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Abstract: In this article we would like to present a physical basis of virtual antenna array method which is based on 

electrodynamic principle of field source equivalence. Also, here are formulae and numerical relations for field description errors 

for the field at the edges of physical and virtual antenna arrays It is also demonstrated that the virtual antenna array method helps 

increase radio emitters angular coordinates accuracy even without data about antenna array carrier body geometry and material 

properties. Potential use of this method is also provided. 
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1. Introduction 

Last years, different methods of virtual antenna array 

formation are coming into use or being developed. These 

methods enable to evaluate a spatial distribution of a field in a 

part of the space occupied by an actual antenna array (or real 

antenna array), i.e. the array which helps measure the field 

parameters near its components. Acc. to some publications 

pertaining to virtual antenna array formation methods, the use 

of this tool helps significantly increase resolution in terms of 

radio or acoustic system angular coordinates as well as to 

increase accuracy of emitters angular coordinates finding. 

One of the first publications pertaining to narrow-band 

emitters direction finding by means of the virtual antenna 

arrays is publication [1]. There was an approach proposed 

where ROOT-MUSIC technique could be used, though this 

technique was originally applied only in linear equispaced 

antenna arrays and random configuration arrays. In this 

approach, the antenna system field of view is divided into 

sectors (especially it is interesting for 360 deg. sector), in 

which we search (using least squares method) transformation 

matrix of measured phase relations for the original and virtual 

antenna arrays. The matrix has some useful properties. In 

publication [1], there was a suggestion to change 

ROOT-MUSIC algorithm and use a virtual array signal 

subspace instead of spatial correlation matrix as well as 

selection of polynomial roots meeting the true signal 

acceptance angles. Further, the algorithm was successfully 

applied for correlated signals resolution. 

To use Wiener interpolation techniques to form virtual 

antenna arrays was proposed in publication [2]. Let us set real 

and virtual array output signal vectors as ( )try  and ( )tvy , 

respectively (the arrays include M  and vM  components 

respectively). The error of element output signal description 

for virtual antenna array depends on selection of calibration 

matrix T  and its size MM v × : 

( ) ( ) ( ).ttt rv yTye ⋅−=                      (1) 

In publication [3] it was proposed to make interpolation 

between real and virtual arrays as a minimization problem 

with multiple constraints as inequations. This approach is 

based on minimization of sector interpolation error when there 

are a number of spatial filters in the other part of the space. It 

helps protect processing from the signals which arrive from 

sectors where no interpolation is performed. 

In publication [4] there is one more interpolation procedure 

proposed: it is based on formation of a VAR (virtual antenna 

array) as a displaced copy of an actual AR (antenna array).  In 

this case there is no need to select the number of VAR 

elements, distance between the elements and array orientation. 

Such displacement invariance is then used in ESPRIT 

technique. This method also requires sector-by-sector 

processing. 

In publication [5] it was proposed to build the 

transformation matrix based on mitigation of signal arrival 

angle biasing. Subject to the members of the 2nd order of 

decomposition of MUSIC output function into Taylor series, a 
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formula to calculate direction finding error was established. 

This formula enabled to develop a conversion algorithm based 

on the least square method with a reduced error. Similar to 

Friedlander’s approach, the signals outside of the 

transformation sector are ignored. Also, the author has 

expanded his approach to account for the final time of 

observation. Also, there was proposed a version of an 

algorithm to minimize root mean square deviation in direction 

finding. 

In publication [6 and 7] there was an analysis of direction 

finding errors (biasing) which occur when transforming 

beams in space; a direction finding error expression was 

delivered. With this expression, a procedure was developed to 

mitigate evaluation dispersion caused by transformation of 

beams in space. Also it was the basis for how to select the 

number of virtual antenna elements. This criterion is based on 

analysis of array impulse IFFT and it is optimal in terms of 

virtual array aperture maximization with some limitations on 

the number of virtual elements. The criterion proposed by the 

author enables to achieve MSD close to Cramer-Rao bound. 

The principle to form virtual antenna arrays or antenna 

multiplicity principle, as it was called by the authors, was 

proposed and studied in detail in publication [8]. The studies 

showed high effectiveness of direction finding antenna array 

calibration based on transition to equivalent linear equidistant 

antenna arrays. The proposed technique provides an accurate 

interpolation but still requires a dense grid of measured 

control vectors whose values shall be also measured very 

accurately. Reference generator field actual measurements 

(with auto-correlation matrix values distortion) describe noisy 

field and this will affect transformation quality The relation 

between the noise level and the number of modes for 

interpolation is established in publication [8]. Also there are 

some expressions which describe direction finding errors 

caused by the calibration noises and transformation. There 

was a formula to describe quality of MUSIC-like techniques 

used in multiplicity separation. This proposed formula used 

just those values which can be practically measured. 

