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Abstract: The author developed a deterministic mathematical model for Typhoid fever disease dynamics that accounts for 

Vaccination and relapse of treatment. Three control strategies (vaccination, treatment of infection, screening and treatment of 

carriers) are applied to investigate the optimal intervention strategy of controlling Typhoid disease transmission. The aim of 

this study is to determine the optimal combination strategy of vaccination, treatment of infection, screening and treatment of 

carriers that will minimize the cost of those strategies and the number of Infective and Carriers. The author used Pontryagin’s 

maximum principle to characterize the optimal level of those three strategies. The result is simulated numerically using Runge-

Kutta fourth order method through MATLAB software. Numerical results showed that implementation of all controls or a 

combination of vaccination, treatment of invectives as well as screening and treatment of carriers is the best strategy to 

eradicate the disease at an optimal level with minimum cost of interventions. 

Keywords: Typhoid Fever, Optimal Control, Pontryagin Maximum Principle, Equilibrium Point,  

Basic Reproduction Number, Numerical Simulation 

 

1. Introduction 

Typhoid fever is an endemic infectious disease caused by a 

highly virulent and invasive Salmonella entericaserovarTyphi 

(S. Typhi) that affects humanity [1, 2]. The bacteria are 

transmitted directly from human to human and indirectly 

from the environment to human through food and water 

contaminated with faeces and urine of an infected patient or a 

carrier [3]. Signs and symptoms include; sustained fever, 

poor appetite, vomiting, severe headache and fatigue. 

The transmission of Typhoid fever can be prevented and 

controlled through Vaccination, safe drinking water, 

improved sanitation and medical treatment with oral 

Chloramphenicol, and Amoxicillin [2]. Furthermore, the 

chronic carrier state may be eradicated using oral therapy 

using Ciprooxacin or Noroxacin. Multi-drug resistant strain 

of Salmonella Typhi are increasingly common worldwide, 

which makes treatment by antibiotics more difficult and 

require high cost specially in developing countries as 

indicated from a study[4] that Typhoid fever affects millions 

of people worldwide each year, where over 20 million cases 

are reported and kills approximately 200,000 annually. For 

instance, in Africa it is estimated that 400,000 cases occur 

annually, an incidence of 50 per 100,000 [3]. 

Mathematical modeling continues to play a significant role 

in epidemiology by providing deeper insight into the 

underlying mechanisms for the spread of emerging and 

reemerging infectious diseases and suggesting effective 

control strategies [5-10]. The successful eradication of these 

emerging diseases does not depend only on the availability of 

medical infrastructures, but also on the ability to understand 

the transmission dynamics of a particular disease and the 

application of optimal control strategies and the 

implementation of logistic policies [6]. Mathematical models 

have been used in comparing, planning, implementing, 

evaluating, and optimizing various detection, prevention, 

therapy, and control programs. A number of Mathematical 

models of infectious disease dynamics have been developed 

and analyzed to determine the impact of Vaccination and 

treatment [11-13]. In particular, the following authors [14-16] 

developed a mathematical model for The transmission 

dynamics of Typhoid fever disease to evaluate the impacts of 

Vaccination on preventing the disease transmission. 

Asymptomatic carriers are believed to play an essential role 
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in the evolution and global transmission of Typhi, and their 

presence greatly hinders the eradication of Typhoid fever 

using treatment and vaccination [1]. The impacts of carriers 

on the transmission dynamics of Typhoid fever disease have 

also been also analyzed by these studies [17, 18]. In addition 

to this, the roles of Vaccination, treatment of infectious 

individuals and that of carriers have been studied by different 

scholars [11, 16, 19-21]. The role of optimal control strategy 

for controlling the transmission of different disease dynamics 

have been studied by different authors such as these 

studies[5, 11, 13]. But the combined optimal control 

strategies of all the above preventive and control strategies 

for Typhoid fever, which are prevention with vaccination, 

treatment of infections, screening and treatment of carriers 

has not been studied by applying optimal control concepts to 

determine the best strategy with minimum cost of 

intervention. Hence, the general objective of this study is to 

determine or find the optimal combination strategy of 

vaccination, treatment of infections, screening and treatment 

of carriers that will minimize the cost of those three control 

measures and at the same time minimize the number of 

infective and carriers. 

The model formulation and its basic properties are given in 

the next section. The basic reproduction number, disease free 

and endemic equilibrium points are derived and discussed in 

Section 3. Formulations of optimal controls, existence of 

optimal solutions as well as the derivation of Hamiltonian 

equation to proof the necessary conditions have been 

discussed in section 4. In Section 5, numerical simulation of 

Typhoid disease transmission, the roles of each control 

measures are discussed. Summery and general 

recommendations round up the paper. 

