American Journal of Applied Mathematics

2018; 6(1): 23-27

http://www.sciencepublishinggroup.com/j/ajam

doi: 10.11648/j.ajam.20180601.15

ISSN: 2330-0043 (Print); ISSN: 2330-006X (Online)

On the Planarity of G^{++-}

Lili Yuan^{1, *}, Xiaoping Liu²

¹College of Mathematics and System Sciences, Xinjiang University, Urumqi, P. R. China

Email address:

yuanli0920@163.com (Lili Yuan), 1296840821@qq.com (Xiaoping Liu)

To cite this article:

Lili Yuan, Xiaoping Liu. On the Planarity of G^{++} . American Journal of Applied Mathematics. Vol. 6, No. 1, 2018, pp. 23-27. doi: 10.11648/j.ajam.20180601.15

Received: February 10, 2018; Accepted: March 1, 2018; Published: March 22, 2018

Abstract: Let G be a simple graph. The transformation graph G^{++-} of G is the graph with vertex set $V(G) \cup E(G)$ in which the vertex x and y are joined by an edge if and only if the following condition holds:(i) $x, y \in V(G)$ and x and y are adjacent in G, (ii) $x, y \in E(G)$, and x and y are adjacent in G, (iii) one of x and y is in V(G) and the other is in E(G), and they are not incident in G. In this paper, it is shown G^{++-} is planar if and only if $|E(G)| \le 2$ or G is isomorphic to one of the following graphs: C_3 , $C_3 + K_1$, P_4 , $P_4 + K_1$, $P_3 + K_2$, $P_3 + K_2 + K_1$, $K_{1,3}$, $K_{1,3} + K_1$, $K_{1,3}$, $K_{2,3}$, $K_{2,4}$, $K_{2,4}$, $K_{2,4}$, $K_{2,4}$, $K_{3,4}$, $K_{4,5}$, $K_{4,5$

Keywords: Total Graph, Planarity, Transformation Graph

1. Introduction

All graphs considered here are finite, simple and undirected. Undefined terminology and notation can be found in [2]. Let G = (V(G), E(G)) be a graph. |V(G)| is called the order of G. |E(G)| is called the size of G. The neighborhood $N_G(v)$ of v is the set of all vertices of G adjacent to v. Since G is simple, $|N_G(v)| = d_G(v)$.

Suppose that V' is a nonempty subset of V(G). The subgraph G[V'] of G induced by V' is a graph with V(G[V']) = V' and $uv \in E(G[V'])$ if and only if $uv \in E(G)$.

Let G = (V(G), E(G)) and H = (V(H), E(H)) be two graphs. The union $G \cup H$ of G and H is the graph whose vertex set is $V(G) \cup V(H)$ and the edge set $E(G) \cup E(H)$. Particularly, we denote their union by G + H if they are disjoint, i.e. $V(G) \cap V(H) = \emptyset$.

The line graph L(G) of G is the graph whose vertex set is E(G), and in which two vertices are adjacent if and only if they are adjacent in G. The total graph G^{+++} of G is the graph whose vertex set is $V(G) \cup E(G)$, and in which two vertices are adjacent if and only if they are adjacent or incident in G. Wu and Meng [9] generalized the concept of total graph, and introduced some new graphical transformations. We adopt the symbol G^{xyz} with

 $x, y, z \in \{+, -\}$ introduced in [9].

A graph is said to be embeddable in the plane, or planar, if

it can be drawn in the plane so that its edges intersect only at their end vertices. A subdivision of a graph G is a graph that can be obtained from G by a sequence of edges subdivisions. Behzad [1] characterized the graphs G for which G^{+++} is planar. Liu [8] give a necessary and sufficient condition for a graph G for which G^{---} is planar. Wu et al. [10] proved that G^{-++} is planar if and only if the order of G is at most 4. We refer to [4, 5, 6, 7, 10, 12, 13] for more relevant results on G^{xyz} . As usual, the complete graph, the cycle, the path of order n are denoted K_n, C_n, P_n , respectively.

We use the well-known theorem of Kuratowski [2] in Section 2.

Theorem 1.1. A graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$.