In publication [9] pertaining to Modal Space Processing 

(MSP) technique, it was demonstrated that: if we take 

Jacobi-Anger expansion ( )( )θcosexp 0 xik−  to describe 

distribution of flat electromagnetic wave at the angle of θ  to 

axis x : 

( )( ) ( ) ( ) ( )( ),cos12cosexp 0

0

0 θθ nn

n

n
Pxkjnixik +=− ∑

∞

=
      (2) 

where 

nj  - Bessel spherical function ( ( ) ( )
( )12...531

0

0 +⋅⋅⋅⋅
≈

n

xk
xkj

n

n  

for nxk <<0 );  

nP  - Legendre function, 

we can form a virtual antenna array. This expression describes 

distribution of a spatial electromagnetic wave along linear 

antenna array. It describes Fourier representation of 

( )( )θcosexp 0 xik−  in function basis ( )( )θcosnP  (mode) 

where ∞= ,...,1,0n . Parameters ( )θcos  and xk0  are 

separated in this expression (they pertain to different functions) 

and therefore can be used for simplification of power spatial 

spectrum evaluation. 

In publication [2] it was suggested to form virtual antenna 

arrays on the basis of original geometrical interpretation of 

statistical parameters of the second or higher orders 

(accumulants) of the signals received and processed by a real 

antenna array.  In virtual array formation technique, the 

following formula is used for real control vector: 
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for emitter i  for virtual antenna array including qN  

elements with coordinates 
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−∑ ∑ , where Nk j ≤≤1 , 

qj ≤≤1  (with this the real antenna array includes N  

elements). 

In this publication it was demonstrated that formed virtual 

arrays can significantly (several times) increase radio system 

resolution in terms of angular coordinates and reduce side 

lobes level by tens of decibels.  

In patent [10], a virtual antenna array uses two-dimensional 

(as per axis x , y ) Lagrange’s interpolation polynomials. A 

similar approach was used much earlier by authors of report 

[11]. The only difference there was that they used 

Kotelnikov’s series. 

Now let us specify some key features of the above VAR 

formation techniques. 

1. Difractional distortion of the measured field caused by 

dispersion of waves on the antenna system and carrier body 

are accounted by means of calibration: i.e. to create a data base 

with control vectors ( )θa  for a finite set of emitter angular 

coordinates qθ  where Qq ,...,1=  as well as for a finite set of 

frequencies mf , where Mm ,...,1= . There are however 

some exceptions: techniques based on different types of 

interpolation of functions measured in different points. 

2. Techniques where no calibration is used cannot increase 

accuracy of emitters angular coordinates finding. 

3. Calibration is a labour-consuming and expensive 

procedure. In some cases it has no effect. Moreover, during 

equipment operation, re-calibration is often required. 

4. The actual objective is to develop virtual antenna array 

formation techniques which require no calibration and 

specific knowledges in geometry and properties of dissipating 

objects like carrier’s body, support mast, etc. 
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2. Problem Statement  

In some publications [12-15] there were studies how to 

approximate the field near 3D-diffuser after measuring its 

values by means of an antenna array in a finite number of 

closed loop points. With this, there was no need in geometrical 

data, material properties of the antenna array carrier body, 

underlying surface and other nearest diffusers. 

As a result of those studies, there appeared several 

approaches and techniques to approximate the field near the 

diffuser, namely: techniques based on functions of complex 

variables (Cauchy integral, Laurent series, etc.); classic 

electrodynamic tools (Kirchhoff integral, auxiliary field 

emitters technique, highlights selection technique, etc.) 

It was demonstrated that the use of approximated field 

spatial counts, which form a virtual antenna array, could be 

helpful to significantly increase radio system resolution in 

terms of angular coordinates, radio emitters angular 

coordinates finding accuracy and throughput. 

Also it was demonstrated how to increase effectiveness of 

antenna array elements arrangement near the carrier body. 

This possibility was evaluated based on minimization of field 

phase distribution measurement error and azimuth coordinate 

of field phase distribution measurement error after field 

distortion caused by wave dissipation on the antenna system 

carriers body. 

In this work we made an attempt to bring different ways of 

virtual antenna array formation into a system and substantiate 

them on the basis of electrodynamic principle of field source 

equivalents. It was shown that virtual antenna array theory 

could be based on Kirchhoff integration tools, Lorentz lemma 

and point emitters method. 