2. Model Formulation and Basic 

Properties 

We formulate a mathematical model that describes the 

dynamics of typhoid infection in a population. The model 

subdivides the total population (N) into six sub-population or 

compartments depending on the epidemiological status of 

individuals. These are, Susceptible (S), Vaccination (V), 

Invective (I), carriers (IC), Treated invectives (T) and 

recovered individuals (R). Thus, the total population is given 

by N=S+V+I+IC+T+R. Assume that there is a constant 

recruitment rate π. (into the susceptible class) and a per 

capita natural death rate µ. The dynamics of typhoid 

transmission will look like as follows. 

Susceptible individuals may be vaccinated with a rate φ
and vaccinated individuals join non-vaccinated class at a rate 
ω . Due to some reasons such as the type of the vaccine used 

and genetic makeup of individuals, we assume that the 

vaccine efficacy varies [11]. Then the model assumes that the 

vaccination is not 100% efficient and as such, individuals in 

this class can be infected via contact with individuals in the 

infected class I, but at a lower rate λε . Thus (1- ε ) 

measures the failure of the vaccine in preventing infection 

with 0≤ ε  ≤1. Here, ε = 0 implies that the vaccine is not 

effective at all while ε  = 1 means the vaccine renders 100% 

protection. Hence, due to failure of the vaccine, vaccinated 

individual contract the disease with λ (force of infection). If 

ρ proportion of susceptible individuals become new infected 

symptomatically with the bacteria, then the remaining (1- ρ ) 

proportion become carriers. The force of infection ( λ ) for 

contracting the disease is given by 1 2( )cc I k I k T

N

βλ + +=  

and the modified parameters k1 and k2 accounts for 

infectiousness of individuals that satisfy k1 ≤ 1 ≤ k2 and also 

β  and c are the probabilities of transmission and the 

average number of contacts an individual can make with 

infectious individuals respectively. This is to show the 

assumption that the rate of transmission of carriers is high as 

compared to other infectious individuals. Every compartment 

decreased due to natural death at a rate µ. In addition to this, 

infectious and treated classes further decreased due to disease 

induced deaths at a constant rate 
1δ  and 

2δ  respectively. 

Infectious classes decreased by joining treatment class with 

constant rate η . Similarly, carrier individuals join treatment 

class with a rate σ . In addition, those infected people will 

recover from infection with constant rate α  and join 

recovered class R without receiving treatment. Treated 

individuals can be decreased by complete recovery with rate 
γ  and will join R class or will join a carrier class due to 

relapse at a rateγ . Treated individuals recover faster at a rate
γ  as compared to those who do not receive treatment so that 
γ >α . We also assume that the carriers develop symptoms 

at a constant rate θ  and proceed to symptomatic invectives. 

We assume that the rate of transmission of carriers is high as 

compared to other infectious individuals as may be unaware 

of their disease status followed by symptomatic invectives 

and consequently treated individuals. We also assume that 

recovered individuals are permanently immune and it 

assumes that upon treatment, a fraction of individuals relapse 

and become carriers (primary reservoirs of the disease) and 

contribute to the transmission dynamics of the disease. With 

the above assumptions, terminology and interrelations 

between the parameters and variables, the dynamics of the 

typhoid fever model can be described by the following 

deterministic system of nonlinear ODE: 

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tRtTtItR

tTAtItItT

tIAtTtStI

tIAtItVtStI

tStVtS

tVtStV

C

CC

C

µγα

ση

τλρ

θλρλ

φλµωπ

µλεωφ

−+=

−+=

−+−=

−+∈−+=

++−+=

+−+−=

.

3

.

2

.

1

.

.

.

1

1

1

             (1) 

Where, 

δτγµµσθηαµδ +++=++=+++= 3211 ,, AAA  

Boundedness of the Solution 

Consider the following biological feasible region. 



 American Journal of Applied Mathematics 2019; 7(2): 37-48 39 

 

Ω ={(S, V, I, IC, T, R)∈ R+
6
}. The following steps are 

followed to establish the positive invariance of Ω  (i.e. All 

solutions in Ω  remain in Ω  for all time). The rate of change 

of the total population, which is obtained by addingall the 

equations in the model (1) is given by, 

1

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )c

dN t
V t S t I t I t T t R t

dt
π µ µ µ δ µ µ δ µ= − − − + − − + −   (2) 

It is simple to observe that for 0, <>
dt

dN
N

µ
π

 using a 

standard comparison theorem [7], it is possible to show 

boundedness as follows. 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( )
( ) ( )

( ) ( )

. . . . . . .

.

1
.

1
.

.

