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Abstract: Let G be a simple graph. The transformation graph G of G is the graph with vertex set ¥ (G) |J E(G) in which
the vertex x and y are joined by an edge if and only if the following condition holds:(i) x, y 17 (G) and x and y are adjacent in
G, (ii) x, y L1E(G), and x and y are adjacent in G, (iii) one of x and y is in ¥ (G) and the other is in £(G), and they are not
incident in G. In this paper, it is shown G™" is planar if and only if |E(G)| <2 or G is isomorphic to one of the following
graphs: C3, C3 + Kla P4, P4 + Kla P3 + Kz, P3 + K2 + Kla K1’3, K1’3 +K1, 3K2, 3K2 + Kla 3K2 + 2K1, C4, C4 + Kl-
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1. Introduction

All graphs considered here are finite, simple and
undirected. Undefined terminology and notation can be found
in [2]. Let G = (V' (G), E(G)) be a graph. |V (G)| is called the
order of G. |E(G)| is called the size of G. The neighborhood
Ng(v) of v is the set of all vertices of G adjacent to v. Since G
is simple, |Ng(v)| = dg(v).

Suppose that ¥ ' is a nonempty subset of ¥ (G). The
subgraph G[V ] of G induced by ¥ is a graph with V(G[V )
=¥ "and wv E(G[V ) if and only if uv JE(G).

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two
graphs. The union G |J H of G and H is the graph whose
vertex set is ¥ (G) U V (H) and the edge set E(G) U E(H).
Particularly, we denote their union by G + H if they are
disjoint, i.e. V(G) NV (H) = G.

The line graph L(G) of G is the graph whose vertex set is
E(G), and in which two vertices are adjacent if and only if
they are adjacent in G. The total graph G' of G is the graph
whose vertex set is ¥ (G) U E(G), and in which two vertices
are adjacent if and only if they are adjacent or incident in G.
Wu and Meng [9] generalized the concept of total graph, and
introduced some new graphical transformations. We adopt
the symbol G** with

x, y, z LI {+, —} introduced in [9].

A graph is said to be embeddable in the plane, or planar, if

it can be drawn in the plane so that its edges intersect only at
their end vertices. A subdivision of a graph G is a graph that
can be obtained from G by a sequence of edges subdivisions.
Behzad [1] characterized the graphs G for which G™ is
planar. Liu [8] give a necessary and sufficient condition for a
graph G for which G is planar. Wu et al. [10] proved that
G " is planar if and only if the order of G is at most 4. We
refer to [4, 5, 6, 7, 10, 12, 13] for more relevant results on
GY*. As usual, the complete graph, the cycle, the path of
order n are denoted K,,C,, P, , respectively.

We use the well-known theorem of Kuratowski [2] in
Section 2.

Theorem 1.1. 4 graph is planar if and only if it contains no
subdivision of Ks or K3,3.

Corollary 1.2. Every simple planar graph has a vertex of
degree at most five.

Our main result is given as follows.

Theorem 1.3. Let G be a graph of size m. Then G is
planar if and only if either m <2 or G is isomorphic to one of
thefollowing graphs: C3, C3 + Kla P4, P4 + Kla P3 + Kz, P3 +
K, + K, K3, K5 +K), 3K, 3K, + K, 3K, + 2K, Cy, Cs + K

Proof. It is immediate form the results of Lemmas 2.1-2.5.

2. Proof

We start with a trivial observation.
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Lemma 2.1. If H is a subgraph of G, then H™ is a
subgraph of G™.

In particular, by Lemma 2.1, if H™ is nonplanar and G =
H + kK, for an integer k > 1, then G is nonplanar. One can

easily check that G is planar for each G of size m < 2.
Next we consider the graphs of size 3. There are precisely
five graphs of size 3 without isolated vertex as shown in
Figure 1.
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Figure 1. All graphs of size 3 with no isolated vertices.

Lemma 2.2. For a graph G of size 3, G is planar if and
only if GLI{Cs, C3 + K, P, P4 + K, P; + K5, P; + K, + K,
K3, K3 +Ky, 3K, 3K, + K, 3K, + 2K, }.

Proof. The sufficiency. As illustration in Figure 2, the
transformation graphs G of C; + K, P, + K, Ps + K, + K|,
K5 + K, 3K, + 2K, are planar. By Lemma 2.1, the

transformation graphs G~ of Cs, Py, P; + K>, K3, 3K5, 3K,
+ K, are planar.

The necessity. For each G [1{C; + 2K, P, + 2K;, P + K,
+ 2K, K5 + 2K, 3K, + 3K} the transformation graph (G +
2K,)"" of G is nonplanar since it contain a subdivision of K
or K33, as shown in Figure 3.
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Figure 3. Transformation graphs G of C3 + 2K, P, + 2K,, P; + K, + 2K,, K, ; +2K,, 3K, + 3K,.

Now we consider the graphs of size 4. There are precisely eleven graphs of size 4 without isolated vertex as shown in Figure 4.
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Figure 4. All graphs of size 4 with no isolated vertices.
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Lemma 2.3. For a graph G of size 4, G* " is planar if and only if GL {C,, C4 +K,}.

Proof. The sufficiency. The planar embedding of (C4 + K,)"~ in Figure 6 shows that (C4 + K;)"" is planar. Moreover, by
Lemma 2.1, (C;)"" is planar.

The necessity. Let G be a graph of size 4. Then G can be obtained from a graph in Fig. 4 by adding some isolated vertices.
By Figure 4, 5, 6, 7 and Lemma 2.1, G is nonplanar if G O {Cy, C4+ Ky}
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Figure 6. Transformation graphs G~ of some graphs of size 4.
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Figure 7. Transformation graphs G~ of some graphs of size 4.

Now we consider graphs of size 5. There are precisely twenty six graphs of size 5 without isolated vertices as shown in

Figure 8.
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Figure 8. All graphs of size 5 without isolated vertices.

Lemma 2.4. For any graph G of size 5, G" is nonplanar.
Proof. Let G be a graph of size 5, and let H be subgraph of G with size 4 without isoated vertices. By Lemma 2.1, H™ is a

subgraph of G™. By Lemma 2.3, H"" is nonplanar if H is not isomorphic to C,. Now assume that G contains C,. Then G is
isomorphic to the third graph in Figure 9, and one can see that G is nonplanar.
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Figure 9. All graphs of size 5 containing Cor Cs, and without induced C,and their transformation graphs G**".
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Lemma 2.5. For a graph G of size m > 6, G is
nonplanar.

Proof. Trivially, G contains a subgraph H of size 5, and by
Lemma 2.1, H™ is a subgraph of G"". Furthermore, by
Lemma 2.4, G™" is nonplanar.

3. Conclusion

In this paper, a necessary and sufficient condition for a
graph G such that G is planar. It is interesting to
investigate some other properties or parameters, such as
chromatic number, connectivity, domination number.
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