Also, here are presented formulae and numerical relations 

for field description errors for the field at the edges of physical 

and virtual antenna arrays and on the loop where auxiliary 

field sources are located. Also, here it is demonstrated that 

description of a field at the edges of virtual antenna array 

based on Kirchhoff integration and description of a field as a 

superimposition of fields from several point (or linear) sources 

are equivalent. 

It is also demonstrated that the virtual antenna array method 

helps increase radio emitters angular coordinates accuracy 

even without data about antenna array carrier body geometry 

and material properties. Potential application of this method in 

different radio systems is also described here 

3. Theory 

It is known [16] that function u  being a solution of 

reduced wave equation 0
2

0 =+∆ uku  in internal points P  of 

space V  limited with closed Lyapunov-type surface S can be 

defined in accordance with the third Green integral formula 

(Kirchhoff integral) using known values of function u  and 

its normal derivative 
→

∂∂ nu /  defined on surface S : 

( ) ( ) ( ) ( ) ( )
,

,
, Q

S

dS

n

QPG
Qu

n

Qu
QPGPu ∫ 














∂

∂−
∂

∂= →→       (3) 

where 

0k  - available space wave number 

( )
QP

QP

r

rik
QPG

,

,0 )exp(

4

1
,

−
=

π  - Green scalar function for a point 

source 

QPr ,  - distance between observation point P  and current 

point Q  on surface S  (Green scalar function is 

differentiated in points Q ). 

Electromagnetic field in space ( V , S ) with a vector 

projection 
→
E  (or 

→
H ) being understood as u  may in a 

special case be a superimposition of incident wave fields 

(
→

incE ,
→

incH ) and waves (
→

scatterE ,
→

scatterH ) scattered by an 

object put inside the given space (V , S ). 

Kirchhoff integral is a formal representation of principle of 

equivalent fields ( ( )Qu , ( )
→

∂∂ nQu / ) known on closed surface 

S . It helps define the value of field ( )Pu  in any point inside 

space (V , S ) without any need for express data about the 

dissipating object (its geometry, material properties and 

position in the space V ) as well as the data about external 

source, which create the incident wave field. Instead it is 

sufficient to know scalar field distribution u  and its normal 

derivative on the surface S . 

Distribution of field ( )Qu  and its normal derivative 

( )
→

∂∂ nQu /  on a closed surface S  are expressly related with 

distribution of the field defined on any internal closed surface 

s  (inside V  limited with external surface S ) subject to 

definition of the normal vector to surface S . 

The reverse problem – i.e. to define field ( )Qu  (as well as 

its normal derivative ( )
→

∂∂ nQu / ) on closed surface S  with 

known values of field ( )Pu  on internal surface s  becomes 

much more difficult because it is related with solution of first 

kind integral-differential equation formed by means of Green 

third formula (Kirchhoff integral). If surfaces S  and s  do 

not intersect in any point (i.e. when s  is a strictly internal 

surface), then the values of Green scalar function and its 

normal derivative will be always finite and thus the analyzed 

equation will be a Fredholm equation. 

In mobile direction finding equipment (Fig. 1), evaluation 

of radio emitter angular coordinates requires measurement of 

amplitudes ( )Pu and phases ( )( )Puarg  of (vertical, mostly) 

projection of vector 
→
E  of totalized electromagnetic field 

(formed by incident and scattered waves) in several points of 

closed loop L  (mostly, it is a circle, sometimes ellipse).  

Values of field ( )Qu  and its normal derivative ( )
→

∂∂ nQu /  on 

integration surface S  and inside it are expressed through 

superimposition of fields of auxiliary point emitters q  set on 

external (to surface S ) closed surface Γ , Fig. 1. 
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The radiation field of auxiliary point emitter in point Γ∈q , 

meets reduced wave equation (and thus meets the third Green 

integration formula) and is defined as follows: 

( )
qQ

qQq

r

rikU
qQU

,

,0 )exp(

4
,

−
=

π ,                  (4) 

where 

qU  - point emitter complex amplitude 

qQr ,  - distance between point Q  and q . 

 

Figure 1. Arrangement of all scattering body elements (carrier’s body and 

antenna array) inside integration surface S  on which a virtual antenna 

array is formed. On external surface Γ  auxiliary point emitters are set. 

When solving a practical problem related with 

extrapolation of a function describing a totalized field near a 

scatterer and when you know its values in the finite number of 

points, it is recommended to use such a finite number of 

auxiliary point emitters that is sufficient to achieve required 

field evaluation accuracy on surface S . 

