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Abstract: Most of the applied psychological researchers usually conduct studies requiring application of advanced 

mediation models, such as multiple mediator models. However, in designing research, most of the applied researchers largely 

ignore the statistical power of their studies. As a result, power analyses are ignored when researchers report their results. It is 

well recognized that low power is one possible reason for no statistically significant result being identified in a study. 

Moreover, studies with low statistical power have been labeled “scientifically useless”. The current study describes how to 

apply Monte Carlo simulation to test the type I error rates and statistical power of mediating effects in a multiple mediator 

model. Findings from the current simulation study indicated that the effect sizes of mediating effects and sample sizes were 

two important factors influencing type I error rates of indirect effects in a multiple mediator model. Furthermore, the 

requirement of sample size and desired power level were strongly depended on the effect size of the indirect effect. 
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1. Introduction 

One central goal of science is to understand how 

processes work rather than simply to establish whether a 

total effect exists [1]. In other words, it is important for 

applied researchers to investigate whether the cause-effect 

relation between two variables is accounted for by any 

intervening variables [1]. As a result, the analyses of 

mediating effects are being commonly and widely discussed 

in psychological studies and sociological researches, and 

other research areas such as clinical medicine and 

epidemiology [2, 3].  

Researchers from different disciplines have different 

understandings about mediating effects [4]. Psychological 

researchers interpret the X →W→ Y relation as mediation [5], 

and such indirect relation is often termed as indirect effect by 

researchers from sociology [6]. Furthermore, the “intermediate 

endpoint effect” is usually used for describing the intervening 

relation by researchers from epidemiology [7]. 

 

Figure 1. A single mediator model 

A single mediator model is presented in Figure 1 [5, 8]. 

The total effect of X on Y is shown in the top panel of Figure 

1, and the path coefficient �  is used for describing the 

relation between X and Y. In the bottom panel of Figure 1, a 

new variable M is added into the relation between X and Y, 

and this new variable is called mediating variable or 

mediator. The direct effect of X on Y is described by path 

coefficient ��. Moreover, the path coefficient � is used for 

describing the X →M relation, and the M→ Y relation is 

represented by the path coefficient � . Additionally, the 

indirect effect of the initial variable X on the outcome 

variable Y via the intervening or mediator variable M is 

defined as ��, which is the product of path coefficient � 

and path coefficient � . The total effect of X on Y is 
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expressed by the sum of the indirect effect and the direct 

effect: � = �� + ��. The following regression equations are 

used for describing the single mediator model that presented 

in Figure 1: 

� � �� 	 �
 	 ��    (1) 

� � �
 	 �
 	 �
    (2) 

� � �� 	 ��
 	 �� 	 ��    (3) 

Though the single mediator model proposed by Baron 

and Kenny is widely applied [5], most of the hypotheses of 

actual social science studies or psychological studies are 

complicated. That is to say the cause-effect relation 

between two variables is accounted for by several 

mediators. In this manner, a single mediator model should 

be replaced by a multiple mediator model [9].  

 

Figure 2. A multiple mediator model 

A multiple mediator model with j mediators is shown in 

Figure 2 [10]. The upper panel of Figure 2 represents the 

total effect of X on Y (path coefficient �). Moreover, the 

lower panel of Figure 2 expresses the direct effect of X on Y 

(path �� ). Additionally, the indirect effects of X on Y 

through the j mediators are shown in the lower panel of 

Figure 2. The mediating effect of each mediated pathway in 

a multiple mediator model is defined as ����（ � = 1 to j）, 

which is the product of path coefficient ��  and path 

coefficient �� （ � = 1 to j） [10]. The total mediating 

effect of a multiple mediator model is defined as 

∑ （��� ��）（ � = 1 to j）, and the total effect of X on Y is 

calculated as � � �� 	 ∑ （��� ��） . Of note, multiple 

mediator models have more advantages than single 

mediator models [11]. For example, the student drug 

addiction prevention strategy based on school level 

includes a plurality of intermediaries, such as resistance 

skills, social norms, attitude about drugs and 

communication skills. The multiple mediator model is likely 

to provide a more accurate assessment of mediation effects 

in many research contexts. [11]. However, most of the 

applied researchers only focus on how to fit their data to 

the models that are in accordance with their theoretical 

assumptions, but they largely ignore the statistical power of 

their studies when designing their researches. As a result, 

power analyses are ignored when researchers report their 

results [12]. 

