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Abstract: Let G be a simple graph. The transformation graph G
++−

 of G is the graph with vertex set V (G) ∪ E(G) in which 

the vertex x and y are joined by an edge if and only if the following condition holds:(i) x, y ∈V (G) and x and y are adjacent in 

G, (ii) x, y ∈E(G), and x and y are adjacent in G, (iii) one of x and y is in V (G) and the other is in E(G), and they are not 

incident in G. In this paper, it is shown G
++−

 is planar if and only if |E(G)| ≤ 2 or G is isomorphic to one of the following 

graphs: C3, C3 + K1, P4, P4 + K1, P3 + K2, P3 + K2 + K1, K1,3, K1,3 +K1, 3K2, 3K2 + K1, 3K2 + 2K1, C4, C4 + K1. 
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1. Introduction 

All graphs considered here are finite, simple and 

undirected. Undefined terminology and notation can be found 

in [2]. Let G = (V (G), E(G)) be a graph. |V (G)| is called the 

order of G. |E(G)| is called the size of G. The neighborhood 

NG(v) of v is the set of all vertices of G adjacent to v. Since G 

is simple, |NG(v)| = dG(v). 

Suppose that V 
′
 is a nonempty subset of V (G). The 

subgraph G[V 
′
] of G induced by V 

′
 is a graph with V(G[V 

′
]) 

= V 
′
 and uv ∈E(G[V 

′
]) if and only if uv ∈E(G). 

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two 

graphs. The union G ∪ H of G and H is the graph whose 

vertex set is V (G) ∪ V (H) and the edge set E(G) ∪ E(H). 

Particularly, we denote their union by G + H if they are 

disjoint, i.e. V (G) ∩ V (H) = Ø. 

The line graph L(G) of G is the graph whose vertex set is 

E(G), and in which two vertices are adjacent if and only if 

they are adjacent in G. The total graph G
+++

 of G is the graph 

whose vertex set is V (G) ∪ E(G), and in which two vertices 

are adjacent if and only if they are adjacent or incident in G. 

Wu and Meng [9] generalized the concept of total graph, and 

introduced some new graphical transformations. We adopt 

the symbol G
xyz

 with 

x, y, z ∈{+, −} introduced in [9]. 

A graph is said to be embeddable in the plane, or planar, if 

it can be drawn in the plane so that its edges intersect only at 

their end vertices. A subdivision of a graph G is a graph that 

can be obtained from G by a sequence of edges subdivisions. 

Behzad [1] characterized the graphs G for which G
+++

 is 

planar. Liu [8] give a necessary and sufficient condition for a 

graph G for which G
−−−

 is planar. Wu et al. [10] proved that 

G
−++

 is planar if and only if the order of G is at most 4. We 

refer to [4, 5, 6, 7, 10, 12, 13] for more relevant results on 

G
xyz

. As usual, the complete graph, the cycle, the path of 

order n are denoted , ,n n nK C P , respectively. 

We use the well-known theorem of Kuratowski [2] in 

Section 2. 

Theorem 1.1. A graph is planar if and only if it contains no 

subdivision of K5 or K3,3. 

Corollary 1.2. Every simple planar graph has a vertex of 

degree at most five. 

Our main result is given as follows. 

Theorem 1.3. Let G be a graph of size m. Then G
++−

 is 

planar if and only if either m ≤ 2 or G is isomorphic to one of 

the following graphs: C3, C3 + K1, P4, P4 + K1, P3 + K2, P3 + 

K2 + K1, K1,3, K1,3 +K1, 3K2, 3K2 + K1, 3K2 + 2K1, C4, C4 + K1 

Proof. It is immediate form the results of Lemmas 2.1-2.5. 

2. Proof 

We start with a trivial observation. 
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Lemma 2.1. If H is a subgraph of G, then H
++−

 is a 

subgraph of G
++−

. 

In particular, by Lemma 2.1, if H
++−

 is nonplanar and G = 

H + kK1 for an integer k ≥ 1, then G
++−

 is nonplanar. One can 

easily check that G
++−

 is planar for each G of size m ≤ 2. 

