Anti-pathogenic Activity of Cu(II) Complexes Incorporating Schiff Bases: A Short Review

Md. Nur Amin Bitu¹, Md. Saddam Hossain², A. A. S. M. Zahid¹, C. M. Zakaria¹, Md. Kudrat-E-Zahan¹,*

¹Department of Chemistry, Rajshahi University, Rajshahi, Bangladesh
²Department of Chemistry, Begum Rokeya University, Rangpur, Bangladesh

Email address: kudrat.chem@ru.ac.bd (Md. Kudrat-E-Zahan)
*Corresponding author

To cite this article:

Received: February 20, 2019; Accepted: March 25, 2019; Published: April 22, 2019

Abstract: Metals contribute important roles in biological system. It is recognized that metals are highly linked in cellular and subcellular functions. With the application of novel and experienced tools to study biological and biochemical systems the true role of inorganic salts in biological systems can be studied. Schiff base metal complexes show a broad range of biological activity. The activity of Schiff base ligand is usually increased by complexation with the metal ion. The copper complexes of Schiff bases have striking properties such as antibacterial, antifungal, antiviral, anti-inflammatory, anti-tumor and cytotoxic activities, plant development controller, enzymatic activity and applications in pharmaceutical fields. The divalent cations Zn²⁺, Ca²⁺ and Mg²⁺ prevent cytotoxicity and in vivo antagonize Cd- induced carcinogenesis. Lack of body iron is common in cancer patients and it is associated with complications in surgery and in animal experiments. The transport of iron and other metal ions by the blood plasma is achieved through the formation of protein complexes. Copper is placed as a vital metalloelement and is primarily connected with copper-dependent cellular enzymes. Metals are also used as inorganic drugs for many diseases. In this review our main focused on research undertaken for biological activity study of Cu(II) metal complexes containing Schiff bases over the past few decades.

Keywords: Schiff Bases, Biological Activity, Copper Complexes, Antibacterial, Antifungal, Antiviral, Anti-inflammatory, Anti-tumor and Cytotoxic Activity

1. Introduction

Schiff bases containing imine or azomethine (-RC=N-) are condensation products of primary amines and carbonyl compounds. They were first brought to light by a Nobel Prize winner German chemist, Hugo Schiff in 1864. The versatility and flexibility of Schiff base compounds having, acyl, aryl and heteroaryl Schiff bases have additional donor sites >C=O, >C=N-, and so on. It has made the Schiff base to function as excellent complexing agents that form multifarious complexes with several transition and inner transition metals and has strengthened the attention of many researchers [1]. Schiff-bases may function as monodentate, bidentate, or tetradeptate ligands depending on the number of coordinating atoms present in the molecule and can construct usually five or six membered chelate rings upon reaction with a metal ion [2]. They are well known for their biological applications as antibacterial, antifungal, anticancer, antiviral, antiparasitic, and antitumor agents [3-5]. The complexes of copper (II) ion containing Schiff bases possess remarkable properties as catalysts in various biological systems, polymers, dyes, antimicrobial activities, antifungal activities, antiviral activities, anti-inflammatory activities, antiradical activities, plant growth regulator, enzymatic activity, insecticides, antitumor and cytotoxic activities. They also possess wide applications in analytical chemistry, agrochemical and pharmaceutical fields [6]. Copper(II) complexes exhibit distorted octahedral and tetrahedral symmetries due to d⁹
configuration (Jahn Teller effect). The distortion is usually seen as axial elongation consistent with the lability and geometric flexibility of the complex. For that reason, typical Cu(II) complexes have square planar or square pyramidal geometries with weakly attached ligands in the axial position(s), but some copper(II) complexes possess trigonal bipyramidal geometry. The significant role of copper and the acceptance of its complexes as important bioactive compounds in vitro and in vivo actuated an ever-increasing interest in these agents as potential drugs for therapeutic finding in various diseases [7]. Different biological activity of Cu(II) containing Schiff base metal complexes have been mentioned in the later descriptions.