Now lets return to Lorentz lemma as a vector equivalent of 

the second Green formula [16:] 

∫∫















−






=













−




 →→→→→→→→→→

VS

dVjEjEdSnHEnHE 21121221 ,,,, ,  (5) 

where 
→

1E , 
→

1H  - electromagnetic field formed in V  by extrinsic 

currents 
→

1j ; 

→

2E , 
→

2H  - electromagnetic field formed in V  by 

extrinsic currents 
→

2j ; 

S  - limit of space V . 

Note that, such expression for Lorentz lemma in the integral 

form involves no assumptions about properties of the media 

where the field is studied [16]. Thus, it may be both a 

non-homogeneous media and anisotropic media. 

Lorentz lemma enables to express electromagnetic field 

inside volume V  through values of vector tangential 

components 
→
E  and 

→
H  on the surface of space S  [16].  

Let’s assume that 








ΗΕ
→→

αα ,  is a field of electrical dipole 

0M  with moment 
→

αe  being a unit vector of Cartesian 

coordinates system ( )3,2,1=α . Now let us build Maxwell 

equations fundamental electrical matrices ( )0, MM
∧
Ε  and 

( )0, MM
∧
Η  whose lines are vector 

→

Εα  and 
→

Ηα  [16]: 

T

T

T

→

→

→

∧

Ε

Ε

Ε

=Ε
3

2

1

,  
T

T

T

→

→

→

∧

Η

Η

Η

=Η
3

2

1

.             (5) 

With Lorentz lemma we can express electric field vector in 

any random point of space V  being a vector equivalent of the 

third Green formula (Kirchhoff integral) [16]: 

( )
( ) ( ) ( )

( ) ( ) ( )
dS

MnMHMM

MnMEMM

ME
S

∫





























Ε+

+




Η
=

→→∧
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→

,,

,,

0

0

0 .         (6) 

The last expression has a very simple physical sense: the 

field in point 0M  inside a closed surface S , is formed by a 

total radiation of Huygens elements set on the given surface 

and associated tangent lines. 

 

Figure 2. An illustration of decrease of normal derivative module of field 

( )u Q / n
→

∂ ∂ at a deviation from anti-radial direction (Equivalence of covering of 

surface S  by Huygens elements) 

When we create a virtual antenna array on surface S  (Fig. 

1) by means of point emitters set on external surface Γ , we 

form a distribution of field ( )Qu  and its normal derivative 

( )
→

∂∂ nQu /  on the first surface – and they will define field 

( )Pu  in phase centers of the actual antenna system elements. 

When analyzing vector field ( )0ME
→

, each Huygens element 
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set on surface S  will produce its maximum emission in the 

anti-radial direction (internal perpendicular line to the surface 

S ). Similarly, when point emitters radiation direction deviates 

from the internal perpendicular line to the surface S , values 

of normal derivatives of function ( )
→

∂

∂

n

Qu  and ( )
→

∂

∂

n

QPG ,  will 

decrease in modulo when approaching to surface tangential 

line S , Fig. 2. 

Therefore, when forming a virtual antenna array by means 

of auxiliary point emitters q  set on external surface Γ , 

surface S  becomes in fact covered by a system of infinitely 

small number of surface (scalar field) emitters S . Their 

radiation intensity is especially high towards internal 

perpendicular line to surface. This case is a full equivalent to 

the vector case with Huygens elements as elementary 

radiators. 

Thus, the proposed way of virtual antenna array formation 

of surface S  by means of point emitters system q  set on 

external surface Γ  is physically adequate due to the above 

mentioned equivalency to the vector field meeting Lorentz 

lemma. The form selected to express the field of auxiliary 

emitter ( )qQU ,  enables to adequately evaluate the field 

normal derivative on surface S . 

In publication [17] there was demonstrated a system of 

functions 






=
→→

ii Rr ,ϕϕ  and Ni ,...,2,1=  being a fundamental 

solution of reduced wave equation. This system met 

arrangement of auxiliary emitters q  with complex 

amplitudes 
iqU
 in points with radius vectors 

→

iR  on auxiliary 

surface Γ . This surface entirely covers surface s  though 

does not have any common points with that. It is linearly 

independent and complete, and it can be used for an 

approximated solution of Helmholtz equation with given 

boundary conditions like 

∑
=

→→→








=






 N

i

iiq RrUru
1

,,ϕ                       (7) 

where as functions 






 →→

iRr ,ϕ  Green scalar functions of point 

emitters 
→

iR  are used. 