Corollary 1.2. Every simple planar graph has a vertex of degree at most five.

Our main result is given as follows.

Theorem 1.3. Let G be a graph of size m. Then G^{++-} is planar if and only if either $m \le 2$ or G is isomorphic to one of the following graphs: C_3 , $C_3 + K_1$, P_4 , $P_4 + K_1$, $P_3 + K_2$, $P_3 + K_2 + K_1$, $K_{1,3}$, $K_{1,3} + K_1$, $3K_2$, $3K_2 + K_1$, $3K_2 + 2K_1$, C_4 , $C_4 + K_1$ *Proof.* It is immediate form the results of Lemmas 2.1-2.5.

2. Proof

We start with a trivial observation.

²Department of Mathematics, Xinjiang Institute of Engineering, Urumqi, P. R. China

^{*}Corresponding author

Lemma 2.1. If H is a subgraph of G, then H^{++-} is a subgraph of G^{++-} .

In particular, by Lemma 2.1, if H^{++-} is nonplanar and $G = H + kK_1$ for an integer $k \ge 1$, then G^{++-} is nonplanar. One can

easily check that G^{++} is planar for each G of size $m \le 2$. Next we consider the graphs of size 3. There are precisely five graphs of size 3 without isolated vertex as shown in Figure 1.

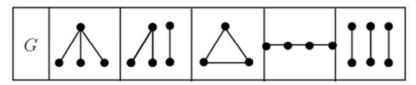


Figure 1. All graphs of size 3 with no isolated vertices.

Lemma 2.2. For a graph G of size 3, G^{++-} is planar if and only if $G \in \{C_3, C_3 + K_1, P_4, P_4 + K_1, P_3 + K_2, P_3 + K_2 + K_1, K_{1,3}, K_{1,3} + K_1, 3K_2, 3K_2 + K_1, 3K_2 + 2K_1\}.$

Proof. The sufficiency. As illustration in Figure 2, the transformation graphs G^{++-} of C_3+K_1 , P_4+K_1 , $P_3+K_2+K_1$, $K_{1,3}+K_{1,3}K_2+2K_1$ are planar. By Lemma 2.1, the

transformation graphs G^{++-} of C_3 , P_4 , $P_3 + K_2$, $K_{1,3}$, $3K_2$, $3K_2 + K_1$ are planar.

The necessity. For each $G \in \{C_3 + 2K_1, P_4 + 2K_1, P_3 + K_2 + 2K_1, K_{1,3} + 2K_1, 3K_2 + 3K_1\}$ the transformation graph $(G + 2K_1)^{++-}$ of G is nonplanar since it contain a subdivision of K_5 or $K_{3,3}$, as shown in Figure 3.

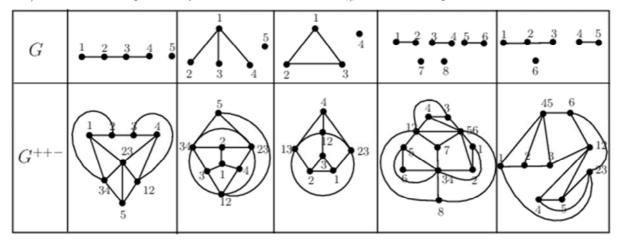


Figure 2. Transformation graphs G^{++-} of $C_3 + K_1$, $P_4 + K_1$, $P_3 + K_2 + K_1$, $K_{1,3} + K_1$, $3K_2 + 2K_1$.

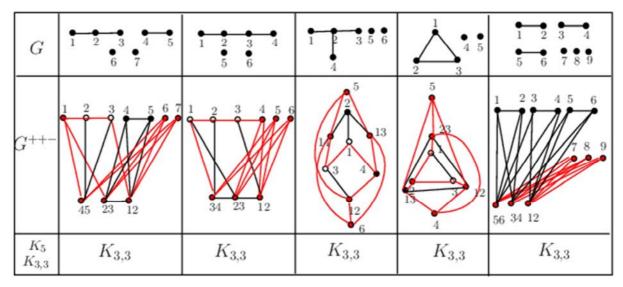


Figure 3. Transformation graphs G^{++-} of $C_3 + 2K_1$, $P_4 + 2K_1$, $P_3 + K_2 + 2K_1$, $K_{1,3} + 2K_1$, $3K_2 + 3K_1$.