2. Biological Activity of Schiff Base Metal Complexes

2.1. Antibacterial Activity

Antibiotics are substances which, even at low concentrations, resist the growth and regeneration of bacteria and fungi. Now a days the treatment of infectious diseases would be incomprehensible without antibiotics [8]. N. Raman et al. have synthesized three transition metal complexes [CuL₂Cl₂], [NiL₂Cl₂], and [ZnL₂Cl₂], where L = Schiff base derived from isatin (1H-indole-2,3-dione) and tyramine(4-(2-aminomethyl) phenol). The in-vitro antibacterial activity of the ligand and its complexes were tested against the bacteria Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella typhi by use of the paper disc method using nutrient agar as the medium. The copper complex has greater antibacterial activity (16–27 mm) against the tested microorganisms than the nickel and zinc complexes, for which the zones of inhibition were in the range of 11–24 mm. The binding model of the Schiff base complexes in the enzyme active site of Staphylococcus aureus sortase-A were also demonstrated by the authors [9]. Four new Schiff base metal complexes of Ni(II), Cu(II), Co(II) and Cd(II) ions where the Schiff base (SB) (figure-1) was derived from salicylaldehyde and 2-aminopyridine were synthesized by Md. Motahar Hossain et al.

The complexes were screened for their antimicrobial activity against various types of bacteria, Gram-positive Bacillus cereus, Streptococcus agalactiae, and Gram-negative Escherichia coli, Shigella dysenteriae. Among the various complexes only Cu(II) complex exhibited strong activity toward human pathogenic Gram-positive and Gram-negative bacteria whereas the Ni(II), Co(II) and Cd(II) complexes showed week to moderate antimicrobial activity compared with standard Kanamycin and Ampicillin [10]. Jasmin Ara Shampa et al. have synthesized Schiff base ligand and its Cu(II) complexes by the condensation reaction of isatin with amino acids (cysteine/glycine/leucine/alanine). The Schiff base Cu(II) complexes were screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Proteus vulgaris. All the synthesized complexes showed strong antibacterial activity compared with Streptomycin [11]. Zahid H. Chohan et al. have synthesized Schiff base metal complexes of the type [M(L)₂Cl₂] where M= Co(II), Cu(II), Ni(II) or Zn(II) and L= Schiff base, obtained by condensation of 2-amino-1,3,4-thiadiazole with 5-substituted salicylaldehydes. The synthesized Schiff base and the metal complexes were screened for antibacterial activity against several bacterial strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Activity of the Schiff base compounds became more pronounced when coordinated to the metal ions [12]. Two new metal complexes (figure-2) of general formula M(Haαft)₂ [M = Ni(II) and Cu(II)] of asymmetrical Schiff base ligand (HL = Haαft) derived from amoxicillin and α formylthiophene were synthesized by N. K. Chaudhary and P. Mishra. The antibacterial sensitivity study suggests promising activities of Haat (Ligand) and M(Haαft)₂ complexes against four clinical pathogenic bacteria, namely, E. coli, P. vulgaris, P. aeruginosa, and S. aureus, though being less active than the standard drug amikacin [13].
Schiff base metal complexes of type ML₂H₂O (M=Mn, Fe, Co, Ni and Cu), where the Schiff base derived from the condensation of 4-Acyl-1-phenyl-3-methyl-2-pyrazolin-5-ones with 2-amino-4(4’-methylphenyl)-thiazole were synthesized by K. S. Pandya et al. The compounds were tested in vitro for the Antibacterial activity against Gram-negative Escherichia coli (responsible for diarrhea), Gram-positive Bacillus subtilis (general contaminant) and Staphylococcus aureus (causative agent for wound infection). Most of the compounds were moderate active against both Gram-negative and Gram-positive bacteria [14]. A series of new polymeric complexes of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) with a Schiff base ligand derived from condensation of 2,4-dihydroxy acetophenone and p-phenylene were prepared by S. N. Kotkar and H. D. Juneja. The synthesized Schiff base and its corresponding mixed ligand metal complexes were screened against E. coli, S. aureus, B. subtilis, and P. aeruginosa [15]. Ethylenediamine (en), putrescine (pu), diethylenetriamine (dien), dipropylenetriamine (dpta), spermidine (spmd) & their Cu(II) complexes as well as the Schiff bases with 2-furaldehyde (dienOO), 2-thiophene-2-carboxaldehyde (dienSS) and pyrrole-2-carboxaldehyde (dienNN) of dien and that of dpta with 2-thiophene-2-carboxaldehyde (dptaSS), were prepared by C.A. Bolos et al. They were tested against Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Proteus vulgaris and Xanthomonas campestris as antibacterial reagents, the highest activity being exhibited by Cu(dptaSS)(NO₃)₂ complex, which acts as antibiotic [16].