Note that the minimum problem associated with virtual 

antenna array is not just to find the value of field ( )Qu  on 

closed surface S  covering the entire scatterer (Fig. 1) on its 

known values ( )Pu  in a finite number of points of closed 

loop L . The minimum problem here is to evaluate field 

values at least in the finite number of points on closed loop ξ  

covering the points of antenna system elements phase centers 

(Fig. 3). Therefore let us review a more simple problem and 

review a plane on which three embedded loops are set: γ  - 

auxiliary point emitters loop; ξ  - Kirchhoff integration path, 

on which virtual antenna elements are set; and loop L  on 

which the actual antenna system is set. 

 

Figure 3. Shrinking surfaces Γ  and S  so that they could cover just the 

antenna array. Transition from cylinders with side surfaces Γ  and S  to 

loop γ  and ξ . On loop L  there are phase centers of antenna array 

elements 

Such a shift is allowable because if the height of the 

cylinder with S  side surface gets reduced to zero, the impact 

onto Kirchhoff integral of the top and bottom cylinder bases 

will be compensated. This compensation will appear because 

derivatives ( )
→

∂

∂

n

Qu  on the top and bottom cylinder base will be 

opposite in sign due t countercurrent vectors 
→
n  in relevant 

opposite points (the same is true for function ( )
→

∂

∂

n

QPG , ). 

Values of function ( )Qu  on the top and bottom cylinder bases 

in the opposite points will be the same (the same is true for 

function ( )QPG , ). Therefore, when finding Kirchhoff 

integral, we can shift from surface integration S  to loop 

integration ξ . 

It is worth mentioning, that in equivalent 2D problem 

(where loop γ , ξ  and L  are set in the same plane), some 

other emitters should be used. Instead of point emitter fields, it 

is better to use fields of infinitely long and infinitely thin (in 

the cross-section) linear emitters. This is recommended both 

for description of Green scalar function and auxiliary emitters 

fields (i.e. linear emitters, not point emitters as it was in the 3D 

problem). 

( ) ( ),
2

, ,0

1

0 QPrkH
i

QPG ⋅−= π
                    (8) 

( ) ( ),
2

, ,0

1

0 qQq rkH
i

UqQU ⋅−= π
                   (9) 

where 

( ) ( ) ( )ziNzJzH 00

1

0 +=  - Hankel function of the first kind, zero 

order; 

( )zJ 0  and ( )zN0  - Bessel function and Neumann function 

respectively. 

Thus, forming a virtual antenna array requires a solution of 

the following linear algebraic equations relative to unknown 

complex amplitudes 
mqU  of auxiliary linear emitters in 

points γ∈mq : 
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1 1
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QPG
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i
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mim

mim
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mq ==∆
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


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
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


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
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∂
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⋅
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→
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ξ
ϕ

ϕ

  (10) 

where 

( )in QPG ,  - Green scalar function for linear emitter in point 

ξ∈iQ  creating a field in point  LPn ∈  of the phase center 

of the n -th element of the actual antenna array. 

I  - the number of loop ξ  splittings when finding 

Kirchhoff integral. 

( )mim qQ ,ϕ  - value of the m -th basic function (Green 

scalar function for free space with an emitter in point mq ) in 

point iQ  of loop ξ . 

iξ∆  - length of circle element ξ . 

( )nPu  - the field measured by means of the n -th element 

of the actual antenna array in point nP . 

From the given system of algebraic linear equations, it can 

be seen that the fields on closed loop L , ξ  and γ  are 

rigidly bound between each other. Thus, we can assume that 

virtual antenna array on loop L  can be formed much easier – 

through mere approximation of field with a linear combination 

of fields from auxiliary linear emitters (or, when simplified, 

point emitters) q  set on external loop γ , provided that the 

result of their superimposition in a number of observation 

points on internal loop L  is known (i.e. field ( )Pu  was 

measured by means of the actual antenna system). 

The field on loop ξ  can be also described through 

complex variable analytical functions z  because if we know 

some values of the analytical function on closed loop L , we 

can restore its values in the entire complex plane. 

We have found an effective way to form virtual antenna 

arrays – to use an analytical continuation of the field measured 

with antenna system by means of complex variable analytical 

functions iyxz += , namely by means of Cauchy integral or 

Laurent series. This approach is applicable only in case of 

rather small electrical sizes of the space where the virtual array 

is formed. 

On loop of equi-distant circular antenna array with radius 

R  a zE -component can be described on the basis of 

measured field values NUUUU ,...,,, 321 , with use of 

following polynomial: 

[ ]( ) ( ) ( )[ ],1/1expexp
1

1
1∑

+

=
− +−⋅=⋅=

N

n
nAA NniBiRzU ϕϕ    (11) 

which coefficients are found by the least squares method. 

