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Abstract: In this paper, the survival of insurance company’s investment with consumption is investigated under power and 

exponential utility functions. We take the risk reserve of an insurance company to follow Brownian motion with drift and 

tackle an optimal portfolio selection problem of the company. The investment case considered was insurance company that 

trades two assets: the money market account (bond) growing at a linear rate r and a risky stock with an investment behavior 

in the presence of a stochastic cash flow or a risk process, continuously in the economy.Under these functions, we obtained 

the optimal strategies. It is discovered that both utility functions are alike. 

Keywords: Stochastic Optimal Control, Company’s Investment With Consumption, Power Utility Function,  

Exponential Utility Function 

 

1. Introduction 

To approximate the risk process of an insurance 

company by Brownian motion, consider a sequence of risk 

process ����� defined in the following way; 

����� � �� 	  ��� � ∑ ������������ ,         (1) 

where��is the initial risk reserve of the insurance company, �� is the gross risk premium per unit time paid by the 

policy holders and the sequence ������: � � ��,describes 

the consecutive claim sizes. Assume also that �������� ���and  !"������� � #�$. 

The point process � � ����� %  � & 0� counts claims 

appearing up to time � , that is 

����  �  max ��: ∑ +����� , ��,         (2) 

where�+�: � � �� is an identically independent sequence 

of non negative random variables describing the times 

between the arriving claims with ���+��  � �- & 0. 

If +�  are exponentially distributed then ����  is a 

Poison process with intensity .. 

The sequence of classical reserve processes converges 

weakly to a stochastic process of the form; 

��  �  � 	  Γ 	 #.012����.                  (3) 

Where Γ � �Γ4 �456 with Γ4 � �c � λµ�tand�2������56 is 

a standard Brownian motion (Iglehart , 1969). In recent 

years, many authors have reached a significant plateau in 

modeling the probability of ruin of the insurance company 

(see for example;Azcue and Muler,2009;  Bai and Liu, 

2007; Bayraktar and Young, 2008;Gaier and Grandits, 

2002). On the other hand, Oksendal and Sulem (2002) 

considered an investor who consumes from a bank account 

and has the opportunity at any time to transfer funds 

between two assets, with the objective to maximize the 

cumulative expected utility of consumption over planning 

horizon.  

Kostadinova (2007) considered a stochastic model for 

the wealth of an insurance company which has the 

possibility to invest into a risky asset and a risk-less asset 

under constant mix strategy and provided an approximation 

of the optimal investment strategy,that maximizes the 
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expected wealth of the insurance company under the risk 

constraint on the Value-at-Risk. 

When the growing rate of return is a linear function of �, 

and in the case of no consumption cost, Osu and Ihedioha 

(2013a, 2013b) obtained a strategy that optimizes the 

probability of achieving a given upper wealth level before 

hitting a given lower level. They established among others 

that, the optimized investment in the assets and the optimal 

value function are dependent on horizon and the wealth. It 

is recommended that the managers of the assets of the 

insurance company should take into consideration this 

horizon dependency when making policy decisions. 

In this paper however, the survival of insurance 

company’s investment with consumption is investigated 

under power and exponential utility functions. Under these 

functions, we obtained the optimal strategies. It is 

discovered that they are alike. 

2. The Model 

Adapting the formulation of Osu and Ihedioha (2012), 

we assume that insurance company trades two assets 

continuously in the economy. The first asset is the money 

market account (bond) growing at a rate "� that is linear 

function of time �"� �  ; 	 #��, instead of a constant as in 

Wokiyi(2012). "� �  ; 	 #�,  ( < = 0, 0 , # , 1 ) is a 

decreasing (or an increasing) linear function of �!?� @
∞ .The parameter;is the initial investment on the money 

market account which determines the speed of a 

mean-reversion to the stationary level. #is the acceleration  

coefficient which is the volatility (variance) of the process 

and is proportional to the level of the interest rate. It 

decreases as the interest rate "� @ 0 . The equation 

governing the dynamics of the money market account 

(bond) is given as; 

A2� � �; 	 #��2�A�.             (4) 

We assume that there is only one risky stock available 

for investment (e.g a mutual fund) whose price at any time � will be denoted by B�. We will also assume that the price 

process of the risky stock follows the geometric Brownian 

motion: 

AB�  �  B�AC� ,               (5) 

whereC� is a Brownian motion with drift �and diffusion 

parameter # ,  that is, AC�  �  �A� 	 #A2��$�
 , where � 

and # are constants and 2��$�: � & 0  is a standard 

Brownian motion. 