Zahid H. Chohan and Samina Kausar have synthesized tridentate NNO, NNS and NNN Schiff base complexes of the type [M(II)₂]Cl₂ where [M= Co(II), Cu(II), Ni(II) or Zn(II), L=N-(2-furanylmethylene)-2-aminothiazole (L₁), N-(2-thiophenylmethylene)-2-aminothiazole (L₂), N-(2-pyrrolylmethylene)-2-aminothiazole (L₃) and X= Cl. The synthesized Schiff bases and their complexes were screened against bacterial species Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumoniae to evaluate their antibacterial properties. All the Schiff bases were found to be biologically active and their metal complexes showed more significant antibacterial activities against one or more bacterial species in comparison to the un-complexed Schiff bases [17]. K. Sathish Kumar et al. have synthesized binary complexes of Cu(II), Ni(II), and Zn(II) ions by reacting metal salts with a Schiff base, 2-((E)-(5-methylisoxazol-3-ylimino)methyl)-4-methoxyphenol (MIIMMP) in an alcoholic medium. The ligand and its metal complexes were screened against bacteria and fungi. The bacterial organisms used are Staphylococcus aureus and Escherichia coli. The variation in the activity of different complexes against different organisms was measured and compared with the standard antibiotic Ciprofloxacin. The Cu complex observed relatively higher activity than the others. The tentative structure of metal complexes also shown in (figure-3) [18].

![Figure 3. Tentative structure of M(II) complexes.](image)

The Schiff base (figure-4) [bis-(2-aminobenzaldehyde) malonyl dihydrazone] and metal complexes (figure-5) with Cu(II), Ni(II), Zn(II) and oxovanadium(IV) were synthesized by R. Rajavel et al.

![Figure 4. Synthesis of bis-(2-aminobenzaldehyde) malonyl dihydrazone.](image)
The free ligand and its metal complexes were tested against the bacterial species *Staphylococcus aureus*, *Bacillus subtilis*, *Pseudomonas aeruginosa*, and *Escherichia coli*. Their antibacterial activity was evaluated by Chloramphenicol as a standard antibacterial agent or reference and the result was compared with the free ligand and its metal complexes [19]. Some transition metal [Co(II), Cu(II), Ni(II) and Zn(II)] complexes of substituted pyridine Schiff-bases were synthesized by Zahid H. Chohan et al. The Schiff bases and their complexes have been screened for antibacterial activity against the species such as *Escherichia coli*, *Staphylococcus aureus*, and *Pseudomonas aeruginosa* [20]. A. K. Mapari et al. have synthesized mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with Schiff bases N-(2-hydroxy-1-naphthylidene)-4-methylaniline (L₁H) and N-(2-hydroxybenzylidene)-2,3-dimethylaniline (L₂H). They were screened against *E. coli*, *S. aureus*, *B. subtilis* and *S. typhi* to assess their potential as antimicrobial agent [21]. Schiff base metal complexes of Cu(II), VO(IV), Mn(II), Co(II), Ni(II) and Zn(II) ion where the Schiff base derived from 2-(aminomethyl) benzimidazole and thiophene-2-carboxaldehyde (1-(1H-benzimidazol-2-yl)-N-[E]-Thiophenylmethyldene) methanamine-BNTM) were synthesized by C. Gyanakumari et al. Antibacterial activity of the ligand and its metal complexes were studied against two Gram-negative bacteria; *Escherichia coli*, *Pseudomonas aeruginosa* and two Gram-positive bacteria; *Bacillus subtilis*, *Staphylococcus aureus*. It has been found that all the complexes were antimicrobially active and showed higher activity than ligand [22]. Biologically active tridentate amino acid (Alanine, Glycine & Tyrosine) derived Schiff bases and their Co(II), Cu(II) & Ni(II) complexes have been synthesized by Zahid H. Chohan et al. They were screened for their antibacterial activity against *Staphylococcus aureus*, *Escherichia coli*, *Klebsiella pneumoniae*, *Proteus vulgarus* and *Pseudomonas aeruginosa* [23]. Md. Motahar Hossain et al. have synthesized Schiff base transition metal complexes of Ni(II), Cu(II), Co(II), Cd(II), Zn(II) and Cr(III) where the Schiff base (SB) derived from p-hydroxy benzaldehyde and 4-aminobenzoic acid. The reaction scheme (Figure-6) of the preparation of Schiff base and the probable structure of the complexes (figure-7,8,9) are given below.
All the complexes and ligand were screened for their antibacterial activity against four pathogenic (two Gram-positive Bacillus cereus & Streptococcus agalactiae and two Gram-negative Escherichia coli & Shigella dysenteriae) bacteria. Cu(II) complex showed higher activity against Escherichia coli and Streptococcus agalactiae [24]. A new tridentate ONO donor Schiff base ligand derived from the condensation of 3-amino-2-methylquinazoline-4-one with 2-hydroxy-1-naphthaldehyde and its Cu(II), Ni(II), Co(II), Mn(II), Zn(II), and Cd(II) complexes were synthesized by Kuruba Siddappa et al. The ligand and its metal complexes evaluated for their antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli [25]. Synthetic route for the preparation of ligand (figure-10) and the Proposed structure of the complexes (figure-11) are given below.

