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Abstract: In this paper, we investigate the dynamics of fluorescent light emitted by a two-level atom interacts with squeezed 

vacuum reservoir is studied wisely using two-time correlation function and the master equation fundamentals approaches. We 

use the pertinent master equation to calculate the time-evolution of cavity filed operators as well as two-time correlation 

function. The mathematical analysis shows the fluorescent spectrum of light emitted by the atom is turned out to be a single 

peak at a Lorentz's frequency for both squeezed vacuum reservoir and thermal reservoir. On the other hand, we have identified 

that the squeezed vacuum reservoir input is responsible to the stimulated emission of photons from the atom. Moreover, it is 

identified that thermal reservoir is more efficient than squeezed vacuum reservoir to have valuable power spectrum. The power 

spectrum which characterizes the fluorescent light generated by a two-level atom has been summered as it is observed for both 

case; (i) when a two-level atom coupled to squeezed vacuum reservoir and (ii) when the two-level atom coupled to thermal 

reservoir. Finally, we generalized from the paper is that the power spectrum of generated light from a two-level atom coupled 

to thermal reservoir is greater than the power spectrum generated from a two-level atom coupled to squeezed vacuum reservoir. 

In contrast, more stimulated and squeezed photons are emitted in the case when the atom is coupled with squeezed vacuum 

reservoir. 
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1. Introduction 

The Different quantum optical investigations have been 

made by various authors for several years. The power 

spectrum of a fluorescent light emitted by a two-level has 

been studied by enormous authors [1-9]. In connection with 

this, there is an author who investigates the dynamics of the 

power spectrum of the light scattered by a two-level atom [8]. 

The investigation clearly shows that the power spectrum of 

the scattered field is directly obtained from the dipole 

moment correlation function. In addition, Eyob and Fesseha 

considered that two-level atom interaction with squeezed 

light. According to their work, the fluorescent light is in 

squeezed state and the power spectrum consists of a single 

peak only [5]. 

Another examination on the interaction of a two-level 

atom with a single mode of radiation has been made by Cirac. 

Accordingly, with the aid of the master equation for the 

atomic density operator in a bad-cavity limit the light emitted 

by the atom into the background mode has been studied [7]. 

The interaction a system in which initially unexcited two-

level atom with a weak cavity field has been another area 

regarding with two-level atomic interaction dynamic with 

single light mode [10, 12-15]. 

Taking this as motivation, in this paper it is necessary to 

see how would be the dynamics of a fluorescent light emitted 

by a two-level atom but coupled to squeezed vacuum 

reservoir. Basic fundamental effects of squeezed vacuum 

reservoir are clearly stated in this paper. Here we derive the 

time evolution for atomic variables rather than light mode 

variable using the pertinent master equation. It contributes a 
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very valuable scientific merit for the development of 

instrument empowerment which uses two-level atom 

interaction with single mode radiation principles. 

2. Operator Dynamics 

Consider a single two-level atom present in an open cavity 

with squeezed vacuum reservoir. We denote the upper and 

lower electronic levels by a  and b , respectively. 

Applying the rotating wave approximation, the Hamiltonian 

of the cavity mode with the two-level atom is presented as 

( )†ˆ ˆˆ ˆ ˆH i a aλ φ φ+ −= −                                (1) 

with λ  is the atom with the cavity mode coupling constant. 

Besides, ˆ a bφ+ =  and ˆ b aφ− =  are the raising and 

lowering atomic operators, respectively. Moreover, â  and †â  

are the photonic annihilation and creation operators for the 

cavity modes. The atomic operators are satisfying the 

commutation relations 

ˆ ˆ ˆ, zφ φ φ+ −  =
  ,                                      (2) 

ˆ ˆ ˆ, zφ φ φ± ±  =
 

∓                                     (3) 

and the operator ˆ
zφ  can be expressed in terms of the rising 

and lowering operators as 

ˆ ˆ ˆ
zφ φ φ+ −= − .                                      (4) 

It is very important to an expression for probability of the 

atom to be in the upper or lower electronic energy state. To 

this end, let’s introduce the probability amplitudes denoted 

by aρ  (the probability of an atom to be in the upper 

electronic energy level) and bρ  (the probability an atom to 

be in the lower electronic energy level) which can be 

expressed as 

( )1ˆ ˆ ˆ 1
2

a zρ φ φ φ+ −= = +                           (5) 

and 

( )1ˆ ˆ ˆ1
2

a zρ φ φ φ− += = − .                         (6) 