Now we consider the graphs of size 4. There are precisely eleven graphs of size 4 without isolated vertex as shown in Figure 4.

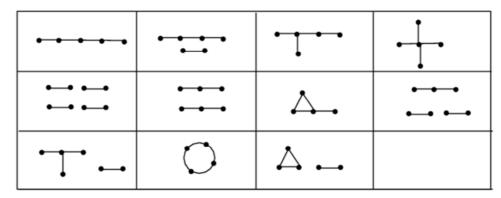


Figure 4. All graphs of size 4 with no isolated vertices.

Lemma 2.3. For a graph G of size 4, G^{++-} is planar if and only if $G \in \{C_4, C_4 + K_1\}$.

Proof. The sufficiency. The planar embedding of $(C_4 + K_1)^{++-}$ in Figure 6 shows that $(C_4 + K_1)^{++-}$ is planar. Moreover, by Lemma 2.1, $(C_4)^{++-}$ is planar.

The necessity. Let G be a graph of size 4. Then G can be obtained from a graph in Fig. 4 by adding some isolated vertices. By Figure 4, 5, 6, 7 and Lemma 2.1, G^{++-} is nonplanar if $G \notin \{C_4, C_4 + K_1\}$.

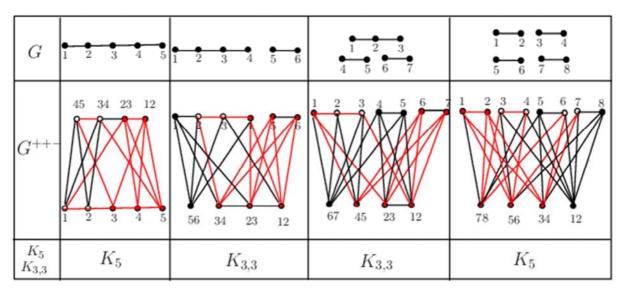


Figure 5. Transformation graphs G^{++-} of P_5 , $P_4 + K_2$, $P_3 + 2K_2$, $4K_2$.

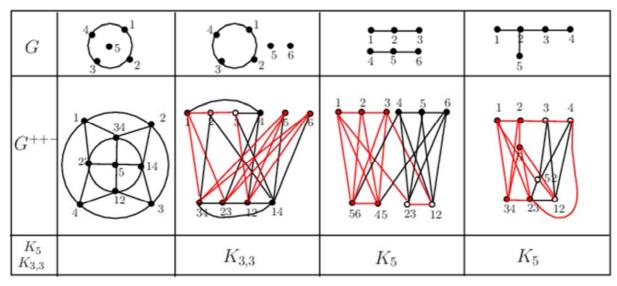


Figure 6. Transformation graphs G^{++-} of some graphs of size 4.

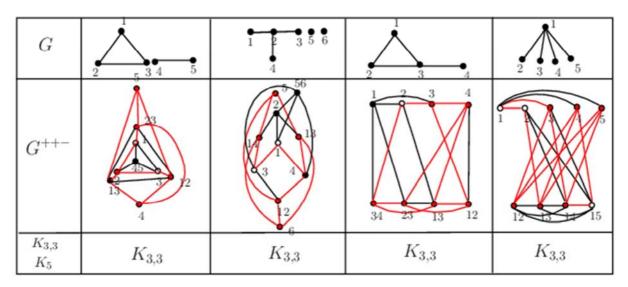


Figure 7. Transformation graphs G^{++-} of some graphs of size 4.

Now we consider graphs of size 5. There are precisely twenty six graphs of size 5 without isolated vertices as shown in Figure 8.

