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Abstract: In this paper we consider the combined effects of viscous dissipation and heat generation on MHD natural 

convection flow along a vertical wavy surface are studied. The governing Navier-Stokes equations with associated boundary 

conditions are transformed into non-dimensional boundary layer equations using appropriate variables. Implicit finite difference 

method based on Keller-box scheme is used to solve these governing equations. The numerical results in terms of the skin friction 

coefficient, the rate of heat transfer in terms of local Nusselt number, the streamlines as well as the isotherms are discussed and 

shown graphically for different values of viscous dissipation parameter N, heat generation parameter Q and magnetic parameter 

M. 
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1. Introduction 

The viscous dissipation effect plays an important role in 

natural convection in various devices which are subjected to 

large deceleration or which operate at high rotational speeds 

and also in strong gravitational field processes on large scales 

(on large planets), in geological process and in nuclear 

engineering in connection with the cooling of reactors. 

Natural convection flow is often encountered in cooling of 

nuclear reactors or in the study of the structure of stars and 

planets. The study of temperature and heat transfer is of great 

importance to the engineers because of its almost universal 

occurrence in many branches of science and engineering. It is 

also necessary to study the heat transfer from an irregular 

surface because irregular surfaces are often present in many 

applications, such as radiator, heat exchangers and heat 

transfer enhancement devices.  

Yao [1] investigated natural convection along a vertical 

wavy surface. He has found that the frequency of the local heat 

transfer rate is twice that of the wavy surface. Hossain and 

Rees [2] analyzed combined heat and mass transfer in natural 

convection flow from a vertical wavy surface. In this 

investigation they focused on the boundary layer regime 

promoted by the combined events near the wavy surface when 

the surface is at a uniform temperature and a uniform mass 

diffusion. Wang and Chen [3] studied transient force and free 

convection along a vertical wavy surface in micropolar fluid. 

The natural convection of fluid with variable viscosity from a 

heated vertical wavy surface was studied by Hossain et al. [4]. 

Natural convection heat and mass transfer along a vertical 

wavy surface were investigated by Jang et al [5]. Molla et al [6] 

studied natural convection flow along a vertical wavy surface 

with uniform surface temperature in presence of heat 

generation/absorption. Molla and Hossain [7] investigated the 

radiation effect on mixed convection laminar flow along a 

vertical wavy surface. Alam et al [8] studied viscous 

dissipation effects on MHD natural convection flow over a 

sphere in the presence of heat generation. Mamun et al [9] 

presented a paper on MHD–conjugate heat transfer analysis 

for a vertical flat plate in presence of viscous dissipation and 

heat generation. Jha and Ajibade [10] observed the effect of 

viscous dissipation on natural convection flow between 

vertical parallel plates with time-periodic boundary conditions. 

Recently Joule heating and MHD free convection flow along a 

vertical wavy surface with viscosity and thermal conductivity 

dependent on temperature have been investigated by Parveen 

and Alim [11]. None of the above investigations considered 

the effects of viscous dissipation and magnetic field on natural 

convection flow in presence of heat generation/ absorption 

along a vertical wavy surface. An investigation of the effects 
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of viscous dissipation and magnetic field in presence of heat 

generation/ absorption on free convection flow along a 

vertical wavy surface is proposed in the present study. The 

results will be obtained for different values of relevant 

physical parameters and will be shown in graphs. 

2. Formulation of the Problem 

The boundary layer analysis outlined below allows )(Xσ  

being arbitrary, but our detailed numerical work assumed that 

the surface exhibits sinusoidal deformations. The wavy 

surface may be described by 


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where L is the wave length associated with the wavy surface. 

The geometry of the wavy surface and the two-dimensional 

cartesian coordinate system are shown in Figure-1. 

 
Figure 1. The coordinate system and the physical model. 

The conservation equations for the flow characterized with 

steady, laminar and two-dimensional boundary layer; under 

the usual Boussinesq approximation, dimensionless form of 

the continuity, momentum and energy equations can be 

written as: 
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Using Prandtl’s transposition theorem to transform the 

irregular wavy surface into a flat surface as extended by Yao 

[2] and boundary-layer approximation, the following 

dimensionless variables are introduced for non- 

dimensionalizing the governing equations,  
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where θ is the non-dimensional temperature function and (u, v) 

are the dimensionless velocity components.  

It can easily be seen that the convection induced by the 

wavy surface is described by equations (2)–(5). We further 

notice that, equation (11) indicates that the pressure gradient 

along the y-direction is )( 4
1−

GrO , which implies that 

lowest order pressure gradient along x -direction can be 

determined from the inviscid flow solution. For the present 

problem this pressure gradient ( 0=∂∂ xp ) is zero. 