At a time the atom can occupy whether the upper energy 

state or the lower energy state. Here we use many energy 

state approximation into only two-levels in which the 

atomic transition is resonant with the cavity mode, the sum 

of the probabilities given in Equations (5) and (6) turn out 

to be 

1a bρ ρ+ = .                                      (7) 

This indicates that the sum of the probabilities of an atom 

yields one. This condition is agreed with the fact of 

probability theory. To study the dynamics of the considered 

system, we have developed the master equation which 

encompasses all the property of it. By taking consideration 

of the system interaction with the squeezed vacuum 

reservoir, we get the formal mathematical expression to the 

system as 

( )( )
( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) 1 2
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2
2

d
t N

dt

N M

γρ φ ρφ φ φ ρ ρφ φ

γ φ ρφ φ φ ρ ρφ φ γ φ ρφ φ ρφ

− + + − + −

+ − − + − + − − + +

= + − −

+ − − + −
, (8) 

where γ  is the atomic decay constant and the effects of the 

squeezed vacuum reservoir incorporated through the symbols 

N  (the reservoir mean photon number of the reservoir) and 

M . 

3. Power Spectrum of a Single-mode 

Field 

We now define the power spectrum of fluorescent light 

emitted by a two-level atom in an open space by 

0( ) ˆ ˆ( ) ( ) ( )
i

ss
P d e t t

ω ω τω τ φ φ τ
∞ −

+ −−∞
= +∫ .                 (9) 

In which 0ω  is the central transition frequency of the atom 

from the upper level to the lower energy state and ss stands 

for steady state conditions. It proves convenient that 

Equation (9) can be rewritten as 

0 0

0
( ) ( )

0

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
i i

ss ss
P d e t t d e t t

ω ω τ ω ω τω τ φ φ τ τ φ φ τ
∞− −

+ − + −−∞
= + + +∫ ∫                                    (10) 

It is better to understand the two-time correlation function 

is not depending on the time t  rather it is depending only on 

the time difference τ . Then let’s replace t  by t τ−  in the 

first integral of Equation (10) and performing the change of 

variables to get the power spectrum in the form 

0( )

0

ˆ ˆ( ) 2 Re ( ) ( )
i

ss
P d e t t

ω ω τω τ φ φ τ
∞ −

+ −= +∫ ,        (11) 

where Re  denotes the real part of the integral. 

We next seek to determine the two-time correlation 

function involved in Equation (11) at steady state. To do this, 

we fist write the time evolution of atomic operators by 

employing the master equation given in Equation (8) and 

with the aid of trace properties, we have generated the 

following two Equations. 
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( )ˆ ˆ ˆ( ) 2 1 ( ) ( )
2

d
t N t M t

dt

γφ φ γ φ+ + −= − + +       (12) 

and 

( )ˆ ˆ ˆ( ) 2 1 ( ) ( )
2

d
t N t M t

dt

γφ φ γ φ− − += − + + .      (13) 

According to Equation (4), we can express equations (12) 

and (13) as 

ˆ ˆ ˆ( ) ( ) ( )
2

z

d a
t t b t

dt
φ φ φ+ += − −                (14) 

and 

ˆ ˆ ˆ( ) ( ) ( )
2

z

d a
t t b t

dt
φ φ φ− −= − + .                  (15) 

Where 
1

2
2

a N Mγ  = − + 
 

 and b Mγ= . To find the 

steady state solution for the two-time correlated function in 

Equation (11), let’s add the Equations (14) and (15) first and 

then we get the result as 

( ) ( )ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
2

d a
t t t t

dt
φ φ φ φ+ − + −+ = − + .    (16) 

Using separation of variable to write Equation (16) as 

( )ˆ ˆ( ) ( )

ˆ ˆ 2( ) ( )

t t

t t

d t t
a

dt
t t

τ τφ φ

φ φ

+ ++ −

+ −

+
= −

+∫ ∫ .           (17) 

Integrating Equation (17), both sides we get 

ˆ ˆ( ) ( )
ln

ˆ ˆ 2( ) ( )

t t a

t t

φ τ φ τ
τ

φ φ

+ −

+ −

 + + +
  = −
 + 
 

.             (18) 

Equation (19) can be rewritten in the form 

2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

a

t t t t e
τ

φ τ φ τ φ φ
−

+ − + −
 + + + = +  

. (19) 

If we multiply Equation (19) both sides by the operator 

ˆ ( )tφ+  and taking the assumption that at any time t  the 

atomic variable combinations 

( )ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 0t t t tφ φ φ φ+ + − −= =  be vanish, we will have the 

following expression 

2ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

a

t t t t t t e
τ

φ φ τ φ φ τ φ φ
−

+ + + − + −+ + + = . (20) 