It is well recognized that low power is one possible 

reason for no statistically significant result being identified 

in a study [13]. Studies with low statistical power have 

been labeled “scientifically useless” [13-15]. Discussions 

about statistical power of single mediator models are 

commonly seen in mediation literature (e.g. [4, 8, 11, 16, 

17]). However, only a handful of published studies focus on 

statistical power of complex mediation models, such as 

multiple mediator models [9, 18]. Only with adequate 

power, the sample size in a study will be sufficient to find 

and confirm a significant mediating effect which is of small 

effect size [9]. As a result, it is important to perform power 

analyses for multiple mediator models.  

Statistical power, which means the probability of 

accepting an alternative hypothesis after rejecting a false 

null hypothesis, is an important concept of statistics. 

Accordingly, statistical power is defined as “1 － 

probability of a type II error” [19, 20] [21]. Moreover, in 

psychology, a desirable power is at 0.8 [8]. One unique 

function of statistical power is to calculate required sample 

size to reach 0.8 power to reject a false null hypothesis [9]. 

If the power in a study is less than 0.8, a researcher should 

consider increasing the sample size [22]. Under certain 

circumstances, higher power is also desired [9, 23]. In fact, 

power analyses are only meaningful when conducted prior 

to data collection [24]. In light of this, it is important for a 

researcher to carry out power analysis to confirm how 

many samples are required in the hypothesis phase of a 

study [23]. 

As a result, it is of importance to perform power analysis 

in the design phase of a research to avoid choosing a 

sample size that is too small to find or underestimate the 

existing small real effect, which possibly resulting in a 

study with inadequate sensitivity, or too large to be costly 

[9]. Previous research has discussed on how to apply Monte 

Carlo simulation to detect mediating effects for complex 

mediator models [9], the current study is purported to 

investigate statistical power for a multiple mediator model 

with three mediators. 

2. Monte Carlo Simulation 

In this study, power analysis was performed by Monte 

Carlo simulation via Mplus [25]. Monte Carlo simulation is 

a flexible and ease of implementation method [26] [9], 

which enables researchers to flexibly study on how sample 

sizes, different settings of population parameters, normality 

of distributions and missingness of data may affect 

statistical power [27]. This powerful and recommendable 

method can be easily conducted in software programs that 

have simulation capabilities, such as Mplus, SAS, LISREL 

and EQS [9].  
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Muthén and Muthén suggested that when performing 

Monte Carlo simulation, a researcher should first specify 

which model to be studied. Once the model is chosen, it is 

important to select population values and have the 

population parameters fixed to the selected values. Of note, 

the selection of population values should base on theory or 

previous research. Muthén and Muthén suggested that 

previous studies can provide researchers the best estimates 

of population values [25]. 

Once the model is chosen, and after all parameters are 

fixed to the selected values, numerous samples are drawn 

from the specified population. Each sample drawn from the 

population is fitted to the chosen model, and then the 

parameters of the chosen model are estimated as well as 

recorded. By repeating this process thousands of times, 

some of the parameter estimates in some samples will be 

significant, whereas others will not. When replicating the 

sampling processes adequately, the power estimate is the 

empirical rate of statistical significance averaged across all 

replications [9, 25]. Muthén and Muthén suggested that at 

least 500 replications should be performed, and with 

increasing replications (such as 10,000 replications), the 

result of the Monte Carlo simulation converges will be 

more precise [28]. 

2.1. Simulation Study 

Mackinnon suggested a simulation study with a binary 

independent variable led to the same results as for the 

continuous independent variable case [17]. In light of this, 

the independent variable in the current simulation study 

was simulated as a binary independent variable. The 

multiple mediator model investigated in the current 

simulation study had one independent variable X, three 

parallel mediator variables ��, �
 and ��, and a single 

dependent variable Y. All mediating effects tested in the 

current study had causal paths that begin with the initial 

variable X, for a total of three two-path mediating effects 

and one direct effect. Generally, the relationship between 

two variables can be either positive or negative. In the 

current study, all relations were set to be positive.  

As presented in Figure 3, all variables and paths in the 

multiple mediator model were named according to the 

common identification schemes in the mediation literature 

[18, 29]. The paths linking X to the three mediators ��, 

�
 , ��  were denoted as �� , �
 , and ��  respectively. 

