Utilization of Carbon Dioxide from Coal-Firing Flue Gas for Cultivation of *Spirulina platensis*

Oanh Thi Doan¹, Anh Kim Thi Bui², Kien Trung Hoang², Chuyen Hong Nguyen², Thom Thi Dang², Hong Diem Dang³, Nguyet Thi Vu³, Kim Dinh Dang*,

¹Ha Noi University of Natural Resources and Environment, Hanoi, Vietnam
²Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
³Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Email address:
doanoanh158@gmail.com (Oanh T. D.), buianh78@yahoo.com (Anh K. T. B.), hoangkien21@gmail.com (Kien T. H.),
chuyenbi@gmail.com (Chuyen H. N), thomiet@gmail.com (Thom T. D.), ddhong60vn@yahoo.com (Hong D. D.),
tranvunguyet@gmail.com (Nguyet T. V.), dangkim.iet@gmail.com (Kim D. D.)

*Corresponding author

To cite this article:

Received: October 14, 2016; Accepted: October 29, 2016; Published: November 18, 2016

Abstract: CO₂ emission from burning coal has been used as a carbon source for growing Cyanobacterium *Spirulina platensis* in order to minimize the cost of biomass production, and currently to carry out CO₂ bioremediation. This article presents the results of feeding *S. platensis* in laboratory conditions with 2 formulas including Pure CO₂ and Flue gas CO₂ upon using modified Zarrouk’s medium with 1.6 g / L NaHCO₃ and 2g / L Na₂CO₃. Pure CO₂ with 1.2% concentrations taken from 99% vol of industrial CO₂ and CO₂ gas (1.2%) received from the flue gas through the Modular system of Exhausted Gas Treatment (MEGT). Growth of the Cyanobacterium using CO₂ - Flue gas is equivalent to CO₂ -Pure. On this basis, *S. platensis* has been cultivated outdoor in an 25 m² pond using CO₂ gas (1.2%) from the tunnel brick factory emissions after suitable cleaning. The experiment in an outdoor pond system of 25 m² indicated that the yield of biomass is of 10g/m²d with high-protein content (62.58 ± 2.34%) and fatty acids of high nutritional value (8.72 ± 0.14%), such as Omega - 6 and Omega - 3 reaching 14.74 ± 0.42% and 26.05 ± 0.64% of total fatty acid content, respectively. The quality of *Spirulina* cultured by CO₂ gas meets the requirements for functional foods according to Vietnam national food standards. The article also presents the results of biomass productivity and chemical composition of the Cyanobacterium in different culture conditions.

Keywords: CO₂, Carbon Source, Coal – Firing, Flue Gas, Cyanobacterium, *Spirulina platensis*

1. Introduction

CO₂ – anthropogenic carbon dioxide represents the most important greenhouse gases (GHGs) that contribute to approximately 77% of the global atmospheric temperature increase [1, 2]. The increase of CO₂ concentration in the atmosphere, mainly due to burning fossil fuels like coal, oil, gas and the forest destroying raises the deep concern about the climate change, and thereby, induces great challenges to the global sustainable development [3, 4].

Burning coal generates more carbon dioxide than any other widely used fuel, including burning oil and gas that may harm the environment. Due to a rapid increase of the demand for the fossil fuels, there is a need for developing methods that allow continuous use of them through environmental friendly pathway along with reducing carbon dioxide emissions. In fact, there have been many efforts to reduce CO₂ emissions from burning fossil fuels. Overall, the current methods are focusing on CO₂ separation from emission sources and then trying to remove or capture it [5]. Some
other technologies such as chemical absorption and membrane separation, were also considered [6]. However, these methods can significantly reduce CO$_2$ concentration, they can not solve the problem of sustainable development [7].

Nowadays, in order to meet the demand for sustainable industrial development, it is highly desirable that exhaust emissions are treated thoroughly and sustainably through CO$_2$ recovery for use in photosynthesis. The recovery of CO$_2$ for microalgal culture is a novel pathway that has been studied and delivered in the reports. Lopes et al., 2008 indicated that as much as 40% of the carbon dioxide on the Earth can be absorbed by photosynthesis, in which microalgae or cyanobacteria make a great contribution with high species diversity and wide distribution in the ecological system [8]. So, photosynthesis by microalgae is an effective way to utilize CO$_2$ sources [9].