According to the quantum regression theorem for two 

quantum operators Â  and B̂ , the two-time correlation is 

written as [11] 

ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )A t B t A t B t Gτ τ+ = .                   (21) 

Employing this equation into Equation (20), one gets 

2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

a

t t t t e
τ

φ φ τ φ φ
−

+ − + −+ = .                 (22) 

Furthermore, using Equations (5), (6), (7) and (8) along 

with the cyclic property of trace, it is easy to verify for a tow-

level atom interaction with squeezed vacuum reservoir that 

( )2 1a a

d
N N

dt
ρ γ ρ γ= − + + .                       (23) 

In this Equation Nγ  is the rate of stimulated emission 

whereas γ  represents spontaneous emission rate. At steady 

state, the solution of Equation (23) is 

( )
2 1

a

N

N
ρ ∞ =

+
.                                    (24) 

In view of Equations (23) and (24), the power spectrum 

described in Equation (11) can be put in the form of 

( )0( )
2

0

2
( ) Re

2 1

a iN
P d e

N

ω ω τ
ω τ

∞ − − −
=

+ ∫ ,            (25) 

so that carrying out the integration, one readily finds 

( ) ( )22 2
0

1 2
( )

2 1 1
2

N
P

N
N M

ω
ω ω γ

 
  =   +  − + − +
 

. (26) 

This equation describes the power spectrum of the 

fluorescent light emitted by a two-level atom interact with 

squeezed vacuum reservoir. If we plot the spectrum we will 

generate the graph depicted in Figure 1. 

4. Results and Discussions 

From the figure 1, we note that the power spectrum of a 

fluorescent light emitted from a two-level atom has a peak 

point at the frequency 0ω ω− . On the other hand, we see that 

the sharpness of the spectrum decreases as we go far from the 

point at which the transition frequency equals to the 

frequency of a light mode. This must be due to the decrement 

of the correlation between the two-time correlations. 

Moreover, the graph indicates that the mean number of 

photon in the reservoir mode has an effect on the sharpness 

of the power spectrum. One effect of the squeezed vacuum 

reservoir is to deform the sharpness of the spectrum. This is 

explained as when the mean photon number from the 

squeezed vacuum reservoir increases the power spectrum of 

the light emitted by a two-level atom deforms. 
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Figure 1. Plots of the power spectrum of the light emitted by a two-level 

atom interacting with a squeezed vacuum reservoir for N=5 (solid curve), 

N=6 (dashed curve) and N=7 (dotted curve). 

But it is important to see from Equation (26) that the 

power spectrum is highly depending on the mean photon 

number of squeezed vacuum reservoir. The existence of these 

photons in the reservoir is very important for stimulated 

emission by the atom. This situation takes place when the 

atom is initially in the upper electronic energy state and the 

photon from the reservoir hits the atom which has resonant 

frequency with atomic transition frequency. Here we have 

done the mathematical equation behind such conditions 

which has to be true for the selected model. 

 

Figure 2. Plots of the power spectrum of the light emitted by a two-level 

atom interacting with a thermal reservoir for N=5 (solid curve), N=6 

(dashed curve) and N=7 (dotted curve). 

If the reservoir is thermal, it is possible to generating the 

expression of the power spectrum for fluorescent light by 

simply setting 0M =  and N n=  where n  is the mean 

photon number for thermal reservoir. Thus we have: 

( ) ( )22 2
0

1 2
( )

2 1 1
2

n
P

n
n

ω
ω ω γ

 
  =   +  − + +
 

.         (27) 

As we observe the scale of the power spectrum in Figure 1 

is in the order of 
3

10
−

 while Figure 2 is in the order of 
2

10
−

 

for the same parameters used in both figures. Thus, the power 

spectrum a fluorescent light emitted by the atom coupled to 

thermal reservoir is greater than that of squeezed vacuum 

reservoir. 