( )

C

C

N t S t V t I t I t T t R t

N t S V I I T R I T

N t N t I T

N t N t

N t N t

π µ δ δ

π µ δ δ

π µ

π µ

= + + + + +

= + + + + + + − −

= − − −

≤ −

∴ ≤ −

       (3) 

When we solve this first order linear differential equation, 

we get 

( ) ( (0) ),tN t e Nµπ π
µ µ

−≤ + − since 1,
t

e
µ− ≤ for 0t ≥  

If ,)0(
µ
π≤N  then µ

π≤)(tN  for 0≥t  

Thus, the model can be considered as being 

epidemiologically and mathematically well posed [8]. 

Therefore, every solution of the model (1) with initial 

conditions in Ω remains there for t > 0. 

This result can be summarized as a lemma below. 

Lemma 3.1. The region Ω  is positively invariant for the 

model (1) with non-negative conditions in R+
6. 

Positivity of the Solution 

For the typhoid fever Transmission model (1) to be 

epidemiologically meaningful, it is important to prove that all 

its state variables are non-negative for all time. 

Let Ω ={(S, V, I, IC, T, R)∈  R+
6: S0 > 0, V0 > 0, I0 > 0, IC0> 

0, T0> 0, R0> 0} then the solution of {(S, V, I, IC, T, R)} are 

positive for 0≥t . This can be proved as below. 

From the system of the differential equation (1) let us take 

the first equation, 

( (1 ) )
0

( )
( ) ( (1 ) ) ( )

( )
( (1 ) ) ( )

( )
( (1 ) )

( )
( )

( (1 ) )
( )

( ) 0t

dV t
S t V t

dt
dV t

V t
dt

dV t
dt

V t
dV t

dt
V t

V t V e ω ε λ µ

ϕ ω ε λ

ω ε λ µ

ω ε λ µ

ω ε λ µ
− + − +

= − + −

⇒ ≥ − + − +

⇒ ≥ − + − +

≥ − + − +

≥ ≥
∫ ∫

 

Similiarly, cinsider the second equation of (1) which is  

( )
0

( )
( ) ( ) ( )

( )
( ) ( )

( )
( )

( )
( )

( )
( )

( ) 0t

dS t
V t S t

dt
dS t

S t
dt

dS t
dt

S t
dS t

dt
S t

S t S e µ λ ϕ

π ω µ λ ϕ

µ λ ϕ

µ λ ϕ

µ λ ϕ
− + +

= + − + +

⇒ ≥ − + +

⇒ ≥ − + +

≥ − + +

≥ ≥
∫ ∫

 

By following the same technique it have been showed that 

I(t) ≥ 0, IC0(t) ≥ 0, T(t) ≥ 0 & R(t)≥ 0 for all values of t. 

Disease Free-equilibrium 

The model (1) has a disease free equilibrium (DFE), 

obtained by setting the right hand side of the equations in the 

model to zero and the force of infection 

*λ =0, given by 0= (SD; VD; ID; IC
D; TD; RD) 

= 
( )

( , , 0,0,0,0)
( )( ) ) ( )( )

π ω ϕ ϕµ
µ ϕ ω ϕ ϕω µ ϕ ω ϕ ϕω

+
+ + − + + −  

The Basic Reproduction Number 

Following Van Den Driessche [22] the basic reproduction 

number is obtained as the spectral radius of the matrix FV
-1 

at 

the DFE is 0. 

Definition 1.Basic reproduction number, basic 

reproduction ratio or basic reproductive rate is defined as the 

average number of secondary infections that occur when one 

infective is introduced into a completely susceptible host 

population [9]. 

We can calculate the basic reproduction ratio (number) 

0R , using the Van Den Driesseche and Watmough next 

generation approach. In order to compute the basic 

reproduction number, it is important to distinguish new 

infections from all other class transitions in the population. 

The infected classes are I, IC and T. We can write system (1) 

as: x=F(x)-V(x), V=V- - V+, where x=(S, V, I, IC, T , R). F is 

the rate of appearance of new infections in each class, V+ is 

the rate of transfer into each class by all other means, and V- 

is the rate transfer out of each class. Using system of 

differential equations below, the underlined terms are new 

infections in each class. 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

.

1
.

2

.

3
.

.

.