The selected culture strains have a considerable impact on biological fixation of CO$_2$ by level of temperature, SO$_x$, NO$_x$ and CO$_2$ from flue gas [10]. Richmond mentioned that, cellular contents of *Spirulina platensis* were not changed by varying environmental conditions, compared with eukaryotic microalgae [11]. This alga is an excellent candidate for producing single cell protein due to its high protein content and nutritional value. Study on *S. platensis* due to potential of biomass production under high CO$_2$ concentration in flue gas is a good solution for CO$_2$ biofixation and for decreasing atmospheric CO$_2$ [12, 13].

Our objective is to assess the possibility of using CO$_2$ from coal combustion emissions for the growth of *Spirulina platensis*.

2. Materials and Methods

2.1. CO$_2$ Source

Pure CO$_2$ with 1.2% concentrations taken from 99% vol of industrial CO$_2$. CO$_2$ received from the flue gas through the Modular system of Exhausted Gas Treatment (MEGT) described is the page [14].

2.2. Cyanobacterium and Cultivation Medium

Spirulina platensis strain, classified as *Arthrospira* (*Spirulina*) *platensis* used for the experiments, was supplied from the Collection of Microalgae and Cyanobacteria of Institute of Environmental Technology, Vietnam Academy of Science and Technology.

Culture medium: The medium for the microalgal growth is Zarrouk’s medium modified by reducing NaHCO$_3$ to 1.36 g/L and by adding Na$_2$CO$_3$ to 2g/L [15].

2.3. Experimental Design

Laboratory Cultivation: *Spirulina platensis* cyanobacteria is cultivated in glass columns with a volume of 1 liter (inner diameter of 60 mm, height of 412 mm) which are maintained at a temperature of 27-32°C and illuminated by cold fluorescent light with intensity of 5,000 lux, and lighting time of 8 hours/day (Fig. 1.a). The liquid columns of Cyanobacterium are continuously bubbled with CO$_2$- Flue gas (1.2 vol.% CO$_2$) or CO$_2$- Pure as control experiments (1.2 vol.% CO$_2$), at a rate of 50 L/min regulated by various valves. The pH of the medium is continuously controlled over time by pH equipment. Distilled water is added daily to eliminate evaporation effects during incubation.

The pH of the suspension is maintained at 8.5 - 9.5 and water is also added daily to eliminate evaporation effects. The pond was aerated by the paddle wheel system [16] in order to maintain moving speed of the suspension of about 18 kms$^{-1}$. The samples containing the *Spirulina* suspension were collected every two days for OD measurement at wavelength of 445nm using spectrophotometer UV-Vis 2450, Shimadzu.
Japan. Each month, the fresh biomass of the *Spirulina* was collected for quality analysis.

2.4. Sampling and Analysis

Samples were collected for biomass growth analysis (OD) and biomass quality analysis (lipids, fatty acids, total protein, fiber (%), carbohydrates, polysaccharide, ash, moisture and some important elements).

Lipids and fatty acids were analyzed according to the methods of Bligh and Dyer 1959 [17]. Total protein was determined by Kjeldahl method, multiplying by 6.25. Fiber, carbohydrates, ash, moisture were determined by the method of analysis AOAC 2000 [18]. Arsenic, Cd, Pb and Hg concentrations in *Spirulina* samples were measured using a Atomic Absorption Spectroscopy AA-6800, Shimadzu, Japan [19].

2.5. Data Analysis

All the data in mean and standard deviation were performed using Microsoft excel for Windows.

3. Results and Discussion

3.1. Growth of *S. platensis* in Two Formulas: Pure - CO$_2$ and Flue Gas - CO$_2$ at the Laboratory Scale

In the growth process, *Spirulina platensis* can use inorganic C sources under forms of CO$_2$, NaHCO$_3$ or Na$_2$CO$_3$ but the primary and most appropriate source is still HCO$_3^-$ [13]. The supplementation of CO$_2$ to the algae culture medium does not only provide C source but also control pH of the suspension. Fig. 2 presents the results of *Spirulina platensis* growth rate in 2 different formulas at the laboratory scale.