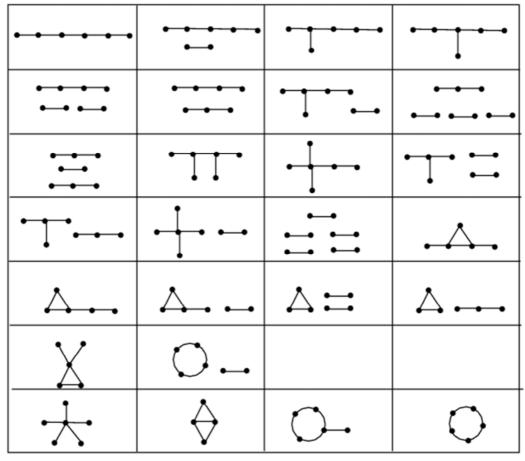


Figure 8. All graphs of size 5 without isolated vertices.

Lemma 2.4. For any graph G of size 5, G⁺⁺⁻ is nonplanar.

Proof. Let G be a graph of size 5, and let H be subgraph of G with size 4 without isoated vertices. By Lemma 2.1, H^{++-} is a subgraph of G^{++-} . By Lemma 2.3, H^{++-} is nonplanar if H is not isomorphic to C_4 . Now assume that G contains C_4 . Then G is isomorphic to the third graph in Figure 9, and one can see that G^{++-} is nonplanar.

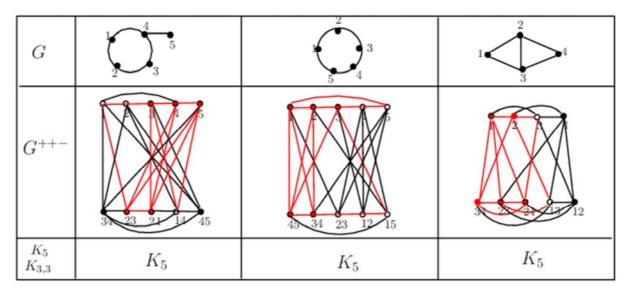


Figure 9. All graphs of size 5 containing C_4 or C_5 , and without induced C_4 and their transformation graphs G^{++-} .

Lemma 2.5. For a graph G of size $m \ge 6$, G^{+-} is nonplanar.

Proof. Trivially, G contains a subgraph H of size 5, and by Lemma 2.1, H^{++} is a subgraph of G^{++} . Furthermore, by Lemma 2.4, G^{++-} is nonplanar.

3. Conclusion

In this paper, a necessary and sufficient condition for a graph G such that G^{++-} is planar. It is interesting to investigate some other properties or parameters, such as chromatic number, connectivity, domination number.

Acknowledgements

The research was supported by National Natural Science Foundaition of China (No. 11661077).

References

- [1] M. Behzad, A criterion for the planarity of the total graph of a graph, Proc. Cambridge Philos. Soc. 63 (1967) 679-681.
- [2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
- [3] J. Chen, L. Huang, J. Zhou, Super connectivity and super edge-connectivity of transformation graphs G^{+} , Ars Combin. 105 (2012) 103-115.

- [4] A. Deng, A. Kelmans, Laplacian spectra of digraph transformations, Linear Multilinear Algebra 65 (2017) 699–730
- [5] A. Deng, M. Feng, A. Kelmans, Adjacency polynomials of digraph transformations, Discrete Appl. Math. 206 (2016) 15– 38.
- [6] A. Deng, A. Kelmans, J. Meng, Laplacian spectra of regular graph transformations, Discrete Appl. Math. 161 (2013) 118– 133.
- [7] J. Li, J. Liu, Some basic properties of a class of total transformation digraphs, Ars Combin. 116 (2014) 205-211.
- [8] X. Liu, On the planarity of G⁻⁻⁻, J. Xinjiang Univ. Sci. Eng. 23(2) (2006) 159-161.
- [9] B. Wu, J. Meng, Basic properties of total transformation graphs, J. Math. Study 34(2) (2001) 109-116.
- [10] B. Wu, L. Zhang, Z. Zhang, The transformation graph G^{xyz} when xyz=-++, Discrete Math. 296 (2005) 263-270.
- [11] L. Xu, B. Wu, Transformation graph G^{-} , Discrete Math. 308 (2008) 5144–5148.
- [12] L. Yi, B. Wu, The transformation graph G^{+} , Australas. J. Combin. 44 (2009) 37-42.
- [13] L. Zhen, B. Wu, Hamiltonicity of transformation graph G⁺⁻⁻, Ars Combin. 108 (2013) 117-127.