � �) .  (8) 

In principle, the equation +��� 	 0 gives us three roots 

of x. Among them, the only solution satisfying 0 , � , 1 

(and 0 , � , 1) is required; otherwise, it is not relevant 

for solving the trisection problem, as readily understand 

from Fig. 2. 

5. Three Real Roots 

The famous Cardano’s formula allows us to write the 

three roots of +��� 	 0, designated by �-�. 	 0,1,2�, as 

listed below:  

�- 	 � � �1 � ��/0� 12- �3���/�
����0�/4 � 2-5 6���07/4

�3���/� 8. (9) 

Here, 2-�. 	 0,1,2� describes the cubic root of one:  

29 	 1,   2� 	 � ��3√)
� ,   2� 	 2�5 ,   (10) 

and the asterisk indicates to take complex conjugate. 

Despite the imaginary unit i involved in (9), all the three 

roots are found to be real numbers. To make it clear, we set 

�: � �/� 	 ;<3= to obtain  

 
�3���/�

����0�/4 	  >?@A
> 	 <3= .     (11) 

 

Figure4. Schematics of the polar-coordinate expression of the complex 

value: : �  	 ;)<)3=. 

Fig.4 shows the geometric meanings of the polar 

coordinates r and B. Due to the condition of 0 ,  , 1, 

the angle B is restricted to the range of 0 , B , C 6⁄ . 

Then, the expression (9) is simplified as  

�9 	 � �1 � 2 EFG =
EFG)=�, ��,� 	 � H1 � 2 EFG�=IJ��

EFGK)�=IJ��LM, (12) 

where B � N
) �or  B � N

)�  corresponds to �� ( �� ). In the 
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derivation, we used the relations  

cos3B 	 
61�2712 and cos3B 	 �cos K3 �B I N

)�L  (13) 

6. Which Root Is Relevant? 

The expressions in (12) are further simplified by using 

the relation tan 3B 	 1 ⁄ as well as the triple-angle 

formula for trigonometric functions. After manipulation, we 

obtain the results:  

�9 	 �tan = , �� 	 ��tan�B�C3� , �� 	 ��tan�B�C3�. (14) 

Of these, only �9 is the relevant solution, providing the 

way how to draw the trisector. In fact, it implies that � �9⁄ 	 tan B, or equivalently (see Fig. 2)  

 ∠O'OX= B    (15) 

under the condition of  

 ∠AOX=3 B.    (16) 

Eventually, we have secured the recipe for the trisection 

problem: Given the two constants  and �, fix the angle B 	 arg �: � � 3⁄  and then �9 	 � tan B⁄ . The point 

O’(�9, �) tells us the trisector OO’ that we want. 

Note that the second solution, ��, is irrelevant because it 

is always negative for every choices of  and � as long 

as they reside from 0 to 1. The third one, �� , is also 

irrelevant although it is positive; the irrelevance stems from 

that �� makes � always negative for any choices of and �. In fact, substituting �� to (4) we find  

� 	 2� T1 � tan�B�C3�
tan 3B U�� , 0   +V;   0 , B , N

W (17) 

7. Concluding Remark 

It warrants notice that the cubic equation +��� 	 0 we 

have considered is possible to be deduced in a simpler way, 

if we take into account the formula 

tan 3B 	 ) XYZ =�XYZ�=
��)XYZ0= .      (18) 

Let us go back to Fig. 2. The whole aim was to evaluate 

the appropriate value of x that satisfy 

tan B 	 �

 and tan 3B 	 �

� .    (19) 

If we substitute them into the formula (18), then we 

obtain 

�
� [1 � 3 ��


��\ 	 3 ��

� � ��


�),    (20) 

which is equivalent to the cubic equation +��� 	 0 . 

Therefore, it is trivial that:  

- The cubic equation +��� 	 0  is an algebraic 

expression of the trisection problem, and  

- The equation has at least one root x that satisfies the 

desired relations of (19). 

Hence, so to speak, the cubic equation +��� 	 0 had 

been already solved in part before we’ve even started the 

calculation; what we have done are: i) the evaluation of 

other two (irrelevant) roots, and ii) the algebraic proof that 

no multiplicity exists in the way of paper folding [11] for 

obtaining the trisector. 

In conclusion, I have provided a concise explanation on 

the origami-based trisection of an arbitrary angle. The 

method, originally suggested by H. Abe in 1980, enables us 

to draw a trisector of an arbitrary angle, thus being 

powerful than the ordinary Euclidean method based on 

straightedge and compass. I have demonstrated what kind 

of cubic equation describes the trisection problem and 

which root of it determines the way of paper folding for 

obtaining the trisector. I hope this expository article would 

give for readers a source of intellectual stimulus on the 

origami algebra. 
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