Figure 9. Probable structure of Cr(III) complex.

Figure 10. Synthetic route for the preparation of ligand HNMAMQ.

Figure 11. Proposed structures of Cu(II), Ni(II), Co(II), and Mn(II) complexes.

Schiff base metal complexes of type $\text{ML}_2\cdot (\text{H}_2\text{O})_2$, ($\text{M}=\text{Mn, Fe, Co, Ni, and Cu}$) where the Schiff bases derived from some heterocyclic β-diketones with 4-phenyl-2-aminothiazole were synthesized by A. S. Thakar et al. All the compounds were tested for their antibacterial activity against *Escherichia coli*, *Bacillus subtilis* and *S. aureus* and the metal complexes showed moderate antibacterial activity [26]. Ikechukwu P. Ejidike and Peter A. Ajibade have synthesized Co(II), Ni(II), Cu(II), and Zn(II) complexes of (4E)-4-[(2-{(E)}-[1-(2,4-dihydroxyphenyl)ethylidene]amino)ethyl]imino]pentan-2-one. The ligand and its metal complexes were tested against 6 bacteria strains consisting of three Gram-positive bacteria, namely, *Staphylococcus aureus*, *Bacillus cereus*, and three Gram-negative bacteria, namely, *Pseudomonas aeruginosa*, *Escherichia coli*, and *Shigella flexneri*. In their antimicrobial studies Ciprofloxacin and Amoxicillin were used as the standard antibacterial agents [27]. New [ML$_2$(H$_2$O)$_2$] complexes, where $\text{M}=\text{Co(II), Ni(II), Cu(II), and Zn(II)}$ while L corresponds to the Schiff base ligand, which prepared by condensation of cefotaxime with salicylaldehyde were synthesized by Aurora Reiss et al. All the synthesized complexes and Schiff base were tested for in vitro antibacterial activity against some pathogenic bacterial strains, namely, *Escherichia coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Bacillus subtilis*, and *Staphylococcus aureus* [28]. Biologically active nickel(II), copper(II) and zinc(II) chelates with thiazole derived nitro-and chloro-salicylaldehyde Schiff-bases having the same metal ion but different anions were synthesized by Zahid H. Chohan. In order to evaluate the antibacterial properties, these ligands and their synthesized metal chelates were screened against bacterial species *Escherichia coli*, *Pseudomonas aeruginosa* and *Staphylococcus aureus* [29]. Shahul Hameed Sukkur Saleem et al. have synthesized a pyrimidine based Schiff base ligand (HL) and its four complexes of type [MLOAc]$_n$H$_2$O where $\text{M}=\text{Cu(II), Zn(II), Co(II) and Ni(II)}$. Antimicrobial activities of HL and the complexes were screened against the four different bacteria *Staphylococcus aureus*, *Staphylococcus pneumoniae*, *Salmonella enterica typhi* and *Haemophilus influenzae*. Sparfloxacin was used as the standard antibacterial agent [30]. Schiff base ligand, (1-((2-hydroxynaphthalen-1-yl)methyleneamino)-2-thioxo-4-
p-tolyl-1,2-dihydropyrimidin-5-yl)methanone (Hnafmmp) and its Ni(II), Pd(II), Pt(II), Cu(II), Co(II) complexes were prepared by Halime Gizin Aslan et al. The Ligand and its complexes were evaluated for their in vitro antibacterial activity. All the compounds displayed activity against *M. luteus*, *P. mirabilis*, *P. aeruginosa*, and *C. renale*. On the other hand, none of the compounds displayed activity against *E. aerogenes* and *S. epidermidis* bacteria. *E. aerogenes* and *S. epidermidis* are pathogenic bacterium. The Cu, Ni, Pt complexes and Hnafmmp generally seemed to be more active against Gram-positive bacteria. But, the Co and Pd complexes displayed poor activity against all Gram-positive and Gram-negative