![Fig. 2. The growth of Spirulina platensis with Pure CO$_2$ and Flue gas CO$_2$ at the laboratory scale.](image)

After 21 days of experiment, *Spirulina platensis* increased biomass both in the 2 experimental formulas. Difference in *Spirulina platensis* biomass between two formulas (Pure CO$_2$ and FG CO$_2$) is negligible. However, in the last week of the experiment, the growth of *Spirulina platensis* in FG- CO$_2$ formula was slightly better than in Pure-CO$_2$ formula. The achieved results may be explained that there is a small amount of NO$_x$ as nutrient for algae besides CO$_2$ in the coal burning emissions [20].

In addition to assessing efficiency of the above 2 sources of CO$_2$ on the growth of *S. platensis*, we also analyzed the nutritional composition of the biomass of this Cyanobacterium (Table 1).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Pure – CO$_2$</th>
<th>FG – CO$_2$</th>
<th>Parameters</th>
<th>Unit</th>
<th>Pure – CO$_2$</th>
<th>FG – CO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>g</td>
<td>2.51 ± 0.04</td>
<td>2.46 ± 0.03</td>
<td>Lead (Pb)</td>
<td>ppm</td>
<td>0.54 ± 0.02</td>
<td>0.57 ± 0.03</td>
</tr>
<tr>
<td>Protein</td>
<td>g</td>
<td>61.32 ± 1.48</td>
<td>61.21 ± 1.34</td>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Fat (Lipids)</td>
<td>g</td>
<td>8.63 ± 0.19</td>
<td>8.68 ± 0.12</td>
<td>Arsenic (As)</td>
<td>ppm</td>
<td>0.13 ± 0.01</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td>Fibre</td>
<td>g</td>
<td>0.4 ± 0.05</td>
<td>0.39 ± 0.06</td>
<td>Mercury (Hg)</td>
<td>ppm</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Ash</td>
<td>g</td>
<td>8.52 ± 0.35</td>
<td>8.64 ± 0.27</td>
<td>Others</td>
<td>g</td>
<td>18.62 ± 1.22</td>
<td>18.62 ± 1.08</td>
</tr>
<tr>
<td>Carotenoids</td>
<td>mg</td>
<td>121 ± 5.26</td>
<td>149 ± 6.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The research results presented in Table 1 show that there is no difference in chemical composition of the biomass between two formulas and the use of CO$_2$ from coal-fired emissions for *Spirulina platensis* cultivation has been proved to be advantageous, and could be applied in large scale.

3.2. Growth and Productivity of *Spirulina platensis* in Culture Conditions at Dan Phuong, Hanoi

Optical density (OD) measurement for *Spirulina platensis* growth was applied in our study. The OD$_{445\text{nm}}$ and dry biomass of the *Spirulina platensis* were determined every two days. The results in Fig. 3 demonstrated the variation of OD$_{445\text{nm}}$ of the culture suspension. On the first two days *S. platensis* grew slowly, the OD$_{445\text{nm}}$ value increased from 0.21 to 0.35. After ten days, *S. platensis* grew rapidly from 0.34 - 0.35 to 1.09 - 1.11. The highest level of OD$_{445\text{nm}}$ in this experimental process reached up to 1.67 – 1.73 when the biomass harvest was performed for maintaining the algal OD relatively constant.

![Fig. 3. Spirulina platensis' growth at outdoor conditions.](image)
Carbon dioxide is well adsorbed inside the *S. platensis* culture medium with pH > 8.5. During the photosynthesis, alkaline medium is normally created through the metabolic processes by phototrophic microorganisms participating in the transport of hydroxide ion (OH⁻) outwards its cell through catalytic reaction by carbohydrate anhydrase. As a result, the medium with phototrophic organisms as *Spirulina platensis* displays a strong alkaline property that helps them adsorb CO₂ with high efficiency [21]. Therefore, there have been a lot of studies taking into account the microalgae using CO₂ for nutritive biomass production. Cheng et al. [2006] has cultured *Chlorella vulgaris* in photobioreactor presenting that its growth rate is good in the medium with 1% CO₂ cultured for nutritive biomass production.