The residuals of �� , �
  and ��  were termed as �
� , 

�

 and �
� respectively. The paths linking ��, �
 and 

�� to Y were denoted as ���, ��
 and ��� respectively. 

The direct effect of X on Y was denoted as ��, and �� was 

termed as the residual of Y. Furthermore, the mediating 

effect of X on Y through ��  was expressed as  ����� . 

Moreover, �
��
 represented the indirect effect of X on Y 

through �
. Additionally, the indirect effect of X on Y 

through ��  was defined as ����� . For clarity, the 

intercepts were omitted in the current simulation study 

[18].  

 

Figure 3. A multiple mediator model with three mediators 

The three mediators were represented by the following 

regression equations. 

The first mediator �� was given by: 

�� � ��
 	 �
�    (4) 

The second mediator �
 was given by: 

�
 � �

 	 �

     (5) 

The third mediator �� was given by: 

�� � ��
 	 �
�     (6) 

Previous simulation study showed that, when the 

mediator was controlled, the direct effect of X on Y had no 

influences on the effect size of the mediating effect. 

Accordingly, the path coefficient �� was fixed constant at 

a value of 0 to simplify the model in the current simulation 

study [17]. The following regression equation was given to 

represent dependent variable Y: 

� � ����� 	 ��
�
 	 ����� 	 ��  (7) 

2.2. Population Values 

In the current study, the independent variable X was 

simulated as a binary variable with an even split. 

Furthermore, the three mediator variables and the 

dependent variable Y were generated as continuous 

variables. In order to simplify the model, the means and 

variances of all the continuous variables were generated as 

0 and 1 respectively. The residual variances of the 

dependent variables were fixed so that the total variance of 

all variables was 1 [9]. Cohen’s guidelines for R
2
 metric, 

the amount of explained variance in the outcome, were 

used to generate the path coefficients [19]. Some 

covariance algebra was used in the current study to 

determine the proper values for the residual variances and 

effect sizes in Mplus [9]. The following path coefficients 

were chosen to show the computational details and to 

express how the path coefficient and residual variance of 

each variable were generated. The R
2
 of ��, ���, �
, ��
, 

�� , ���  were set as 26% (large effect), 13% (medium 

effect), 2% (small effect), 26% (large effect), 13% (medium 

effect), 2% (small effect) respectively. Additionally, the 

direct effect of X on Y was fixed to 0.  

The independent variable simulated in the current study 

was a binary variable with an even split. As a result, the 
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proportions of the two possible values of the binary 

variable were 50% and 50% respectively. The residual 

variance of 
 was: 

����
� � 0.5 � �1 � 0.5� � 0.25    (8) 

According to equation (4), ���（��）was given by: 

���（��） � ��
 � ���（
） 	  ���（�
�）  (9) 

As noted previously that ���（��） � 1, thus: 

�� � ��  !"#（$%&）

�!"#（'）
               (10) 

(
 � 0.26，and ���（��） � 1, thus: 

�����
�� �  ������� � (
 �  1 � 0.26 � 0.74  (11) 

According to equation (10), �� was solved as 1.02. 

By using the same formulas shown above, the 

���（�

）, �
, ���（�
�）and �� were solved as 0.87, 

0.721, 0.98 and 0.283 respectively. 

The equation of the variance of Y was expressed as: 

������ �  ���
 ������� 	 ��

 �����
� 	 ���
 ������� 	 �������   (12) 

The variances of all continuous variables were fixed 

equally to a value of 1, thus ������ was solved as: 

1 �  ���
 � 1 	 ��

 � 1 	 ���
 � 1 	 �������    (13) 

The (
 chosen for ���, ��
 and ��� were 0.26, 0.13, 

0.02 respectively, thus: 

��� � √0.26 � 0.51            (14) 

��
 � √0.13 � 0.36            (15) 

��� � √0.02 � 0.14    (16) 

Put the results back to equation (13), ���（��）was 

solved as 0.59. 

The distribution trend of the data was simulated as normal 

distribution in the current simulation study. The significance 

of the mediating effect was detected by the sobel test that 

Mplus performs by default. The simulation method used in 

the current study can be employed in actual applied settings, 

but researchers should note that the selection of estimates of 

parameters should base on pilot studies or previous 

researches. When more information is available, the small, 

medium, and large categorization should also be avoided [9]. 