bacteria [31]. Two pyridine carboxaldehyde-derived Schiff bases and their copper, nickel, and manganese complexes have been synthesized by Selma Bal et al. The ligands and complexes were screened for their antimicrobial activity against microorganisms *B. megaterium*, *K. pneumoniae*, *E. coli*, *P. aeruginosa*, *S. aureus*, and *E. aerogenes* [32]. Novel bioactive complexes of Co(II), Cu(II), Ni(II) and Zn(II) metal ions with Schiff base ligand derived from histidine and 1,3-indandione were synthesized by V. Violet Dhayabaran et al. The complexes were screened for their antibacterial activity against the selected bacterial strains of *Escherichia coli*, *Salmonella typhi*, *Salmonella sp.*, *Bacillus subtilis* and *Vibrio cholerae*. Ciprofloxacin was chosen as standard for antibacterial activity [33]. Ayla Balaban Gündüzalp and Hande Fecriye Özbay have synthesized Schiff base; N, N'-bis-(2-hydroxy-1-naphthaldehyde)-1,3-diaminopropanol (napdaphOH) which reacts with metal chlorides to form dinuclear complexes of the type [M$_n$L$_n$]·nCl$_2$ where M = Ni, Cu, Fe and n = 0, 1. The ligand and complexes were tested for their antibacterial activities against *Escherichia coli*, *Bacillus subtilis*, *Bacillus megaterium*, *Salmonella enteritidis* and *Staphylococcus aureus*. Schiff base has the highest activity against *Bacillus megaterium*. All of the complexes have a remarkable decrease in antibacterial activities than Schiff base [34]. Narendra Kumar Chaudhary and Parashuram Mishra have synthesized a series of three new metal(II) complexes of the novel ligand derived from Streptomycin and Amoxicillin in stoichiometric ratio. Antibacterial sensitivity of the ligand and its metal complexes were studied against four bacterial pathogens viz. *E. coli*, *B. subtilis*, *S. aureus* and *K. pneumonia* [35]. The Schiff bases, formed by condensation of 2-thiophenecarboxaldehyde with 2-aminothiophenol (LH) and propane-1,2-diamine (L$_1$), and their complexes of Ni(II), Cu(II), Zn(II) and Cd(II) have been synthesized by Mohammad Nasir Uddin et al. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial activity against four human pathogenic bacteria such as Gram positive- *Bacillus cereus* and *Gram-negative- Salmonella typhi*, *Pseudomonas aeruginosa*, *Escherichia coli*. Ligands showed moderately whereas some of metal chelates showed highly antibacterial activity against them [36]. Macroyclic complexes of Cu(II), Ni(II), Co(II) and Zn(II) of a tetradentate Schiff base ligand derived from 3-benzalideneacetocetanilide and N-(2-aminoethyl)1,3-propanediamine were synthesized by N. Raman et al. The investigated compounds were screened for their antibacterial activity against the bacteria *E. coli*, *S. aureus*, *S. typhi*, and *K. pneumoniae* [37]. Complexes of Co(II), Ni(II) and Cu(II) with the Schiff base derived from ceftazidime and salicylaldehyde were synthesized by Aurora Reiss et al. The in vitro biological screening effects of the investigated compounds were tested against some selected Gram-negative and Gram-positive bacterial strains, viz. *Escherichia coli*, *Klebsiella pneumoniae*, *Bacillus subtilis* and *Staphylococcus aureus* [38]. A tetradentate Schiff base (figure-12) derived from the reaction of malonyl hydrazide with dehydroacetic acid in ethanol under refluxing condition and its complexes (figure-13) of Cu(II), Ni(II), Co(II), Mn(II), Zn(II) metal ion were synthesized by R. P. Saini et al.
2.2. Antifungal Activity