In classical theory of risk, the true net claims process say ���  � is usually modeled as; 

�� � � 	 �� � ∑ �� .�������            (6) 

where � is the initial risk reserve, � is the premium 

income rate per unit time, �� is the number of claims up to 

time � usually modeled as a stationary renewal process 

with rate .  and ��  is the size of the D�E  claim with 

��� : D & 1� assumed to be an identically independent 

sequence as shown in the previous section, < �  � � �. 

and F$ � #$. and these can also be written as < � �.�����andF$ � .����$�, 

so the parameter < can be understood as the relative safety 

loading of the claims process. 

We are concerned with investment behavior in the 

presence of a stochastic cash flow or a risk process which 

we will denote by �� %  � &  0 which describes a Brownian 

motion with drift<and diffusion parameter # that is �� 

satisfies the stochastic differential equation; 

A��  �  <A� 	 FA2����
            (7) 

Where< andFare constants (with F & 0). 

We also allow the two Brownian motions to be correlated 

and we denote their correlation coefficient byG that is ��2����2��$�� � G�. We will not consider the uninteresting 

case of G$, in which case there would be only one source 

of randomness in the model. 
The company is allowed to invest its surplus in the risky 

stock and we will denote the total amount of money 

invested in the risky stock at time � under an investment 

policy H  as H�  where �H��  is a suitable admissible 

adapted control process, that is, H� is a non-anticipative 

function and satisfies for any +,almost surely. 

I H�$dt K ∞
L6  ,              (8) 

We assume that M� is the total wealth of an insurance 

company. We also assume that the insurance company 

allocates its wealth as follows: Let H�be the total amount 

of the company's wealth that is invested in risky assets and 

remaining balance (M� � H�  � be invested in a risk-less 

asset (bond/market). 

We note that H�may become negative, which is to be 

interpreted as short selling a stock. The amount invested in 

the bond, M� � H� may also be negative, and this amounts 

to borrowing at the interest rate ". For any policy H, the 

total wealth process of an insurance company evolves 

according to the stochastic differential equation as; 

AM�N � H� OPQPQ 	 �M� � H�  � ORQRQ 	 A��.     (9) 

Substituting the expressions for B� , 2� and �� , the 

stochastic differential equation for the wealth process of the 

company then reduces to; 

AM�N � ST�; 	 #�� 	 H��� � �; 	 #��� 	 <UA� 	 H�#A2��$� 	 FA2����
.        (10) 

Assuming 2����
 and 2��$�

are correlated standard 

Brownian motions, with correlation coefficient G ,the 

quadratic variation of the wealth process is; 

A K M =�� �H�$#$ 	 F$ 	 2#GFH��A�     (11) 

Definition: A control process H� is said to be admissible 

for an initial endowment T &  0 if the wealth process 
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generated by the stochastic differential equation (10) 

satisfies, M� & 0; 0 , � , + ; almost surely. Then the 

quadratic variation of the wealth process is given by; 

A K M =��  AM�N . M�N �  �H�$#$�GA� 	 2H�σβGA� 	F$2����2��$�
,          (12) 

for 

A2����A2����  �  A2��$�A2��$�  �  A�, A�A2���� �  A�A2��$�  � A�A� �  0and A2����A2��$� � GA�, 

since2����
and2��$�

are correlated Brownian motions, with 

correlations coefficient G. 

If G$ X 1, this model is incomplete in a very strong 

sense in that the random cash flow or the random 

endowment ��, can not be traded on the security market, 

and therefore the risk to the investor cannot be eliminated 

under any circumstance. We put no constraints on the 

control H�  except for the particular case where the 

possibility of borrowing is not allowed, we allow H K 0as 

well as H� = M�N . In the first instance the company is 

shorting stock while in the second instance the company 

borrows money to invest long in the stock. 

The company can always borrow money for as long as it 

has a positive net worth, that is, M�N = 0 and we don't 

allow the company to borrow money once it's bankrupt and 

thus the possibility of ruin is of real concern. 