2.3. Type I Error Rates 

The values of the mediating effects were fixed to zero 

(���� � 0，� � 1、2、3� to test the type I error rates of 

the indirect effects in all combinations when sample sizes 

were 100, 200 and 500 respectively. In the first 

combination, all the path coefficients were fixed to 0 (�� = 

�
  = ��  = ���  = ��
  =  ��� = 0). In the second 

combination, the path coefficients of the independent 

variable X to the three mediator variables were fixed 

equally to 0 (�� = �
 = �� = 0), but the path coefficients 

of the three mediator variables to the dependent variable Y 

were generated as large effect, medium effect and small 

effect respectively (���  = 0.51, ��
  = 0.36 and  ��� = 

0.14). In the third combination, �� , �
  and ��  were 

generated as large effect, medium effect and small effect 

respectively (�� = 1.02, �
 = 0.721, �� = 0.283), but the 

path coefficients ���, ��
 and ��� were generated as 0 

(��� = ��
 = ��� = 0). In this study, 10,000 replications 

were used for each combination to insure that stability has 

been reached [25]. The type I error rate of the indirect 

effect in Monte Carlo simulation is regarded as the 

proportion of 10,000 replications for which the 95% 

confidence interval will not contain the value of zero. 

Accordingly, the empirical type I error rates would be 

expected to be closer or equal to the true alpha 0.05, or 

fulfill Bradley’s liberal criterion that type I error rates 

should range between 0.025 and 0.075 [30].  

The results of the type I error rates of the 3 combinations 

over the 10,000 replications were presented in Tables 1, 2 

and 3 respectively. When �� = �� = 0 (� � 1、2、3�, the 

type I error rates of all mediating effects in the first 

combination were quite below the value of 0.05, and did 

not fulfill Bradley’s liberal criterion as well. Although the 

sample size was increased to 500, the type I error rates of 

all indirect effects in Combination 1 were 0. The type I 

error rates of �����, �
��
 and ����� in Combination 2 

and Combination 3 were 0.044, 0.030, 0.004, 0.047, 0.028 

and 0.002 respectively when the sample size was 100. 

Furthermore, whether in small samples (N = 100) or large 

samples (N = 500), the type I error rates of �����  in 

Combination 2 and Combination 3 were quite close to 0.05. 

Additionally, the type I error rates of �
��
  in 

Combination 2 and Combination 3 in all sample sizes 

fulfilled Bradley’s liberal criterion [30]. However, the type 

I error rates of ����� in Combination 2 and Combination 

3 were far from 0.05 in all sample sizes. Furthermore, when 

the sample size was increased, all type I error rates in 

Combination 2 and Combination 3 were elevated as well. 

Moreover, when increasing the sample size to 500, the type 

I error rates of ����� and �
��
 in Combination 2 and 

Combination 3 reached or closed to an alpha of 0.05 and 

the type I error rate of ����� in Combination 2 fulfilled 

Bradley’s liberal criterion. However, the type I error rate of 

����� in Combination 3 was 0.014 when sample size was 

500, which was too conservative.  

These findings indicated that different effect sizes of �� 
and ��  and different sample sizes were important factors 

influencing the type I error rates of mediating effects in a 

multiple mediator model. 
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Table 1. Type I Error Rates in Combination 1 