Antifungal agents are active against fungi, they used to prevent fungal growth. The complexes of the type ML$_2$ [where M = Cu(II), Co(II), and Ni(II)], L= 1-phenyl-1-ene-3-(2-hydroxyphenyl)-prop-2-ene with 3-substituted-5-mercapto-4-amino-1,2,4-triazoles were synthesized by S.D. Angadi et al. The synthesized ligands and its complexes were screened for their antifungal activity against *A. niger* and *A. flavous*. The standard drug clotrimazole was also tested for their antifungal activity. The antifungal activity results exposed that the ligands and its complexes have exhibited weak to good activity against *A. niger* and *A. flavous*. The ligand and its Cu(II) and Co(II) complexes showed weak activity when compared to the standard drug clotrimazole [40]. C. Anitha et al. have synthesized a series of metal(II) complexes ML where M= VO(II), Co(II), Ni(II), Cu(II), and Zn(II) from azo Schiff base ligand (N’E)-N’-(5-((4-chlorophenyl)diazenyl)-2-hydroxybenzylidene)-2 hydroxybenzohydrazide. The synthetic rout of Schiff base (figure-14) and proposed structure of its Cu complex (figure-15) are given below.

![Figure 14. Synthesis of ligand (CDHBHZ).](image)

![Figure 15. Proposed structure of Cu(II) complexes.](image)

The biological activities of synthesized azo Schiff base and their metal complexes have been studied for their antifungal activities against *Aspergillus niger*, *Candida albicans*, and *Rhizoctonia bataticola*. Also, standard antifungal drug nystatin was used for comparison [41]. M. M. Haque et al. have synthesized Copper(II) complexes containing two Schiff base ligands derived from 2-hydroxybenzaldehyde with 2-aminophenol and 3-aminophenol. The Schiff bases and complexes were tested for their antifungal activity against *Aspergillus niger*, *Tinea pedis* and *Coniothyrium sp.* [42]. B.P. Yadav et al. have synthesized a series of Schiff base macrocyclic complexes (figure-16) of the type [HLMX$_2$] where M = Cu(II), Ni(II), Co(II) and X = Cl, OAc and L= The Schiff base, derived from the condensation of acetylacetone and thiocarbohydrazide (2:2) in the presence of divalent metal salt in methanolic medium.

![Figure 16. Scheme for synthesis of novel macrocyclic metal complexes.](image)

The free ligand, its metal complexes, fungicide fluconazole and the control DMSO (dimethylsulfoxide) were screened for their antifungal activity against various fungi viz. *Rizoctonia sp.*, *Aspergillus sp.* and *penicillium sp.* [43]. H.B. Singh et al. have synthesized the monofunctional bidentate Schiff base ligand (o-vanillin) p-chloroaniline and its four new complexes of Cr(III), Co(II), Ni(II) and Cu(II) transition metal ion by classical thermal and microwave-irradiated techniques. Antifungal activities of the ligand and its complexes were evaluated against two pathogenic fungi, *Aspergillus niger* and *Fusarium oxysporum* [44]. A pyrimidine based Schiff base ligand (HL) (figure-17) and its four complexes (figure-18) of type [MLOAc]$_n$H$_2$O where M= Cu(II), Zn(II), Co(II) and Ni(II) were synthesized by Shahul Hameed Sukkur Saleem et al.
The antifungal activities of ligand (HL) and complexes were screened against two different fungi, *Aspergillus flavus* (A. flavus) and *Aspergillus niger* (A. niger) strains & ketoconazole was used as standard drug [30]. The condensation product of 4-acetyl-3-methyl-1-phenylpyrazol-5-ones (mainly exists as the 3-methyl-1-phenyl-4-acetylpyrazol-5-ol tautomer) with 1,2-diaminobenzene, and 2-aminophenol resulted in ONN-and ONO-type tridentate ligands & their transition metal complexes of VO(II), Cu(II), Fe(III), and Co(II) were synthesized [46]. Two new series of metal complexes were studied against fungus *C. albicans, A. niger*, *Rhizopus sp.*, *Aspergillus niger* (A. niger), *A. flavus, A. niger, C. oxysporum*, & *Cladosporium* against fungus *Rhizopus bataicola*. Most of the synthesized Schiff bases and their metal complexes were tested for antifungal activities against *Aspergillus niger* and *A. flavus*. The metal complexes exhibited significantly enhanced antifungal activity than their simple Schiff bases [48].

Figures 17 and 18.

The synthesized Schiff bases and their metal complexes

![Figure 17. Synthetic route of ligand (HL).](image)

![Figure 18. Proposed structure of complexes.](image)

of 4-amino-5-mercapto-3 methyl/ethyl-1,2,4-triazole with 2,4-dichlorobenzaldehyde were synthesized by Kiran Singh et al. The synthesized Schiff bases and their metal complexes were screened for antifungal activities against *Aspergillus niger* and *A. flavus*. The metal complexes exhibited enhanced antifungal activity against their simple Schiff bases [48]. R. B. Sumathi and M. B. Halli synthesized a new Schiff by the condensation of naphthofuran-2-carboxydraze and diacetylmonoxime. The Schiff base transition metal complexes of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) ion were also prepared. Antifungal activity of the Schiff base and its complexes were tested against *Aspergillus niger*, *Aspergillus flavus*, *Cladosporium oxysporum* and *Candida albicans* fungi, here also Fluconazole was used as the standard drug [49]. The Schiff base ligand