Suppose the investor has a power utility function, the 

Arrow-Pratt measure of relative risk aversion (RRA) or 

coefficient of relative risk averse is defined as; 

��T�  � Y′′�Z�Y′�Z�,                (13) 
whereT is the wealth level of an investor and !, � are 

constants. We consider a special case where the utility 

function is of the form,  

[�T�  � Z0\]^_�^`  ,             (14) 

which has a constant relative risk averse parameter �. The 

motivation to use power utility stems from the fact that 

power utility functions with a constant relative risk averse 

are related to survival as well as growth objectives that may 

be taken up by a prospective investor. 

Consider a discrete time and space ordinary investor �< � F � 0� , that is no external risk process facing 

favorable investment and then when the investor has an 

exponential utility function say [�T�  �  �a^bZ  and is 

interested in maximizing the utility of his terminal fortune 

at a fixed terminal time, the optimal policy is to invest a 

fixed constant.  Such a strategy is asymptotically optimal 

in general for the criteria of maximizing the probability of 

ruin for some value c. 

A stronger form of the conjecture in continuous time for 

a more complicated model was proved by Browne (1995). 

He showed that the policy that maximizes exponential 

utility of terminal wealth at a fixed time is exactly 

equivalent to the policy that minimizes the probability of 

ruin for a specific value of c. 

Suppose now that the investor is interested in 

maximizing the utility of his wealth say at time +. The 

utility function is [�T� and satisfies [′ =  0and [" K  0. 

Let e ��, T� denote the maximal utility attainable by the 

investor from the state T at time �. 

That is, e ��, T�  �  ?�fN��[�M�N  �|M�N � T  and let H�h % �0 , � , +� denote the optimal investment policy. 
We suppose now that the investor has an exponential 

utility function: [�T�  �  .a � b̀ a^bZ 

where  c = 0 . Exponential utility implies constant 

absolute risk averse, with coefficient of absolute risk 

aversion equal to a constant: � Y′′�Z�Y′�Z� � c. 

In the standard model of one risky asset and one risk-free 

asset, this implies that the optimal holding of a risky asset 

is independent of the level of initial wealth; thus on the 

margin any additional wealth would be allocated totally to 

the additional holdings of the risk-free asset. 

The most straight forward implication of increasing or 

decreasing the relative risk averse, and the ones that 

motivate a focus on these concepts, occur in the context of 

forming a portfolio with one risky asset and risk free asset. 

If an investor experiences an increase in wealth he will 

choose to increase (or keep unchanged or decrease) the 

fraction of the portfolio held in the risky asset if the relative 

risk averse is decreasing (or constant, or increasing). 

The insurance company’s problem can therefore be 

written as: i?�fN�jNe��, T��  �  0e �+, T�  �  [�T� k , 
where 

e ��, T�  �  ?�fN���,Z�l[�MLN�m        (16) 

subject to:  
AM�N � ST�; 	 #�� 	 H��� � �; 	 #��� 	 <UA� 	 H�#A2��$� 	 FA2����

. 

2.1. The Problem 

The insurance company chooses optimal investment 

strategies so as to maximize the final wealth at a 

deterministic time +. 

Define the value function at time + as; 

n�M, �; +� � ?�fN��[�M�N  �|M�N � T ,     (17) 

subject to:  

AM�N � ST�; 	 #�� 	 H��� � �; 	 #��� 	 < � ��UA�	  H�#A2��$� 	 FA2����
 

Assumption 1: The insurance company makes 

intermediate consumption decision on the admissible 

consumption space, which satisfies  I |�o|A?�6 K ∞, p� � l0, +m. 
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Assumption 2: Consumption is made through the money 

market account (bond). 

The problem then becomes: 

nn�M, �;  +� � ?�fN� qI a^rs tu0\]^_�^` Av 	L6 a^rL Zw0\]^_�^` x (18a) 

subject to:  

AM�N � ST�; 	 #�� 	 H��� � �; 	 #��� 	 < � ��UA�	  H�#A2��$� 	 FA2����
 

The value function should also satisfy the terminal 

condition: 

n�M, +;  +� � Zw0\]^_�^` .            (19a) 

In this case and under the exponential utility, given the  

two assumptions  above, the insurance company’s 

problem becomes; 

n�M, �;  +� � ?�fN� yz a^rs {. � |c a^b}u~ Av 	L
6 a^rL� .