Combination 1 

Sample Size 

N = 100 N = 200 N = 500 

Type I  

Error Rate 

Type I  

Error Rate 

Type I  

Error Rate 

Total indirect effect = 0 0.001 0.000 0.000 

α� = β�� = 0 0.000 0.000 0.000 

α
 = β�
 = 0 0.000 0.000 0.000 

α� = β��  = 0 0.000 0.000 0.000 

Table 2. Type I Error Rates in Combination 2 

Combination 2 

Sample Size 

N = 100 N = 200 N = 500 

Type I 

Error Rate 

Type I  

Error Rate 

Type I  

Error Rate 

Total indirect effect = 0 0.047 0.045 0.045 

α� = 0, β�� = 0.51 0.044 0.049 0.048 

α
 = 0, β�
 = 0.36 0.030 0.041 0.043 

α� = 0, β��  = 0.14 0.004 0.009 0.025 

Table 3. Type I Error Rates in Combination 3 

Combination 3 

Sample Size 

N = 100 N = 200 N = 500 

Type I 

Error Rate 

Type I 

 Error Rate 

Type I 

 Error Rate 

Total indirect effect = 0 0.044 0.049 0.050 

α� = 1.02, β�� = 0 0.047 0.049 0.050 

α
 = 0.72, β�
 = 0 0.028 0.038 0.046 

α� = 0.283, β��  = 0 0.002 0.004 0.014 

2.4. Power Analysis 

Three combinations, Combination 1 (�� � 1.02 (large 

effect), �
 � 0.721  (medium effect), �� � 0.283 (small 

effect), ��� � 0.51 (large effect), ��
 � 0.36 (medium 

effect), ��� � 0.14 (small effect)); Combination 2 

( �� � 0.283 (small effect), �
 � 0.721 (medium effect), 

�� � 1.02 (large effect), ��� � 0.36 (medium effect), 

��
 � 0.14 (small effect), ��� � 0.51 (large effect)) and 

Combination 3 ( �� � 1.02  (large effect), �
 �
0.283 (small effect), �� � 0.721 (medium effect), 

��� � 0.14 (small effect), ��
 � 0.51 (large effect) , 

��� � 0.14 (small effect)) were generated in this simulation 

study. The power of every indirect effect in each combination 

was estimated over 10,000 replications in sample sizes of 

100, 200 and 500 respectively.  

Tables 4, 5 and 6 presented the results of the power 

estimates of different indirect effects in Combinations 1, 2 

and 3 respectively. Even if the sample size was small 

(N=100), the power of the total indirect effects in 

Combination 1 and Combination 2 reached a level of 1. 

Additionally, the power of the total indirect effect in 

Combination 3 was below 0.8 when the sample size was 

100. However, each of the mediated pathways showed us 

different information. Take Combination 1 as an example. 

The power of total mediating effect in Combination 1 was 

extremely high at 1.000 in a small sample (N = 100), but 

the power to detect the mediating effect ����� were low at 

0.038 and 0.175 when the sample sizes were 100 and 200 

respectively. The power of ����� in Combination 1 

reached at 0.770 when the sample size was increased to 500, 

but this power was still lower than 0.8. These findings 

indicated that when the mediating effect was large, a small 

sample size can acquire adequate power to detect 

significant mediating effect. In Combination 1, when 

����� � 0.520, the power of ����� reached 1.000 when 

the sample size was 100, which means that a total sample 

size of at least 100 was required to reach the power of 

1.000 to detect significant mediation. However, the power 

of �����  in Combination 2 was only 0.231 when the 

sample size was 100. When increasing the sample size to 

500, the power of ����� in Combination 2 was increased 

to 0.882, which was slightly higher than the desired 0.8 

power. These findings were consistent with previous 

research [8]. 

Table 4. Power to Detect Significant Mediating Effects in Combination 1 

Combination 1 

Sample Size 

N = 100 N = 200 N = 500 

Power Power Power 

Total indirect effect = 0.819 1.000 1.000 1.000 

α� � 1.02, β�� � 0.51, α�β�� � 0.520 1.000 1.000 1.000 

α
 � 0.721, β�
 � 0.36, α
β�
 � 0.260 0.918 1.000 1.000 

α� � 0.283, β�� � 0.14, α�β�� � 0.040 0.038 0.175 0.770 

Table 5. Power to Detect Significant Mediating Effects in Combination 2 

Combination 2 

Sample Size 

N = 100 N = 200 N = 500 

Power Power Power 

Total indirect effect = 0.723 0.999 1.000 1.000 

α� � 0.283, β�� � 0.36, α�β�� � 0.102 0.231 0.497 0.882 

α
 � 0.721, β�
 � 0.14, α
β�
 � 0.101 0.268 0.612 0.961 

α� � 1.02, β�� � 0.51, α�β�� � 0.520 1.000 1.000 1.000 
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Table 6. Power to Detect Significant Mediating Effects in Combination 3 

Combination 3 

Sample Size 

N = 100 N = 200 N = 500 

Power Power Power 

Total indirect effect = 0.388 0.665 0.929 1.000 

α� � 1.02, β�� � 0.14, α�β�� � 0.143 0.268 0.497 0.885 

α
 � 0.283, β�
 � 0.51, α
β�
 � 0.144 0.257 0.502 0.889 

α� � 0.721, β�� � 0.14, α�β�� � 0.101 0.233 0.547 0.929 

 

The results of the exact sample sizes reaching 0.8 power 

to detect significant mediating effects in each of the 

combinations were presented in Table 7. In Combination 1, 

the indirect effect ����� was at 0.8 power when sample 

size was 524, which indicated that 524 samples were 

needed to have 80% probability to accept an alternative 

hypothesis after rejecting a false null hypothesis. Moreover, 

the power of the indirect effects ����� and �
��
 reached 

a level of 1.000. These findings confirmed that a smaller 

sample size is required to reach 0.8 power to detect 

significant mediating effect if the effect size of the 

mediating effect is large. However, if the indirect effect was 

small, a larger sample size is required to detect significant 

mediating effect.  