5. Conclusion 

The paper addresses, the dynamics of a power spectrum 

emitted by a two-level atom interacts with the reservoir sub-

modes with the aid of evolution of atomic variables. By 

driving the master equation that governs the system under 

consideration, we have obtained the time evolution for the 

atomic variable. Finally, we have got the two-time correlation 

for the raising and lowering atomic operators which is the 

core problem of this paper and using the result [Equation (22)] 

power spectrum for a fluorescent light is obtained. It is 

identified that the presence of reservoir mode is responsible 

to stimulating emission of photon from an atom. Moreover, 

the power spectrum of a fluorescent light is greater when the 

atom interacts with thermal reservoir than squeezed vacuum 

reservoir. The other outstanding point in this paper is that the 

power spectrum of a fluorescent light is turn out to be a 

single peak whether the reservoir is squeezed vacuum or 

thermal. The result shows only there will be a single peak at 

the point at which the frequency of the light is equals to the 

central Lorentz's frequency [11]. 

Acknowledgements 

We thank Debre Tabor University to allow us for material 

and access for realization of this work. 

 

References 

[1] Elliot, C. S.; Joseph, L.; Rice, P. R. Conditional homodyne 
detection of the single photon level: Intensity-field 
correlations for a two-level atom in an optical parametric 
oscillator. Phys. Rev. A 2005, 71, 013807, DOI: 
https://doi.org/10.1103/PhysRevA.71.013807. 

[2] Jin, S.; Xiao, M. Optical spectra from degenerate optical 
parametric oscillator with N two-level atoms. Phys. Rev. A 
1993, 48, 1473, DOI: 
https://doi.org/10.1103/PhysRevA.48.1473. 

[3] Eyob A. A Coherently driven two-level atom inside a 
parametric oscillator. J. Mod. Opt. 2008, 55, pp. 1159-1173, 
DOI: https://doi.org/10.1080/09500340701624641. 

[4] Zhou, P.; Swain, S. Resonance fluorescence and absorption 
spectra from two-level atom driven by coherently and 
stochastic fields. Phys. Rev. A, 1998, 58, 4705, DOI: 
https://doi.org/10.1103/PhysRevA.58.4705. 

[5] Eyob, A.; Fesseha, K. Interaction of a two-level atom with 
squeezed light. Opt. Commun. 2007, 271, pp. 154-161, DOI: 
https://doi.org10.1016/j.optcom.2006.10.016. 

[6] Liu, J.; Li, Z. Y. Interaction of a two-level atom with single 
mode optical field beyond the rotating wave approximation. 
Opt. Exp. 2014, 22, pp. 28671-28682, DOI: 
https://doi.org/10.1364/OE.22.028671. 



38 Sitotaw Eshete and Yimenu Yeshiwas:  Dynamics of Two-level Atom Interaction with Single-mode Field  

 

[7] Cirac, J. I. Interaction of a two-level atom with a cavity moves 
in the cavity bad cavity limit. Phys. Rev. A 1992, 46, 4354, 
DOI: https://doi.org/10.1103/PhysRevA.46.4354. 

[8] Mollow, B. R. Power spectrum of light scattered by two-level 
systems. Phys. Rev. A 1969, 188, DOI: 
https://doi.org/10.1103/PhysRevA.188.1969. 

[9] Irish, E. K.; Gea-Banacloche, J.; Martin, I.; Schwab, K. C. 
Dynamics of two-level system strogly coupled to a high 
frequency quantum oscillator. Phys. Rev. B 2005, 72, DOI: 
https://doi.org/10.1103/physRevB.72.195410. 

[10] Kozierowski, M.; Chumakov, S. M.; Mamedov, A. A. 
Interaction of a system of initially unexcited two-level atoms 
with a weak cavity field. J. Mod. Opt. 2007, 40, pp. 453-470, 
DOI: https://doi.org/10.1080/09500349314550461. 

[11] Fesseha, K. Three-level laser dynamics with squeezed light. 

Phys. Rev. A 2001, 63, 033811, DOI: 
https://doi.org/10.1103/PhysRevA.63.033811. 

[12] Kimble, H. J.; Mandel, L. Theory of resonance fluorescence 
light. Phys. Rev. A 1976, 13, 2123, DOI: 
https://doi.org/10.1103/PhysRevA.13.2123. 

[13] Doherty, A. C.; Parkins, A. S.; Tan, S. M.; Walls, D. F. 
Motion of a two-level atom in an optical cavity. Phys. Rev. A 
1997, 56, 833-844, DOI: 
https://doi.org/10.1103/PhysRevA.56.833. 

[14] G. J. Milburn, Interaction of a Two-level Atom with Squeezed 
Light, Optica Acta: International Journal of Optics, 31 1984: 
6, 671-679, DOI: 10.1080/10715769900301231. 

[15] Sunil Kumar and C. L. Mehta, Theory of the interaction of a 
single-mode resonant radiation field with N two-level atoms. 
Phys. Rev. A 1980, 21, 1573. 

 