(E)-2-(3-(2-imino-1-methylimidazolidin-4-ylidene)-1-methyl guanidino) acetic acid (L) and its Cr(III), Co(II), Ni(II), and Cu(II) complexes were synthesized by Ahmed A. Al-Amiery. Antifungal screening effects of the ligand and complexes were evaluated against *Aspergillus niger* and *Candida albicans* [50]. Metal complexes of the type [Ni(L$_2$)$_2$].H$_2$O and ML$_2$Cl$_2$ [M = Co(II), Cu(II), Cd(II), Zn(II), and Hg(II)] where L = Schiff base, derived from condensation of naphthofuran-2-carboxydraze and 2-chloro-3-formyquinoline were synthesized by M. B. Halli & R. B. Sumath. All the compounds were tested for their antifungal activity against *A. flavus, A. niger*, *C. oxysporum*, and *C. albicans* [51]. A. P. Mishra et al. have synthesized the coordination complexes of VO(II), Co(II), Ni(II) and Cu(II) with the Schiff bases derived from 3-bromobenzaldehyde/3-chlorobenzaldehyde with 2-aminophenol. The biological screening effects of the investigated compounds were tested against fungi *Aspergillus niger*, *Trichoderma polysporus* and *Candida albicans* by serial dilution method [52]. Natarajan Raman et al. have synthesized neutral tetradentate chelate complexes of Cu(II), Ni(II), Co(II), Mn(II), and Zn(II) and VO(II) in EtOH using Schiff bases derived from acetacetamidilino-4-aminoantipyrine and 2-aminophenol/2 aminoantipyrine. The antifungal activity of the investigated compounds was tested against fungi *Aspergillus niger* and *Rhizoctonia bataicola*. Most of the metal chelates have higher antifungal activity than the free ligands [53]. A novel tetradeptate N$_2$O$_2$ type Schiff base, derived from 1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one(4-a NUMO antipyrine) and 3-salicylidene-acetylacetone, and its stable
complexes with transition metal ions such as Cu(II), Ni(II), Co(II) and Zn(II) were synthesized by Natarajan Raman et al. The antifungal activities of the investigated compounds were tested against fungi like *Aspergillus niger* and *Rhizoctonia bataicola* [54]. A series of metal complexes of the type ML$_2$H$_2$O [M = Co(II), Ni(II), and Cu(II)] where L= Schiff bases (figure-19) derived from 1,8-diaminonaphthalene and 8-formyl-7-hydroxy-4-methylcoumarin/8-acetyl-7-hydroxy-4-methylcoumarin were synthesized by Sangamesh A. Patil et al. Structure of metal complexes are shown in (figure-20).

The Schiff bases and their complexes have been screened for their antifungal activities against *Aspergillus niger*, *Aspergillus flavus*, and *Cladosporium*. The results of the studies show the metal complexes to be more effective antifungal as compared with the uncomplexed coumarins [55]. A Schiff base ligand(L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and o-phenylenediamine and its metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) & Cd(II) were synthesized by N Raman et al. The antifungal activities of the compounds were evaluated by the well-diffusion method against the fungi viz., *Aspergillus niger*, *Aspergillus flavus* and *Rhizoctonia bataicola*. Among
The authors have synthesized two novel Schiff bases, 4,4'-methylenedianilidene-bis(3-methoxy-4-hydroxy-benzaldehyde) (L) and 4,4'-methylenedianilidene-bis(3,4-dimethoxybenzaldehyde), by condensing 4,4'-methylenedianiline (MDA) with vanillin and 3,4-dimethoxybenzaldehyde (DBM) respectively in ethanolic medium. Metal complexes of the above Schiff bases were prepared from salts of Cu(II), Zn(II), Co(II) and VO(IV). The Schiff bases and their metal complexes were evaluated for their antifungal activities against different species of pathogenic fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans and Rhizoctonia bataiola. Also, their results were compared with the standard drug Nystatin [57].