Muthén and Muthén suggested that several criteria are 

examined to determine sample size. Firstly, the parameter 

estimate bias and standard error bias should not exceed 10% 

for any parameter in the model. Secondly, the standard 

error bias for the parameter for which power is being 

assessed should not exceed 5%. Thirdly, the coverage 

should range between 0.91 and 0.98. If these conditions are 

met, the sample is chosen to keep power close to 0.8 [25]. 

Table 7. Exact Sample Sizes Reaching 0.8 Power to Detect Significant Mediating Effects in the 3 Combinations 

Combination 1 
Power 

Combination 2 
Power 

Combination 3 
Power 

Sample Size (N = 524) Sample Size (N = 396) Sample Size (N = 392) 

Total indirect effect = 0.819 1.000 Total indirect effect = 0.723 1.000 Total indirect effect = 0.388 0.999 

α� � 1.02, β�� � 0.51, α�β�� �
0.520 

1.000 
α� � 0.283, β�� � 0.36, α�β�� �
0.102 

0.800 
α� � 1.02, β�� � 0.14, α�β�� �
0.143 

0.869 

α
 � 0.721, β�
 � 0.36, α
β�
 �
0.260 

1.000 
α
 � 0.721, β�
 � 0.14, α
β�
 �
0.101 

0.912 
α
 � 0.283, β�
 � 0.51, α
β�
 �
0.144 

0.800 

α� � 0.283, β�� � 0.14, α�β�� �
0.040 

0.800 
α� � 1.02, β�� � 0.51, α�β�� �
0.520 

1.000 
α� � 0.721, β�� � 0.14, α�β�� �
0.101 

0.910 

 

Muthén and Muthén suggested that, to determine the 

parameter bias, subtract the population value from the 

parameter estimate average over the replications of the 

Monte Carlo simulation (such as 10,000 replications in the 

current study) and divide it by the population value. 

To determine the standard error bias, subtract the 

population standard error from the standard error estimate 

across the 10,000 replications and then divide it by the 

population standard error. The coverage gives the proportion 

that the 95% confidence interval constructed by the 10,000 

replications contains the true parameter value [25]. 

Table 8. Parameter and Standard Error Biases and Coverage in 

Combination 1 (N = 524) 

Combination 1 

Sample Size (N = 524) 

Parameter 

bias 

Standard 

error bias 
Coverage 

Total indirect effect = 0.819 0.000611 0.000867 0.950 

α� � 1.02, β�� � 0.51, 

α�β�� � 0.520 
0.000769 0.007286 0.953 

α
 � 0.721, β�
 � 0.36, 

α
β�
 � 0.260 
-0.019231 0.005115 0.949 

α� � 0.283, β�� � 0.14, 

α�β�� � 0.040 
-0.01 -0.000623 0.932 

The parameter and standard error biases as well as the 

coverage rates of the indirect effects in the 3 different 

combinations over the 10,000 replications were presented 

in Tables 8, 9 and 10 respectively. Results of parameter and 

standard error biases were negligible, and all coverage rates 

ranged from 0.932 to 0.953. These results indicated that the 

sample sizes chosen in each of the combinations can keep 

power close to 0.80 to detect significant mediating effects. 

Table 9. Parameter and Standard Error Biases and Coverage in 

Combination 2 (N = 396) 

Combination 2 

Sample Size (N = 396) 

Parameter 

bias 

Standard 

error bias 
Coverage 

Total indirect effect = 0.723 0.001107 0.001125 0.951 

α� � 0.283, β�� � 0.36, 

α�β�� � 0.102 
0.011221 -0.000265 0.951 

α
 � 0.721, β�
 � 0.14, 

α
β�
 � 0.101 
0.000990 -0.003039 0.947 

α� � 1.02, β�� � 0.51, 

α�β�� � 0.520 
0.001154 0.003149 0.950 

Table 10. Parameter and Standard 

Combination 3 

Sample Size (N = 
Parameter Standard Coverage 

Total indirect -0.000258 0.004525 0.952 

α� � 1.02, β�� � 0.14, 

α�β�� � 0.143 
-0.000140 0.007018 0.952 

α
 � 0.283, β�
 � 0.51, 

α
β�
 � 0.144 
-0.001389 0.001894 0.951 

α� � 0.721, β�� � 0.14, 

α�β�� � 0.101 
0.003960 -0.007160 0.946 



78 Ze-wei Ma and Wei-nan Zeng:  A Multiple Mediator Model: Power Analysis Based on Monte Carlo Simulation 

 