1

1

1

C

C C

C

I t S t V t I t A I t

I t S t T t A I t

T t I t I t A T t

V t S t V t

S t V t S t

R t I t T t R t

ρλ λ θ

ρ λ τ

η σ

ϕ ω µ λ

π ω µ ϕ λ

α γ µ

= + −∈ + −

= − + −

= + −

= − + + −∈

= + − + +

= + −
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The associated matrices F(x) for new infections terms, and 

V(x) for the remaining transition terms are respectively given 

by, 

( )

( )
( )

1

1

0

0

0

0

S V

S

F x

ρλ λ
ρ λ

+ −∈ 
 

− 
 
 =
 
 
 
 
 

                           (4) 

( ) ( )( )
( )

1

2

3

1

C

C

C

A I I

A I T

A T I I
V x

V S

S V

R I T

θ
τ

η σ
ω µ λ ϕ

µ ϕ λ ω π
µ α γ

− 
 − 
 − −
 =

+ + − ∈ − 
 

+ + − − 
 − − 

                     (5) 

Evaluating the partial derivatives of (4) at 0ε . and bearing 

in mind that system (1) has three infected classes, namely I, 

IC and T, we obtain 

( ) ( ) ( )

( ) ( ) ( )

1 21 2

1 2

1 1 1

1 1 1

0 0 0

D D DD D D

D D D D D D

D D D

D D D

c V c k V c k Vc S c k S c k S

N N N N N N
c S c k S c k S

F
N N N

β β βρ β ρ β ρ β

ρ β ρ β ρ β

 − ∈ − ∈ − ∈
+ + + 

 
− − − =  

 
 
 
 

 

( ) ( )( )
( )

( ) ( )( )
( )

( ) ( )( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

1 2

1 2

1 1 1

1 1 1

0 0 0

c c k c k

c c k c k

β ρ ϕ ω ϕ ϕ µ β ρ ϕ ω ϕ ϕ µ β ρ ϕ ω ϕ ϕ µ
ϕ µ π ω ϕ ϕ µ π ω ϕ ϕ µ π ω ϕ

β π ρ ω ϕ β π ρ ω ϕ β π ρ ω ϕ
ϕ µ π ω ϕ ϕ µ π ω ϕ ϕ µ π ω ϕ

 + + − ∈ + + − ∈ + + − ∈
 

+ + + + + + 
− + − + − + 

=  + + + + + + 
 
 
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Similarly, partial differentiation of (5) with respect to I, IC 

and T at at E0 gives 

















−−
−−

−
=

3

2

1

0

0

A

A

A

V

ση
τ

θ

 

The basic reproduction number of Typhoid fever model is 

defined, following Van den Driessche and Watmough, as the 

spectral radius of the next generation matrix, FV
-1

 and it is 

given by: 

SV RRR +=0                                (6) 

Where, 

( )( )
( ) 01131

1231

NAAA

VkkAc
R

D

V θτστσδ
ητηδδτδβ

++
−++∈−=

 

And 

( ) ( )( )
( )

01131

21131213123 1

NAAA

SkkAAkAAkkAc
R

D

S θτστσδ
θσσθρτρρδρδτρδβ

++
+++−−−++

=
 

Here, 
DDD

c

DDD RTIISVN +++++=0  

Hence, 
DDD RSVN ++=0  

Lemma 3.2. The disease free equilibrium (DFE) of the 

Typhoid fever model (1), given by (1) is locally 

asymptotically stable (LAS) if 10 <R and unstable if 

10 >R .  

The threshold quantity 0R is the reproduction number for 

Typhoid fever. It measures the average number of new 

Typhoid fever infections generated by a single Typhoid fever 

infected individuals in a population where a certain fraction 

of infected individuals are treated. 

Endemic Equilibrium  

Solving the system (1) simultaneously when the time 

derivatives are equal to zero gives an expression of the 

equilibrium points. 

( ) ( ) ( )( ) ( ) 01
.

=+∈−+−= tVtStV µλωφ  

( )( ) 01
*** =∈−+−→ VS λωφ

 

( ) *

*
*

1 λµω
φ

∈−++
=→ S

V  

( ) ( ) φωλφωλφµ
φπ

−++++
=∴

**

*V  

( ) ( ) ( ) ( ) 0
.

=++−+= tStVtS φλµωπ  
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( ) 0
*** =++−+→ SV λφµωπ  

*

*
*

λφµ
ωπ

++
+=→ V

S  

( )
( ) ( ) φωλφωλφµ

λφωπ
−++++

++=∴
**

*
*

S  

( ) ( ) ( ) ( ) ( ) ( ) 01 1

.

=−+∈−+= tIAtItVtStI Cθλρλ  

( ) 01 *

1

***** =−+∈−+→ IAIVS Cθλρλ      (7) 

( )( )*****

1

* 1
1

CIVS
A

I θλρλ +∈−+=∴  

( ) ( ) ( ) ( ) ( ) 01 2

.

=−+−= tIAtTtStI CC τλρ  

( ) 01 *

2

*** =−+−→ CIATS τλρ  

( )( )TS
A

IC τλρ +−=∴ **

2

* 1
1  

( ) ( ) ( ) ( ) 03

.