� |c a^bZw�� 

An � ���� A� 	 ���Z AT 	 �$ �1��Z1 �AT�$ ,    (24) 

applying this to the Bellman equation, we get the 

corresponding HJB equation: 

}0\]^_�^` 	 n� 	 n��T�; 	 #�� 	 H��� � �; 	 #��� 	 < � ��� 	�$ �H�$#$ 	 F$ 	 2#GFH��n�� � �n � 0. (25) 

Assuming the insurance company is trying to maximize 

the probability of beating a given benchmark by some 

percentage before going below it by another percentage, this 

objective is related to the case of manager who stands to 

receive a bonus achieving the benchmark by a 

predetermined percentage. 

The formalization of this problem takes the form; let nh�T�  denote the maximal probability of beating the 

benchmark when starting from state T before being beaten 

by it. That is, let M6 �  T  and let f !�A �  be given 

constants with f K  T K  � such that; 

n�T� � ?�fN�Z�v_N K v�N�.         (26) 

The HJB equation(25); 

}0\]^_�^` 	 e� 	 ST�; 	 #�� 	 H��� � �; 	 #��� 	 < ���Ue� 	 �$ S�H�$#$ 	 F$ 	    2#GFH��Ue�� � �n � 0,  

will now be subject to the boundary conditions; e �f�  �  0; e ���  �  1 for f K  T K  �.  Since e �T� in this case is 

independent of time, the equation above reduces to; 

��^` � �1 � | 	 ST�; 	 #�� 	 H��� � �; 	 #��� 	 < � ��Un� 

  	 �$ S�H�$#$ 	 F$ 	 2#GFH��Un�� � �n � 0,    (27) 

for  f K  T K  �. 

Let there exist a classical solution V, guided by the 

nature of the objective function, restriction and the terminal 

condition,that satisfies e�� K 0 given by; 

n�T� � � qZ0\]^_�^` x,T�a"a � D? ! ���?�!��,     (28) 

such that; 

i n� � ��T^`n�� � ����T^`^�k.           (29) 

The new HJB equation 

}0\]^_�^` 	 lT; 	 H��� � ;� 	 < � ��m�T^` � $̀ �H�$#$ 	
F$ 	 2#GFH���T^`^� � �� qZ0\]^_�^` x � 0.        (30) 

The optimal consumption is obtained using the first order 

condition on � as follows; �T^` � ��̂ `
 

��h � �\0] T  .         (31) 

Substituting this optimal value ��h into the HJB equation 

(30), we get;  

�\�0\]�] T�^`1 � | � �1 � | 	 lT; 	 H��� � ;� 	 <m�T^`
� �\�0\]�] T�^` � |2 �H�$#$ 	 F$
	      2#GFH���T^`^� � �� yT�^` � �1 � | �
� 0.      

So that  

`Z0\]
�^` �\�0\]�] � �lT; 	 H��� � ;� 	 <m– $̀ �H�$#$ 	 F$ 	 

 2#GFH��T^`^� � � qZ0\]^_�^` x T^` 	 �� � � (32) 

Applying the first order condition on H�  to get the 

optimal value of H�, we have;  �� � ;� �T^` � $̀ �2H�#$ 	 2#GF��T^`^� � 0  , from 

which  

H�h � q��^��`�1 � �r� x.             (33) 

Rearranging (32), we get, 

�]\0] � �� �                (34) 

where, � � Z0\]^_�^` , 
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and� � lT; 	 H��� � ;� 	 <m– $̀ �H�$#$ 	 F$ 	 
2#GFH��T^`^� � � qZ0\]^_�^` x T^` 	 �� . 

So ;  

� � ?^`.                 (35) 

Where? � ��. 

Therefore; 

n�T� � ?^` qZ0\]^_�^` x           (36) 

The application of the boundary conditions yields; n��� �  ?^` q�0\]^_�^` x � 0, 

implying,  

� � ��^`               (37) 

and n��� � ?^` q�0\]^_�^` x � 1, 

 implying,  

?^` � �^`�0\]^�0\]              (38)  

The optimal value function is then given as; 

nh�T� � �1 � |�l��^` � ��^`m yT�^` � ��^`�1 � |� � 

� qZ0\]^�0\]
�0\]^�0\] x,               (39) 

which satisfies the boundary conditions. 