Equation (4) further shows that ypGr ∂∂ /4
1

 is )1(O  and 

is determined by the left-hand side of this equation. Thus, the 

elimination of yp ∂∂ /  from equations (3) and (4) leads to 
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The corresponding boundary conditions for the present 

problem are:  
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Now we introduce the following transformations to reduce 

the governing equations to a convenient form: 

),(,),,( 4
1

4
3

ηθθηηψ xyxxfx === −
     (8) 

where f(η) is the dimensionless stream function, η is the 

pseudo similarity variable and ψ is the stream function that 

satisfies the Eq. (2) and is defined by (8) where f(η) is the 

dimensionless stream function, η is the pseudo similarity 

variable and ψ is the stream function that satisfies the Eq. (2) 

and is defined by  
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Introducing the transformations given in Eq. (8) and into 

Eqs. (6) and (5) the following system of non linear equations 

are obtained, 
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The boundary conditions (7) now take the following form: 
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In the above equations prime denote the differentiation with 

respect to η. 

The local skin friction coefficient Cfx and the rate of heat 

transfer in terms of the local Nusselt number Nux takes the 

following form: 
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3. Numerical Procedure 

The transformed boundary layer equations are solved 

numerically with the help of implicit finite difference method 

together with the Keller-box scheme [9]. To begin with the 

partial differential equations (10) and (11) are first converted 

into a system of first order differential equations. Then these 

equations are expressed in finite difference forms by 

approximating the functions and their derivatives in terms of 

the central difference approximations. The above central 

difference approximations reduces the system of first order 

differential equations to a set of non-linear difference 

equations for the unknown at xi in terms of their values at xi-1. 

The resulting set of non-linear difference equations are solved 

by using the Newton’s quasi-linearization method. The 

Jacobian matrix has a block-tridiagonal structure and the 

difference equations are solved using a block-matrix version 

of the Thomas algorithm. 

4. Results  

Here we have shown the combined effects of viscous 

dissipation and heat generation on MHD natural convection 

flow of viscous incompressible fluid along a vertical wavy 

surface. The skin friction coefficient Cfx, the rate of heat 

transfer in terms of Nusselt number Nux, the streamlines as 

well as the isotherms are shown graphically in Figs. 2-10 for 

different values of the aforementioned physical parameters. 
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Figure 2. Effect of N on (a) skin friction coefficient Cfx and (b) rate of heat 

transfer Nux. 

The variation of local skin friction Cfx and the rate of heat 

transfer in terms of the local Nusselt number Nux against x 

from the wavy surface while α = 0.3, Q = 0.4,M=0.5, and Pr = 

0.73 are illustrated in Fig, 2(a) and 2(b) respectively. Since the 

higher value of N accelerates the fluid flow and increases the 

temperature so from the figure it is noted that for the viscous 

dissipation parameter N = (0.0, 1.0, 3.0, 4.0), the skin friction 

coefficient increases along the upstream direction of the 

surface and to decrease of the heat transfer rates.  
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Figure 3. Effect of Q on (a) skin friction coefficient Cfx and (b) rate of heat 

transfer Nux. 
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The influence of the parameter Q, on the skin friction 

coefficient Cfx and local rate of heat transfer Nux are illustrated 

in Figs 3(a) and 3(b) respectively while α = 0.3, N = 0.2, 

M=0.5 and Pr = 0.73. From those it is observed that an 

increase in the heat generation parameter Q = (0.0, 0.4, 1.0, 

1.5) leads to increase the local skin friction coefficient Cfx and 

decrease the local rate of heat transfer Nux at different position 

of x. These are happened, since the heat generation 

mechanism creates a layer of hot fluid near the surface and 

finally the resultant temperature of the fluid exceed the surface 

temperature and temperature gradient decreases. For this 

reason the rate of heat transfer decreases. Increasing 

temperature increases the viscosity of the fluid. Hence the 

corresponding shearing stress in terms of local skin friction 

coefficient increases.  
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Figure 4. Effect of M on (a) skin friction coefficient Cfx and (b) rate of heat 

transfer Nux. 

In Figures 4(a) and 4(b), the skin friction coefficient Cfx and 

local rate of heat transfer Nux are illustrated in for different 

values of M while α = 0.3, N = 0.2, M=0.5 and Pr = 0.73.Here 

it is observed that an increase in the magnetic parameter 

M=(0.0,0.5,1.5,3.0) leads to decrease the local skin friction 

coefficient and local rate of heat transfer at different position 

of x. The magnetic field acts against the flow and reduces the 

skin friction and the rate of heat transfer. 
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Figure 5. Streamlines for (a) N = 0.0 (b) N = 1.0 (c) N = 3.0 and (d) N = 4.0 

while Pr = 0.73,α = 0.3,Q=0.4 and M=0.5. 