=−+= tTAtItItT Cση  

0*

3

** =−+→ TAII Cση  

( )**

3

* 1
CII

A
T ση +=∴  

( ) ( ) ( ) ( ) 0
.

=−+= tRtTtItR µγα  

0
*** =−+→ RTI µγα  

( )*** 1
TIR γα

µ
+=∴  

Where, * indicates the populations of each variable at the 

equilibrium point. Let the population in each class at the 

steady state be denoted by V*, S*, I*, IC
*, T* and R*. Then, the 

force of infection at the fixed points *λ  is non-negative roots 

of )( *

2

*

1

*

*

* TkIkI
N

c
c ++= βλ  

3. The Optimal Control Model 

Optimal Control (OC) is the process of determining 

control and state trajectories for a dynamic system over a 

period of time in order to minimize a performance index. 

Basic optimal control (OC) problem in Lagrange form can be 

written as:- 

( ) ( )( ) ( ) ( )( )
0

max , , ,
ft

U t
J x t u t f t x t u t dt= ∫  

( ) ( ) ( )( )tutxtgtxts ,,..
.

=                         (8) 

( ) 00 xtx = where J(x(t), u(t)) is performance index or cost 

functional, x(t) state variable, u(t) a set of control variable 

from admissible set U in time  with t0 ≤ t ≤tf x(tf) could be 

free, which means that the value of x(tf) is unrestricted, or 

could be fixed, i.e, x(tf)=xf.  

The possible interventions for Typhoid fever disease can 

be categorized as prevention with vaccination, sanitation and 

personal hygiene, through antibiotic medication of infectious 

individuals as well as screen or separate and treat carriers. In 

this paper, we are taking these interventions as control 

measures on the transmission dynamics of Typhoid fever. 

1) Typhoid fever can be prevented through proper personal 

hygiene and sanitation such as regularly washing hands 

with soap and warm water as well as take care of taking 

contaminated foods and waters. In addition to this, it is 

possible to prevent the transmission of the disease 

through Vaccination. Let the current percentage of 

vaccinating susceptible individuals be 0φ  for some 

0 0ϕ > to protect susceptible from typhoid infection and 

let also assume that the control function u1(t) measures 

the percentage of additional susceptible individuals 

being vaccinated per unit of time. The cost of 

vaccinating individuals becomes expensive as the 

proportion of non-Vaccinated individuals gets smaller. 

So we can add the term 
m

S

V







 as a coefficient for u1
2
 (t). 

Where, V represents vaccinated individuals where as S 

represents non-vaccinated population and m is any 

positive constant integer. Numerical investigations 

suggested to take m=10 for the best fit. Therefore, we 

took m =10. Numerical investigations suggested that 

unrealistic vaccination scheme when the vaccination 

term was allowed to have the more standard quadratic 

form m=2 [9]. Then its application in the dynamics is 

modeled by simply replacing the parameter φ  in (1) by 

0φ +u1(t). But due to limitation of resources u1(t) is 

restricted to its maximum, Its maximum vaccination 

rate 0max >φ  or maxφ is maximum attainable value of 

u1(t) at time t, where 0 ≤ 0φ +u1 ≤ maxφ ≤ 1[5]. 

2) Typhoid fever can usually be successfully treated with a 

course of antibiotic medication at hospitals or at home. 

Any blood, stool or urine samples can help to determine 

the strain of the infection during diagnosis. A course of 

antibiotic tablets may be prescribed for 7 to 14 days to 

take at home and recover from infection. Where as if 

the patient has severe symptoms of typhoid fever, such 

as persistent vomiting, sever diarrhea or a swollen 

stomach, hospital admission usually recommended. In 

hospitals, infected individuals will have antibiotic 

injections and they also be given fluids and nutrients 

directly into a vein through an intravenous drip. Most of 

the patients respond well to hospital treatment and 
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improve within three to five days. However, it may be 

several weeks until patients become well enough to 

leave hospital. While people who are treated for typhoid 

fever experience a relapse, which is when disease 

symptoms return. At this time, further treatment with 

antibiotic is usually recommended. After symptoms 

have passed, an individual should have another stool 

test to check if there are still salmonella Typhi bacteria 

present in faeces. If there are, that individual becomes a 

carrier of the typhoid infection and that may need to 

have a further 28 day course of antibiotics to flush out 

the bacteria. Hence, by considering this, let assume that 

the control function u2(t) measures the rate at which, 

additional infectious individuals recruited to treated 

class at any time t. If the current percentage of treating 

infectious individuals is 0η , then this control will be 

seen in the dynamics as 0η + u2(t) instead of η  in (1). 

But due to economical and logistic reasons, there are 

limitations on the maximum rate at which individuals 

are recruited to get treatment at each time period. Thus,

maxη represent the maximum rate of recruitment for 

treatment of infected individuals.  