Using Poisson integral (specific case of Cauchy integral for 

a circumferential loop), we can compile an integral equation 

of the 1st kind to link the fields of the actual and virtual 

antenna arrays: 

[ ]( ) [ ]( )
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∫ ∑

∫

⋅ +

=
−

⋅

   (12) 

This equation can be solved by means of collocation after 

Tikhonov regularizations (or limited damage technique). 

The other way of field approximation is based on expansion 

of function ( )zU АA  in loop δδ +≤≤− RrR  (where 

R<<δ ) into Laurent series. 

( ) k

k

kАA zczU ∑
∞

−∞=
= , where 

( )
∫
Γ

+=
12

1
kk

dU

i
c

ζ
ζζ

π .   (13) 

Then, we apply (3) and find derivatives of function ( )zU АA  

in radial directions of ( ) rrU ∂∂ /,ϕ , ( ) 22
/, rrU ∂∂ ϕ  etc., and 

find the value of function ( )LRUVAR +,ϕ  by means of Taylor 

series section: 

( ) ( ) ( )
( ) .../,5.0

/,,,

222 +∂∂⋅+

+∂∂⋅+≈+

rrUL

rrULRULRU

ϕ
ϕϕϕ

         (14) 

Considering that the fields on flat loop L , ξ  and γ  are 

related with one another in the following ratio: 

( ) ( ) ( ) ( ) ( )
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  (15) 

and represent periodical functions of azimuth angle, then the 

following Fourier series will be respectively related: 
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where 

( ) ( ) LLn dinPua ϕϕ
π

π

π
∫

−

−= exp
2

1
, 

( ) ( ) γ

π

π
γ ϕϕ

π
dinqUc qn ∫

−

−= exp
2

1
, 

Lϕ  and γϕ
 are azimuth coordinates of point LP ∈  and 

γ∈q  respectively. 
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Since there is a fast oscillating (with ∞→n ) function 

( )γϕinexp
 under integral ( ) ( ) ,exp ,0

1

0 qqP drkHin γϕ
γ

γ∫  whose 

modulus will quickly fall as far as 
n

 will grow, then to 

describe function ( )Pu  by means of factors nc
 (with the 

given accuracy level) will require much less members of the 

series than it would take for approximation of ( )qU q . 

Let us use some factors ( ) ( ) ξ

π

π
ξ ϕϕ

π
dinQUb Qn ∫

−

−= exp
2

1  to 

expand function describing field distribution QU
 on loop ξ  

into Fourier series. Then it would be practical to use the 

following ratio to link the fields on loop γ  and ξ : 
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   (16) 

Fourier series factors na , nb  and nc  describe functions 

on loop L , ξ  and γ  that meet Helmholtz equation and, 

thus, can be continuously differentiated at least twice. 

Therefore due to conclusion from Riemann-Lebesgue theorem 

[10] the following equations will be true: 

,
2

1

n

C
an <   ,

2

2

n

C
bn <   ,

2

3

n

C
cn <  

where 1C , 2C  and 3C  are constant values. 

A specific feature of dependency ( )nI n  and ( )nJ n  is that 

they can be rather accurately approximated with functions like 

( )n⋅−⋅ βα exp . In a specific case with 25=f  MHz, 

=Lr 0.5 m, 
=γr 5 m for description of field on loop L , the 

( )nI n  will be very close to ( )n⋅−⋅ 11 exp βα  with =1α 3.5 

and 55.21 =β  at [ ]13;3∈n . In a specific case with 

=2α
1.9, and 4.12 =β  for description of field on loop 

ξ
 

with 
5.1=ξr m 

 
and value of 

=γr 5 m, value ( )nJ n  are 

well approximated by function ( )n⋅−⋅ 22 exp βα  on 

frequency 25=f  MHz at [ ]13;3∈n . 

Therefore, when approximizing the fields on loop L , ξ  

and γ  via a finite number of Fourier harmonics, the 

following limiting functions can be used: 
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Now let us find the maximum error of evaluation of 
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1ln  is a 2nd order 

polylogarithm from argument x , whereas 1<x . 

Now let us find the maximum error of evaluation of 

totalized ( )∑
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Thus, when N  increases from 3 to 9, the field description 

error for loop L  (at 25 MHz frequency) decreases more than 

by 7 orders; the field description order for loop ξ  decreases 

more than by 4 orders and this confirms that the auxiliary field 

emitters technique is very effective in field description. 
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a) 

 

b) 

Figure 4. Field description errors at the real antenna array 

3C

ucδ  (solid lines) 

and at the virtual antenna array 

3C

U cδ  (dashed lines) subject to N  for: a) - 

=f 25 MHz, b) - =f 100 MHz 

On Fig. 4 a) you can see dependency of 
3C

ucδ  and 
3C

U cδ  on 

N  for 25 MHz frequency. It can be seen, that when the 

number of harmonics on loop γ  (auxiliary field emitters) 

increased approx. by 1.8, the field description error for loop 

ξ  (virtual antenna array) becomes equal to the field 

description error on real antenna array loop L  (whereas 

3/ =Lrrξ ). 