Fig. 5 and Fig. 6 show the effect of viscous dissipation 

parameter N = (0.0, 0.5, 1.0, 2.0) on the formulation of 

streamlines and isotherms respectively while Pr = 0.73, Q = 

0.4, M=0.5 and α = 0.3. We find that for N = 0.0 the value of 

ψmax is 15.88, for N = 3.0 ψmax is 18.25 and for N = 4.0 ψmax is 

19.52. From Fig. 5, it is seen that the effect of viscous 

dissipation parameter N, the flow rate in the boundary layer 

increases. From Fig 6, it is also observed that due to the effect 

of N, the thermal state of the fluid increases. Finally, the 

thermal boundary layer becomes thicker. 
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Figure 6. Isotherms for (a) N = 0.0 (b) N = 1.0 (c) N = 3.0 and (d) N = 4.0 

while Pr = 0.73, α = 0.3,Q=0.4 and M=0.5. 
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Figure 7. Streamlines for (a) Q = 0.0 (b) Q = 0.4 (c) Q = 1.0 and (d) Q = 1.5 

while Pr = 0.73 α = 0.3, N=0.2 and M=0.5. 
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Figure 8. Isotherms for (a) Q = 0.0 (b) Q = 0.4 (c) Q = 1.0 and (d) Q = 1.5 

while Pr = 0.73, α = 0.3, N=0.2 and M=0.5. 
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Figure 9. Streamlines for (a) M = 0.0 (b) M = 0.5 (c) M = 1.5 and (d) M=3.0 

while Pr = 0.73, α = 0.3, Q=0.4 and N=0.2. 
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Figure 10. Isotherms for (a) M = 0.0 (b) M = 0.5 (c) M =1.5 and (d) M=3.0 

while Pr = 0.73,α = 0.3, Q=0.4and N=0.2. 

The effect of variation of the Q equal to 0.0, 0.4, 1.0 and 1.5 

on the streamlines and isotherms are depicted by the Fig. 7 and 

8 respectively while α = 0.3, N = 0.2, M=0.5 and Pr = 0.73. 

Figure 7 depicts that the maximum values of ψ increases while 

the values of Q increases that is ψmax are 6.34, 14.83, 25.08 

and 31.33 for Q = 0.0, 0.4, 1.0 and 1.5 respectively. It is noted 

from Fig. 8 that as the value of Q increases the thermal 

boundary layer becomes thicker gradually. So the isotherms 

increases while the values of Q increases. 

The effect of variation of the surface roughness on the 

streamlines and isotherms for the values of M equal to 

0.0,0.5,1.5,and 3.0 are depicted by Figure 9 and Figure 10 

while Pr=0.73, α =0.3,Q=0.4 and N=0.2. Figure 9 depicts that 

the maximum values of streamline decreases steadily while 

the values of M increases. The maximum values of streamline 

are 16.13, 15.21, 14.39 and 14.01 for M=0.0, 0.5, 1.5, and 3.0 

respectively. We observe in Figure 10 that as the values of M 

increases the thermal boundary layer thickness becomes 

higher gradually.  
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5. Conclusion 

The combined effects of viscous dissipation and heat 

generation on natural convection flow along a vertical wavy 

surface have been studied. From the present investigation the 

following conclusions may be drawn: 

� The skin friction coefficient Cfx has increased and the 

rate of heat transfer in terms of Nusselt number Nux has 

decreased for the effect of viscous dissipation parameter 

N and heat generation parameter Q.  

� Streamlines have changed slightly too upper and the 

same results are observed for thermal boundary layer 

thickness with the increasing values of viscous 

dissipation parameter N and heat generation parameter 

Q. 

� The skin friction coefficient Cfx, the rate of heat transfer 

in terms of Nusselt number Nux, the stream line as well as 

isotherms have decreased for increasing values of M. 

Nomenclature 

Cfx  local skin friction coefficient 

Cp  specific heat at constant pressure….J.kg-1.K-1 

f    dimensionless stream function 

g    acceleration due to gravity……… m.s-1 

Gr  Grashof number 

k    thermal conductivity……….. W.m-1.K-1   

 L  wave length associated with the wavy            

surface………………. m 

N   viscous dissipation parameter 

 Nux  local Nusselt number 

P   pressure of the fluid.…………….. N.m-2 

Pr  Prandtl number 

Q   heat generation parameter 

Q0  heat generation constant 

T    temperature of the fluid in the  

   boundary layer…………………….. K 

Tw  temperature at the surface…………. K 

T∞  temperature of the ambient fluid..… K  

u, v  dimensionless velocity components  

   along the (x, y) axes…………… m.s-1  

x, y  axis in the direction along and normal to the tangent of              

the surface 

Greek symbols 

α   amplitude-to-length ratio of the wavy  

     surface  

η   dimensionless similarity variable 

θ   dimensionless temperature function 

ψ   stream function…………… m
2
.s

-1
 

µ   viscosity of the fluid……… kg.m
-1

.s
-1

 

µ∞  viscosity of the ambient fluid 

ν   kinematic viscosity…………m
2
.s

-1
 

ρ   density of the fluid………… kg.m
-3

 

σ0  electrical conductivity 

 τw  shearing stress 

σ (x) surface profile function defined  

   in equation (1) 

Subscripts 

w  wall conditions 

∞  ambient conditions 

Superscripts 

' differentiation with respect to η 
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