2.3. DNA Interaction Studies

Five new Cu(II) complexes derived from the condensation between 5-bromosalicylaldehyde (bs) and α-amino acids (L-saline, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine) were synthesized and characterized by Ahmed M. Abu-Dief and Lobna A. E. Nassr [58]. The Schiff bases and their Cu(II) complexes were tested in vitro for their antibacterial activity against two Gram-positive bacteria (Micrococcus luteus and Bacillus cereus) and one Gram-negative bacteria (Pseudomonas aeruginosa). All the complexes showed activity against the organisms more than the free Schiff base ligands and the activity increases with the increase in concentration of test solution containing the new complexes. The interaction of the prepared Schiff base amino acid Cu(II) complexes with calf thymus DNA has been investigated by absorption spectra, viscosity and gel electrophoresis measurement and the mode of CT-DNA binding to the complexes was shown moderate to strong binding property as well. Mohan N. Patel et al. [59] were synthesized Cu(II) complexes containing N, O donor ligand and ciprofloxacin. The complexes were screened for their antimicrobial activity against Gram(+Ve), i.e. Staphylococcus aureus, Bacillus subtilis, and Gram(−Ve), i.e. Serratia marcescens, Pseudomonas aeruginosa and Escherichia coli, microorganisms in terms of minimum inhibitory concentration and colony-forming unit. The interaction of the prepared Cu(II) complexes has been investigated with Herring Sperm DNA. Copper(II), zinc(II) and nickel(II) complexes containing novel Schiff-base ligand, hesperetin-2-hydroxy benzoyl hydrazone have been synthesized by Yong Li and et al. [60]. DNA binding properties of the ligand and its metal complexes have been investigated by electronic absorption spectroscopy, fluorescence spectra, ethidium bromide displacement experiments, iodide quenching experiments, salt effect and viscosity measurements. Results revealed that all the compounds bind to DNA via an intercalation binding mode. Cu(II), Ni(II), and Zn(II) complexes containing two new Schiff base-hydrazones bearing furan ring, (Z)-4-butoxy-N-(furan-2-ylmethylene)benzohydrazide(IV) and (Z)-N-(furan-2-ylmethylene)-4-(hexyloxy)-benzohydrazide have been synthesized by Cansu Gokce and et al. [61]. The DNA-binding and DNA-cleavage activities of both arylhydrazone ligands and their transition metal complexes were examined using UV-VIS titration and agarose gel electrophoresis in the presence of an oxidative agent (H2O2). The results indicate that the copper complexes bind significantly to calf thymus DNA and effectively cleave pBR322 DNA whereas the nickel and zinc complexes interact slightly with DNA. Copper(II) and Zinc(II) complexes containing Schiff base, 2-methoxy-6((E)-(phenylimino)) methyl phenol ligand were synthesized and characterized by Parinrakd Lavaee et al. [62]. The Cu(II) complexes showed prominent DNA binding activity. M. P. Kesavan et al. [63] were prepared Cu(II) complexes and tested CT-DNA binding activity. S. B. Moosun et al. were synthesized four Cu(II) complexes containing Schiff base ligand derived from a disulfide N,N’-(1,10-dithio-bis(phenylene))-bis(salicylideneimine). The interactions of the Schiff base Cu(II) complexes with DNA were investigated by UV– visible and fluorescence spectroscopies and agarose gel electrophoresis. The binding constants were in the order 10^3−10^5 M suggesting moderate binding affinity of the complexes toward CT-DNA [64]. Qinghua Zhou and Pin Yang were synthesized Cu(II) complex containing ligand [N,N,N’,N’-tetakis[(2-benzimidazolyl)methyl]-1,3-diaminopropane]. The interaction of the complex with DNA has been investigated using equilibrium dialysis, UV spectra, fluorescent spectra, and gel electrophoresis. The results show that the Cu(II) complex can electrostatically bind to the phosphate group of DNA backbone, and partially intercalate into the double helix of DNA because of the bulky structure of the complex and the planarity of the benzimidazole rings [65].

3. Conclusion

Schiff bases and their metal complexes are one of the most important chemical classes of compounds having a common integral feature of a variety structural diversity and of active medicinal agents. This review reflects the contribution of Schiff bases to the design and development of novel lead having potential biological activities. The present paper is an attempt to review of important biological activity reported for Schiff bases and their metal complexes over the past few decades. In this review we have explored the various synthesis routes of Schiff bases and their Cu(II) metal complexes also antibacterial, antifungal and DNA interaction activity studies.

Acknowledgements

The authors are greatly thankful to the Chairman, Department of Chemistry, Rajshahi University, Bangladesh for providing the laboratory facilities.

Conflict of Interest

The authors have no conflict of interest to publish the article.
References

[29] Z. H. Chohan, “Biologically Active Transition Metal Chelates of Ni(II), Cu(II) and Zn(II) with 2-Aminothiazole-Derived Schiff Base Ligands Their Synthesis, Characterization and The Role of Anions (NO$_3^-$, SO$_4^{2-}$, Cl$^-$_O$_2$ and CH$_3$CO$_2$) on Their Antibacterial Properties”, Metal-Based Drugs, 1999; 6 (3): 187-192.