Moreover, the *Spirulina* also contained fatty acids having high nutritional value, such as Omega - 6 and Omega - 3 reaching 14.74% ± 0.42 and 26.05% ± 0.64% of total fatty acid content, respectively (Table 3). The obtained results presented in Table 2 indicated that *S. platensis* was rich in protein, reaching up to 62.69% dry weight while the lipid content did not exceed 9%.

4. Conclusion

At the laboratory scale, biomass growth and quality of *Spirulina platensis* in 2 formulas (Pure CO₂ and Flue gas CO₂) are equivalent. The experiment in an outdoor pond system of 25 m² indicated that the yield of biomass is of 10g/m²d with high-protein content of 62.58 ± 2.34% and fatty acids of high nutritional value (8.72 ± 0.14%), such as Omega - 6 and Omega - 3 reaching 14.74% ± 0.42 and 26.05 ± 0.64% of total fatty acid content, respectively. The obtained results allowed evaluating the potential of using CO₂ from coal combustion emissions for *S. platensis* culture with cost effective way for carbon sources and also for environment protection.

Table 2. Biomass quality of *S. platensis* cultivated outdoor after spray drying (per 100 g dry weight ± 5.02g).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>CO₂ from flue gas via MEGT</th>
<th>Parameters</th>
<th>Unit</th>
<th>CO₂ from flue gas via MEGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>g</td>
<td>2.39 ± 0.04</td>
<td>Lead (Pb)</td>
<td>ppm</td>
<td>0.14 ± 0.01</td>
</tr>
<tr>
<td>Protein</td>
<td>g</td>
<td>62.58 ± 2.34</td>
<td>Cadmium (Cd)</td>
<td>ppm</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Fat (Lipids)</td>
<td>g</td>
<td>8.72 ± 0.14</td>
<td>Arsenic (As)</td>
<td>ppm</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>Fibre</td>
<td>g</td>
<td>0.43 ± 0.03</td>
<td>Mercury (Hg)</td>
<td>ppm</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Ash</td>
<td>g</td>
<td>9.83 ± 0.06</td>
<td>Others</td>
<td>g</td>
<td>16.05 ± 0.97</td>
</tr>
<tr>
<td>Carotenoids</td>
<td>mg</td>
<td>44 ± 3.44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Composition of fatty acids in biomass after spray drying.

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>Scientific name</th>
<th>Quantity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>Pentadecanoic acid</td>
<td>ND</td>
</tr>
<tr>
<td>16:0</td>
<td>Hexadecanoic acid</td>
<td>45.48 ± 1.24</td>
</tr>
<tr>
<td>16:1-7</td>
<td>9-Hexadecenoic acid</td>
<td>4.43 ± 0.12</td>
</tr>
<tr>
<td>17:0</td>
<td>Heptadecanoic acid</td>
<td>ND</td>
</tr>
<tr>
<td>17:1-5</td>
<td>Heptadecenoic acid</td>
<td>ND</td>
</tr>
<tr>
<td>18:0</td>
<td>Octadecanoic acid</td>
<td>ND</td>
</tr>
<tr>
<td>18:1-6</td>
<td>Octadecenoic acid</td>
<td>3.59 ± 0.08</td>
</tr>
<tr>
<td>18:3-3</td>
<td>9,12,15-octadecatrienoic acid</td>
<td>26.05 ± 0.64</td>
</tr>
<tr>
<td>18:3-6</td>
<td>6,9,12-octadecatrienoic acid</td>
<td>14.74 ± 0.42</td>
</tr>
<tr>
<td>20:0</td>
<td>Eicosanoic acid</td>
<td>5.71 ± 0.09</td>
</tr>
<tr>
<td>20:3-6</td>
<td>11,14,17-eicosatrienoic acid</td>
<td>ND</td>
</tr>
<tr>
<td>20:4-6</td>
<td>5,8,11,14-eicosatetraenoic acid</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND: non detection
Nomenclature

GHGs: Greenhouse Gases
MEGT: Modular system of Exhausted Gas Treatment
OD: Optical Density
VNNTR: Viet Nam National technical regulation

Acknowledgements

This work was financially supported by The National Project KC08.08/11-15, Ministry of Science and Technology (MOST), Vietnam.

References