Hence, 0 ≤ 0η +u2(t) ≤ maxη ≤ 1.  

Even if it is difficult and challenging to screen or identify 

carriers from susceptible populations, it is possible to bring 

behavior change on infectious individuals to check whether 

the bacteria totally removed from their faeces or not at the 

end of treatment period. Assume that the current percentage 

of screening or identifying carriers and bring them to 

treatment is 0σ , then this control can be seen in the 

dynamics as 0σ +u3(t)  instead of σ in (1). Since there are 

economic and logistic reasons, there are limitations on the 

maximum rate at which carrier individuals are identified and 

recruited to get additional treatment at each time period. Thus 

maxσ  represent the maximum rate of recruitment for 

treatment of carriers. Hence, 0 ≤ 0σ +u3(t) ≤ maxσ  ≤ 1. 

Using the above described control parameters, the system 

of the disease dynamics can be written as: 

( ) ( )( ) ( ) ( )( ) ( )tVtStutV µλωφ +∈−+−+= 110

.

 

( ) ( ) ( )( ) ( ) ( ) ( )tStStutVtS λµφωπ +−+−+= 10

.

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )tIatItutItVtStI C 120

.

1 −+−∈−−= ηθλρλ   (9) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )tTatItutTtStI CC 230

.

1 −+−+−= στλρ
 

( ) ( )( ) ( ) ( )( ) ( ) ( )tTatItutItutT C 33020

.

−+++= ση
 

( ) ( ) ( ) ( )tRtTtItR µγα −+=
.

 

( )1 1 2 3 1 2, , C

c
a a a and I k I k T

N

βδ µ α θ µ µ γ τ δ λ= + + = + = + + + = + +
 

 

( ) ( ) ( ) [ ]fttallfortuandtutu ,000,0 0max30max20max1 ∈−≤≤−≤≤−≤≤ σσηηφφ
 

Thus, with (9) and given initial population size of each 

compartment V0, S0, I0, IC0, T0, R0; Our main goal is to find 

or propose the best strategy in terms of either in combination 

or independent efforts of Vaccination, treatment Infective, 

screening or identification as well as treatment of carriers 

that will minimize the total number of new infections in the 

planning period and minimize those people who will die from 

the infectious and treatment classes while at the same time 

minimize the cost of Vaccination, treatment of Infective and 

screening as well as treatment of carrier population. We 

made the optimal control problem a fixed terminal time 

problem because most governments cannot continue the 

implementation of the interventions indefinitely; rather they 

want the disease eradicated or driven below specified level 

within a set time frame. If we know the initial populations 

size (V0, S0, I0, IC0, T0, R0) and the control trajectory, i.e., the 

values of u(t) over the whole time interval 0 < t < T, then we 

can integrate (9) to get the state trajectory, i.e., the values of 

V(t), S(t), I(t), IC(t), T(t) and R(t) over the same time interval. 

We want to choose the control trajectory so that the state and 

control trajectories minimize the objective functional, or 

simply the objective function [12]. 
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where the constants C1, C2 and Bi, i=1, 2, 3 can be considered as 

values that will balance the units of measurement and also may 

indicate the importance of one type of intervention over the other. 

C1I and C2IC represent the number of infectious and the number 

of carriers respectively, whereas 2

3
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represents the costs of the Vaccine, treatment cost for infectious 

individuals, treatment cost of carriers and the cost related to 

screening or identification of carriers respectively. The 

Vaccination cost could include the cost of the Vaccine, the 

Vaccine storage cost, costs of lab tests that could used to 

determine a person's immune status prior to Vaccination, other 

related overheads, etc. The treatment cost could include the cost of 

the medical tests and diagnosis, drug cost, hospitalization cost, etc. 

The cost function variables are squared to amplify the effects of 
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large variations and to de-emphasize contributions of small 

variations. Since implementation of any public health intervention 

has increased costs with reaching higher fraction of the population, 

we take a non-linear cost function like the quadratic. So we seek 

to find an optimal controls 
*

3

*

2

*

1 ,, uuu  such that  

J ( ) ( )321

*

3

*

2

*

1 ,,min,, uuuJuuu
U

=  

Where U={(u1(t), u2(t), u3(t))∈R
3 

| u1(t), u2(t), u3(t)  

Are Lebesgue integrable and (11) 

u1(t)∈(0, maxφ - 0φ ), u2(t) ∈(0, maxη - 0η ), u3(t) ∈  (0, maxσ - 0σ )} 

Existence and Characterization of Optimal Control Solution 

Theorem 4.1. (Existence of optimal control solution). 