At 100 MHz frequency (Fig. 4 b), the ratio between the 

required number of harmonics at the virtual antenna loop and 

the number of harmonics at the real antenna loop with similar 

field description errors (
3C

U cδ  and 
3C

ucδ ) remains approx. the 

same. For field descriptions, ( )nI n  and ( )nJ n  were 

approximated with function ( )n⋅−⋅ βα exp  with the 

following parameters: =1α 170 and 6.21 =β ; =2α 170 and 

55.12 =β . 

Considering Kotelnikov theorem [10], it can be said that if 

the number of field loop counts is equal to the total number of 

considered field harmonics ( 12 +N ), field description errors 

will be equal. Therefore, with the given ratio between the 

virtual and real antenna array radii 3/ =Lrrξ , the number of 

auxiliary field emitters should be increased by 1.8 (with 

10/ =Lrrγ ) so that to reduce virtual array loop field 

extrapolation error to that of the real antenna array loop. 

4. Numerical Experiments 

To evaluate field extrapolation error for loop ξ , some 

numerical experiments were conducted. On Fig. 1 you can see 

a model of 0.5 m radius. antenna array carrier; there are 18 

antenna elements in use.  Such an arrangement allows to 

study field extrapolation errors with different numbers of 

antenna array elements: 18=N  (here signals from all array 

elements are used); 9=N  (here signal from just one element 

is used); 6=N  (here signals from two elements are used); 

3=N  (here signals from five elements are used). 

For boundary problem of flat EM-wave diffraction with 

vertical polarization (we used Weiland finite integration 

technique [19] in a space-time domain) onto a mobile antenna 

array (Fig. 1) at azimuth angle 045=ϕ  (the azimuth was 

taken from the car centerline from the rear compartment to the 

windscreen). The plane, in which antenna array elements 

phase centers are located (array coordinates were taken as 

0=цx  m; 0=цy  m) was 0.11 m distant from the carrier 

body. For that plane, totalized zE  was calculated, i.e. field 

components in the point with the following coordinates: 

( 5.01 =x m; 5.01 =y m). 

The number of auxiliary linear field emitters in use (to 

describe the field on the plane, Hankel functions of the first 

kind and zero order  1

0H  were used) was taken the same as 

the number of the antenna elements: 18=N ; 9=N ; 6=N ; 

3=N . The emitters were set on concentric circles with the 

center in ( 0=цx  m; 0=цy  m) with 5 meters radius. 

On Fig. 5 you can see frequency dependencies for phase 

zE - the field components in the above point (the solid lines 

mean dependencies developed in a rigorous solution of the 

relevant electrodynamic problem by means Weiland finite 

integration technique: the maximum space network interval 

was selected as the lowest of the two following values: 

15/minλ  ( 5.1min =λ  m – the minimum wave length in a free 

space corresponding to 200 MHz frequency) and 20/minL  

(the minimal dimension of carrier body/antenna array 

component); the dashed lines mean relevant extrapolated 

phase values defined by means of the virtual antenna array 

technique). 

On Fig. 5 you can see that field approximation accuracy 

increases if the number of auxiliary emitters N  increases 
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from 3 to 9. However, when N  increases from 9 to 18 it does 

not mean that it will improve accuracy at any frequency 

because matrix conditioning number A  will rise greatly. To 

improve EM field extrapolation accuracy, special techniques 

for linear equations systems with ill-conditioned matrices are 

recommended [20, 21]. 

 

Figure 5. A study of phase zE  of field component in point with coordinates 

( 5.01 =x  m; 5.01 =y ) as per 3, 6, 9 and 18 known values measured on 

a 0.5 m radius circle 

 