Next we consider the graphs of size 3. There are precisely 

five graphs of size 3 without isolated vertex as shown in 

Figure 1. 

 

Figure 1. All graphs of size 3 with no isolated vertices. 

Lemma 2.2. For a graph G of size 3, G
++−

 is planar if and 

only if G∈{C3, C3 + K1, P4, P4 + K1, P3 + K2, P3 + K2 + K1, 

K1,3, K1,3 +K1, 3K2, 3K2 + K1, 3K2 + 2K1}. 

Proof. The sufficiency. As illustration in Figure 2, the 

transformation graphs G
++−

 of C3 + K1, P4 + K1, P3 + K2 + K1, 

K1,3 + K1,3K2 + 2K1 are planar. By Lemma 2.1, the 

transformation graphs G
++−

 of C3, P4, P3 + K2, K1,3, 3K2, 3K2 

+ K1 are planar. 

The necessity. For each G ∈{C3 + 2K1, P4 + 2K1, P3 + K2 

+ 2K1, K1,3 + 2K1, 3K2 + 3K1} the transformation graph (G + 

2K1)
++−

 of G is nonplanar since it contain a subdivision of K5 

or K3,3, as shown in Figure 3.  

 

Figure 2. Transformation graphs G++− of C3 + K1, P4 + K1, P3 + K2 + K1, K1,3 +K1, 3K2 + 2K1. 

 

Figure 3. Transformation graphs G++− of C3 + 2K1, P4 + 2K1, P3 + K2 + 2K1, K1,3 +2K1, 3K2 + 3K1. 

Now we consider the graphs of size 4. There are precisely eleven graphs of size 4 without isolated vertex as shown in Figure 4. 
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Figure 4. All graphs of size 4 with no isolated vertices. 

Lemma 2.3. For a graph G of size 4, G
++−

 is planar if and only if G∈{C4, C4 +K1}. 

Proof. The sufficiency. The planar embedding of (C4 + K1)
++−

 in Figure 6 shows that (C4 + K1)
++−

 is planar. Moreover, by 

Lemma 2.1, (C4)
++−

 is planar. 

The necessity. Let G be a graph of size 4. Then G can be obtained from a graph in Fig. 4 by adding some isolated vertices. 

By Figure 4, 5, 6, 7 and Lemma 2.1, G
++−

 is nonplanar if G ∉  {C4, C4 + K1}.  

 

Figure 5. Transformation graphs G++− of P5, P4 + K2, P3 + 2K2, 4K2. 

 

Figure 6. Transformation graphs G++− of some graphs of size 4. 
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Figure 7. Transformation graphs G++− of some graphs of size 4. 

Now we consider graphs of size 5. There are precisely twenty six graphs of size 5 without isolated vertices as shown in 

Figure 8. 

 

Figure 8. All graphs of size 5 without isolated vertices. 

Lemma 2.4. For any graph G of size 5, G
++−

 is nonplanar. 

Proof. Let G be a graph of size 5, and let H be subgraph of G with size 4 without isoated vertices. By Lemma 2.1, H
++−

 is a 

subgraph of G
++−

. By Lemma 2.3, H
++−

 is nonplanar if H is not isomorphic to C4. Now assume that G contains C4. Then G is 

isomorphic to the third graph in Figure 9, and one can see that G
++−

 is nonplanar.  
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Figure 9. All graphs of size 5 containing C4 or C5, and without induced C4 and their transformation graphs G++−. 

Lemma 2.5. For a graph G of size m ≥ 6, G
++−

 is 

nonplanar. 

Proof. Trivially, G contains a subgraph H of size 5, and by 

Lemma 2.1, H
++−

 is a subgraph of G
++−

. Furthermore, by 

Lemma 2.4, G
++−

 is nonplanar.  

3. Conclusion 

In this paper, a necessary and sufficient condition for a 

graph G such that G
++−

 is planar. It is interesting to 

investigate some other properties or parameters, such as 

chromatic number, connectivity, domination number. 
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