There exists an optimal control u1
*
(t), u2

*
(t), u3

*
(t) and 

corresponding solutions V
*
, S

*
, I

*
, IC

*
, T

*
 and R

*
 and  to the 

state initial value problem (9) - (11) that minimizes J(u1, u2, 

u3) over U. 

Proof. The non-trivial requirements on the set of 

admissible controls U and on the set of end conditions are 

verified from Fleming & Rishel's theorem. 

A. The set of all solutions to system (9) - (11) with 

corresponding control functions in U is non-empty. 

B. The state system can be written as a linear function of 

the control variables with coefficients dependent on 

time and the state variables. 

C. The integrand L in (10) from objective function with  
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is convex on U and additionally satisfies L(x,u,t) ≥ 1δ
β|),,(| 321 uuu -

2δ  where 01 >δ and 0>β .In order to 

establish condition A, we refer to Picard-Lindelof’s theorem 

from [23]. If the solutions to the state equations are bounded 

and if the state equations are continuous and Lipschitz in the 

state variables, then there is a unique solution corresponding 

to every admissible control U. 

It is indicated that the total population is bounded below 

by a positive number N0 and bounded above by 
µ
π

 as well 

as each of the state variables are bounded. With the bounds 

established above, it follows that the state system is 

continuous and bounded. It is equally direct to show the 

boundedness of the partial derivatives with respect to the 

state variables in the state system, which establishes that the 

system is Lipschitz with respect to the state variables [24]. 

This completes the proof that condition A holds. Condition B 

is verified by observing the linear dependence of the state 

equations on controls u1; u2 and u3. Finally to verify 

condition C, since any combinations of convex functions are 

also convex the integrand u1
2
(t), u2

2
(t), u2

3
(t) are convex on 

U. Since a linear combination of convex functions is also 

convex the integrand L(x, u, t) is convex on U.  

To prove the bound on the L we note that by the definition 

of U, we have 
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The necessary conditions that an optimal solution must 

satisfy come from Pontryagin's maximum principle (PMP). 

This principle converts (9)-(11) into a problem of minimizing 

a Hamiltonian; H with respect to u1, u2, u3. Then the 

Hamiltonian is given by 
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( ) ( ) ( ) ( ) ( )( ) ( ) ( )[ ]tIatItutItVtSh C 1203 1 −+−+∈−++ ηθλρλ                                             (12) 

( ) ( ) ( ) ( )( ) ( ) ( )[ ]tIatItutTtSh CC 2304 1 −+−+−+ στλρ  

( )( ) ( ) ( )( ) ( ) ( )[ ]tTatItutItuh C 33205 −++++ ση
 

( ) ( ) ( )[ ]}tRtTtIh µγα −++ 6
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Where, 
if  is the right hand side of the differential equation of i

th 
state variable of (9) x=(S, V, I, IC, T, R), u=(u1, u2, u3), h=(h1, 

h2, h3, h4, h5, h6). If (u1
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*
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) is an optimal control yet to be determined, then from Pontryagins Maximum Principe we have: 
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The adjoint equation: 
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4. Numerical Simulation and Results 

We need to show/simulate the result by using fourth order 

Runge-Kutta method. The process begins with an initial 

guess on the control variable. Then, the state equations are 

simultaneously solved forward in time and the adjoint 

equations are solved backward in time. The control is 

updated by inserting the new values of states and adjoints 

into its characterization, and the process is repeated until 

convergence occurs. Considering x and λ  vector 

approximations for the state and the adjoint respectively. The 

main idea of the algorithm is described as follows: 

Step 1:- Make an initial guess for u over the interval u=0 is 

almost always sufficient) and store the initial guess as u; 

Step 2:- Using the initial condition x(t0)=x0 and the values 

for u stored in step 1, solve x forward in time according to its 

differential equation in the optimality system; 

Step 3:- Using the transversality condition )( ftλ =0 and 

the values for u and x, solve x backward in time according to 

its differential equation in the optimality system; 

Step 4:- Update u by entering the new x values into the 

characterization of the optimal control; 

Step5:-Verify convergence: if the variables are sufficiently 

close to the corresponding in the previous iteration, then 

output the current values as solutions, else return to Step 2. 

To examine the impact or role of each control strategy on 

eradication of the disease, we used the following strategies. 

Applying Vaccination only (u1) as an intervention, 

Applying the treatment of infectious only (u2) as an 

intervention, 

Applying screening and treatment of carriers only (u3) as 

an intervention, 

Implementing Vaccination (u1) and treatment of infections 

(u2) intervention, 

Implementing Vaccination (u1) and screening as well as 

treatment of carriers (u3) intervention, 

Implementing treatment of infectious (u2) and that of 

carriers after screening (u3) intervention. 

Implementation of all controls 

Implementation without a control 

For simulation purpose the author used the following 

initial value as well as coefficients of the state and controls. 