3.2. The Case of Exponential Utility Function 

In this case, the value function is; 

n�T� � � {. � b̀ a^bZ~.           (40) 

The insurance company’s problem becomes; 

n�M, �;  +� � ?�fN� qI a^rs {. � b̀ a^b}u~ Av 	L6 a^rL� . �
b̀ a^bZw�x                   (41) 

subject to:  AM�N � ST�; 	 #�� 	 H��� � �; 	 #��� 	 < � ��UA�	  H�#A2��$� 	 FA2����
 

The value function should satisfy the terminal condition: n�M, +;  +� �  . � b̀ a^b�w.   

The HJB equation becomes; 

� {. � |c a^bt~ 	 l�H� 	 �T � H���; 	 #��< � ��mn� 

    	 l��NQ�1��1�$��rNQm$ n�� � �n � 0.  (42) 

The optimal consumption here is obtained using the first 

order condition, thus;|a^bt � n� � 0 

�h � ln { `� ~0¡
.               (43) 

Considering the nature of the objective function, the 

restriction and the terminal condition, let; ¢�T, �;  +� � q. � b̀ a^bZx £��; +� , where £��; +�  is a 

function of time, be the new value function, then with; ¢� � £ ′ q. � |c a^bZx ; ¢Z � |a^bZ£; ¢ZZ � �c|a^bZ£ 

The HJB equation becomes; 

. � |c a^bt 	 £� q. � |c a^bZx	 l�H� 	 �T � H���; 	 #��<� ��m|a^bZ£ 

�c|a^bZ l��NQ�1��1�$��rNQm$ £ � � q. � b̀ a^bZx £ � 0. (44) 

Differentiating with respect to  H� and simplifying yields;  

l� � �; 	 #��m|a^bZ£ � �$ l2H�#$ 	 2#GF�mc|a^bZ£. 

H�h � ql�^������mb�1 � �r� x.             (45) 

This is independent of the wealth at hand unlike the case 

of power utility which is dependent on the wealth.  

Lemma1: The optimal value function is given by; 

¢�T, �;  +�
� �� q. � |c a^bZx a^q¤�w\Q�¥ � ¦1¥�L1^�1�x z a^q§�L^s��¦1�L1^s1�xL

� Av 

Proof: 

On simplifying equation (44); we get; 

!£ ′ 	 �¨ 	 ���£ � A           (46) 

where, 

! � q. � b̀ a^bZx ; �¨ 	 ��� � l�H� 	 �T � H���; 	
#��< � ��m|a^bZ � c|a^bZ S��NQ�1��1�$��rNQU$ �� q. � b̀ a^bZx !�AA � . � b̀ a^bt, 

a first order linear differential equation with integrating 

factor; ���� � aI �¤©¦Q�¥ OswQ  

���� � a¤�w\Q�¥ �¦�w1\Q1�1¥            (47) 

Therefore, the solution to the linear differential equation (46) 

is; 

����£ � z ����. A! AvL
� a¤�w\Q�¥ �¦�w1\Q1�1¥ £

� z a¤�w\u�¥ �¦�w1\u1�1¥ . A! AvL
�  
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£ � �′a^ª¤�w\Q�¥ �¦�w1\Q1�1¥ « I a¤�w\u�¥ �¦�w1\u1�1¥ AvL� ,      (48) 

for which when � @ +; £ @ 1 and, ¢�T, �;  +� � q.– |
c a^bZx £��; +� 

� q.– `
b a^bZx �′a^ª¤�w\Q�

¥ �¦�w1\Q1�
1¥ « I a¤�w\u�

¥ �¦�w1\u1�
1¥ AvL

� . 

So, the optimal value function is then given as; 

¢�T, �;  +�
� �� q. � |

c a^bZx a^q¤�w\Q�
¥ � ¦

1¥�L1^�1�x z a^q¤
¥�L^s�� ¦

1¥�L1^s1�x.
L

�
 

4. Conclusion 

In this paper, the problem of optimizing investment 

returns and probability of survival of an insurance company 

with time–varying rate of return was dealt with for two 

utility functions (power and exponential utility functions). 

The main emphasis has been on how the two utility 

functions affect the insurance company’s portfolio selection 

given investment choices. Also, the work investigated how 

utility functions affect the probability of survival of the 

insurance investor. The proportions for optimizing the 

probability of survival are all observed to be constant 

proportions of the investor's total wealth. So, utility 

optimization is related to probability of survival 

optimization for both utility functions. 

Furthermore, it was observed that the optimal value 

function of the probability of survival under both utility 

functions, are same. 
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