Figure 6. Bearings dependencies with true emitter azimuth value 

045=RFSϕ :: curve 1 is a real antenna array including 18 elements with 

0.5 m radius; curve 2 is a virtual antenna array with 1.5 m radius, this array 
is formed with 9 field counts measured with the real antenna array via just 1 

element (element 1, 3, … 17); curve 3 – is a virtual antenna array comprising 

36 elements with 1.5 m radius, this antenna array is formed with 18 field 
counts measured with the real antenna array. To plot bearings, interferential 

correlational phase amplitude technique with reference signals was used; the 

signals corresponding with wave distribution in a free space 

On Fig. 6 you can see bearings frequency dependencies 

with true emitter azimuth value 
045=RFSϕ : curve 1 is a real 

antenna array including 18 elements with 0.5 m radius; curve 

2 is a virtual antenna array with 1.5 m radius, this array is 

formed with 9 field counts measured with the real antenna 

array via just 1 element (element 1, 3, … 17); curve 3 – is a 

virtual antenna array comprising 36 elements with 1.5 m 

radius, this antenna array is formed with 18 field counts 

measured with the real antenna array. To plot bearings, 

interferential correlational phase amplitude technique with 

reference signals was used; the signals corresponding with 

wave distribution in a free space. On Fig. 6 you can see that if 

the real antenna array elements number is increased from 9 to 

18, then direction finding accuracy at 125-175 MHz frequency 

will be also increased greatly. With this, the virtual antenna 

array technique enables to cut down direction finding error 

mean square deviation from 11.940
0
 to 5.030

0 
within 25-175 

MHz frequency range.  

5. Nature Experiments 

To study virtual antenna array theory effectiveness with 

field measurement data, IRCOS Argument direction finder 

(Fig. 7) was used. 

On Fig. 8 you can see bearings frequency dependencies 

measured with a real antenna array (curve 1) as well as with a 

1.2 m radius virtual antenna array (the “2” means a measured 

bearing dependency plotted by means of direction finding 

phase technique; the “3” means the same but with a 

phase-amplitude technique). 

 

Figure 7. Argument direction finder (7 antenna elements are set on a 0.54 m 

radius circle). 

 

a) 

 

b) 

Figure 8. Bearings dependencies plotted using the real antenna array (curve 

1) and the virtual antenna array with 12 m radius (curve 2 – phase technique, 

curve 3 – phase and amplitude technique). The true value of the emitter 

azimuth is 30 degrees (a) and 60 degrees (b). 
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The above dependencies imply that direction finding errors 

can be reduced twofold or even fourfold when using virtual 

antenna array techniques. At the same time, direction finding 

error RMS can be reduced twofold or even fourfold. The 

maximum virtual antenna array effect is observed in the 

frequency range which corresponds to the most intense 

resonances of the real antenna array carrier body (approx. 90 - 

150 MHz). A further increase of the virtual antenna array 

radius (more than threefold against the real antenna array 

dimensions) will not further improve direction finding 

accuracy because there occur errors of phase/amplitude 

measurement for signals at the real antenna array outputs and 

they affect field approximation accuracy (in the space around 

the real antenna array). By means of virtual antenna array 

technique, it was established that the maximum direction 

finding accuracy improvement could be achieved when the 

ration between the virtual and real antenna array radii ranges 

from 2 to 3. 

6. Conclusion 

The proposed virtual antenna array technique can be used 

not only in radio applications like: radio communication, radio 

location, radio navigation, radio electronic warfare, etc. but in 

a number of optical and acoustical applications. It can be used 

for description of electromagnetic or acoustical field near 

diffusers of random shape, dimensions and material properties. 

With this, it does not require a priori data about diffusers 

(antenna array carrier body, mast or other diffusing objects) 

and their parameters. 

In particular, the virtual antenna array technique can be used 

for improvement of different radio, optical and acoustic 

system performance: to increase measurement accuracy of 

radio and acoustical emitters coordinates, improve equipment 

resolution for angular and linear coordinates, disambiguation 

of emitters direction finding, improve radio/optical/acoustic 

equipment throughput, increase accuracy of study of a priori 

unknown diffusers properties (geometry, materials, etc.) by 

means of a virtual antenna array with a random number of 

elements at random positions.  

The proposed technique enables to restore the structure of 

electromagnetic or acoustic field near a random diffuser with a 

priori unknown parameters. The results, i.e. improvement of 

radio/optical/acoustic system performance are achieved by 

means of restoration of the field structure in the space with the 

minimum distortion of received or emitted waves caused by 

the diffuser. 

Also, it should be noted that the virtual antenna array of 

random configuration and random number of elements enables 

to optimize the structure and parameters of the real antenna 

array so that to minimize its directional pattern distortion by the 

carrier’s body (support mast with guide ropes, equipment and 

other nearest diffusers). Besides, it does not require a great 

number of calculations or field experiments or studies. 

To restore the structure of electromagnetic or acoustical 

field, a number of algorithms can be used. E.g.: algorithms 

based on harmonic functions (scalar and vector fields) 

properties, complex variable theory (in particular, analytical 

functions theory and applications), field approximation inside 

and outside of the stationary/mobile or onboard antenna array 

with a system of functions in the spatial domain in question: 

(V , S ). 
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