S0=1000, I0=200, V0=50, IC0=100, T0=60, R0=70. 

Table 1. Parameter values for the model. 

Parameters Description Values Source    
π Recruitment rate 0.0077 [20] 
β Probability of disease transmission 0.12 Assumed 
µ Natural death rate 0.028 Assumed 
ε Efficacy of the vaccine 0.80 [11] 
φ Vaccination rate 0.90 Assumed 
ω Waning rate 0.33 Assumed 

ρ 
Proportion of susceptible becomes 

newly infected 
0.072 [20] 

C Contacts rate 10 [26] 

K1, k2 Modification parameter 1-1.2 Varied 
δ1 Disease induced deaths of 0.07 Assumed 

Parameters Description Values Source    
infectious 

δ Disease induced deaths of carriers 0.05 Assumed 
η Treatment rate of invectives 0.09 Assumed 
σ Treatment rate of carriers 0.015 Assumed 

γ 
Recovery rate of treated 

individuals  
0.025 Assumed 

α Recovery rate of invectives 0.015 Assumed 

θ 
Progression rate of carriers to 

symptomatic invectives 
0.011 [25] 

 

Figure 1. The graph of prevalence. 

The above figure 1 indicates that, the prevalence of the 

disease decrease and will be zero due to the implementation 

of all control measures (implementation of vaccination, 

treatment of infection, screening and treatment of carriers) 

with minimum cost as indicated in figure 2 below. On the 

other way, the absence of any control intervention rises up 

the prevalence as indicated in figure 1 above. 

 

Figure 2. Marginal cost of intervention for all control measure. 

Since we need an interventions that decrease the 

prevalence and the number of infective with minimum cost 

of interventions, the above figure indicates that the 

implementation of all controls helps to decrease the number 

of infective and the prevalence of the disease with the least or 
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minimum cost of interventions. 

The number of carrier population decreased significantly 

due to implementation of the following control measures. 

These include implementation of all controls, implementation 

of screening of carriers and treatment of both infectious and 

carriers in the absence of vaccination; implementation of 

vaccination and screening as well as treatment of carriers in 

the absence of treatment for infection; and implementation of 

screening and treatment of carriers in the absence of the other 

interventions. 

 

Figure 3. Graph of carrier population  

In the other corner, implementation of only treatment of 

infections; implementation of vaccination and treatment of 

infective; only implementation of vaccination; and absence 

of any control will not decrease the number of carrier 

population. Since we need the interventions or control 

measures that can decrease the number of carrier population 

to the optimal level at the same time decrease the cost of 

interventions, the best control strategy to decrease the 

number of carriers as well as the cost of interventions 

indicated in the figure 3 above an implementation of 

vaccination, treatment of infection, screening and treatment 

of carriers. 

 

Figure 4. the graph of Typhoid infectious population. 

The number of infectious individuals falls down and 

approaches zero as indicated in the above figure 4 due to the 

presence of the following control measures. These are the 

presence of all controls; implementation of vaccination and 

screening as well as treatment of carriers. But an 

interventions that could decrease the prevalence of the 

disease with minimum cost of interventions as indicated in 

figure1 and figure 2 above is an implementation of all 

controls. Therefore, based on the simulation result of the 

model, the author concludes and recommends the following. 

5. Conclusions 

In this study, a deterministic mathematical model for the 

transmission dynamics of Typhoid fever disease is proposed. 

The qualitative analysis of the model shows that the solution of 

the model is bounded and positive and also the equilibrium 

points of the model are obtained. The basic reproduction number 

is calculated for the model analytically. Formulation of optimal 

controls and the existence of the optimal control solution was 

analyzed. Three control measures such as vaccination; treatment 

of typhoid infectious population, screening and treatment of 

carriers were applied to the model to investigate the roles of 

control measures independently and as combination. The 

proposed control strategies investigated numerically and results 

are displayed numerically using fourth order Runge-Kutta 

method from Matlab software. Implementation of Vaccination 

only as preventive strategy, implementation of treatment for 

infective as well as identify and treat carrier populations 

independently will not help to control the transmission of 

Typhoid fever. Individuals should have to be convinced properly 

to visit health centers soon after the end of treatment, whether 

their faeces is free from the bacteria or not for further treatment. 

Simulation result indicated that implementation of the combined 

control measures helps to decrease the prevalence of the disease. 

Therefore, the author concludes that adequate implementation of 

all control measures (Vaccination, treatment of infections, screen 

and treat those infected individuals) would be a very cost 

effective mechanism to decrease the prevalence or eradicate the 

disease from the community. This paper is hypothetical and 

requires detailed study involving sensitivity analysis and 

parameter estimations to improve model predictions.  
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