3. Discussion 

It is flexible and ease of implementation to use Monte 

Carlo simulation to perform power analyses for multiple 

mediator models [9]. When performing power analysis via 

Monte Carlo simulation, a researcher should first select 

which model to be studied. The population value which is 

required to be set for each parameter in the model is needed 

to be selected base on theory research, pilot study or other 

empirical researches [25]. In the current simulation study, 

Cohen’s guidelines defining a small effect, medium effect 

and large effect on the R
2
 metric were used to generate the 

coefficient of each path. Furthermore, some covariance 

algebra was used to determine proper values for the 

residual variances and transform the desired R
2
 effect sizes 

into unstandardized path coefficients.  

In the actual applied settings, researchers should note 

further that a selected path coefficient should match a 

residual variance. As an example, the R
2
 chosen for path 

�� and path ��� were both 26% in Combination 1, and 

the unstandardized path coefficients of  �� and ��� were 

solved as 1.02 and 0.51 respectively. Moreover, the 

mediating effect of X on Y through ��  was 0.520 in 

Combination 1, and the residual variance solved for �� 

was 0.74. When fixing the unstandardized path coefficients 

for ��  and ���  in the population model, the residual 

variance of �� should be fixed constant at the value of 

0.74.  

Overall, the type I error rates in this simulation study 

were within the acceptable range, which were close to the 

0.05 true value level, or fell within the liberal criterion 

proposed by Bradley that the type I error rates should range 

between 0.025 and 0.075. We found that type I error rates 

of indirect effects were affected by the effect sizes of �� 
and  ��, and sample sizes as well. When �� � ��= 0, the 

type I error rates of all mediating effects in all sample sizes 

(N = 100, N = 200 and N = 500) in this simulation study 

were far from the value of 0.05, and did not fulfill the 

liberal criterion proposed by Bradley.  

However, when �� = 0, �� ≠ 0, or �� ≠ 0 and �� = 0, 

the type I error rates were close to 0.05 or felt within 

0.025 ~ 0.075. These findings were consistent with 

previous simulation study [17]. Furthermore, we noticed 

that the type I error rates of ����� (small effect) in both 

Combination 2 and Combination 3 were too conservative 

whether in small samples or large samples. Accordingly, it 

is confirmed that the effect size of mediating effect is a 

determinant factor influencing type I error rate. 

Additionally, the type I error rates of the indirect effects in 

the 3 combinations were all elevated with the increase of 

sample sizes, and were finally close to an alpha of 0.05. 

Although the type I error rates of the indirect effects of 

small effect sizes were conservative in small samples, when 

the sample size was increased, the type I error rates were 

elevated. Findings in the current study were consistent with 

previous research [8]. 

In this simulation study, we found that the requirement of 

sample size and desired power level were strongly 

depended on one determinant factor, the effect size of the 

indirect effect. When the effect size of the indirect effect 

was small, a larger sample size was required to reach 0.8 

power to detect a significant mediating effect. However, 

when the effect size of the indirect effect was large, only a 

small sample size was required to reach 0.8 power to detect 

significant indirect effects. For example, ����� was set as 

a small mediating effect in Combination 1, but as a large 

mediating effect in Combination 2. As a result, when the 

sample size was 100, the power to detect significant 

mediating effect for ����� in Combination 1 was 0.038, 

whereas the power to detect a significant mediating effect 

for ����� in Combination 2 was 1.000. When the sample 

size was increased to 500, power of ����� in Combination 

1 to detect a significant mediating effect was lower than 0.8. 

Moreover, it is worthy of noting that although the total 

indirect effect in Combination 1 reached a satisfying power 

in every sample size, power of individual mediating effect 

was still (such as ����� in Combination 1) lower than 0.8 

when the sample size was small, which indicated that the 

different estimates of power exist in one multiple mediator 

model when there are different mediated pathways [9]. 
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