Heterotrophic nitrogen removal bacteria in sedimentary and water of striped catfish ponds in the Mekong Delta, Vietnam

Cao Ngoc Diep1,2,* , Nguyen Thi Kim Cuc1,2

1Dept. Microbiology Biotechnology, Can Tho City, Vietnam; Institute of Marine Biochemistry, Ha Noi city, Vietnam
2Biotechnology R&D Institute, Can Tho University, Can Tho City, Vietnam; Vietnam Academy Institute of Science and Technology, Ha Noi City, Vietnam

Email address: cndiep@ctu.edu.vn (C. Ngoc Diep), kcnguyenthi@gmail.com (N. Thi Kim Cuc)

Abstract: A total of 1682 heterotrophic nitrogen removal (HNR) bacteria isolated from sedimentary and water of striped catfish ponds were classified in four kinds of heterotrophic ammonia-oxidizing bacteria (402 isolates), nitrite-oxidizing bacteria (438 isolates), nitrate-oxidizing bacteria (444 isolates) and heterotrophic nitrifying and denitrifying bacteria (398 isolates). The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the selected HNR bacteria showed high degrees of similarity to those of the GenBank references strains (between 97% and 99.8%). Phylogenetic trees based on the 16S rDNA sequences displayed high consistency, with nodes supported by high bootstrap (500) values. These presumptive HNR isolates were divided four groups that included members of genera Arthrobacter, Corynebacterium, Rhodococcus (high G+C content gram-positive bacteria), Bacillus (low G+C content gram-positive bacteria) and Pseudomonas (gram-negative bacteria). Based on Pi value (nucleotide diversity), heterotrophic ammonium-oxidizing bacteria group had highest values and heterotrophic nitrifying-denitrifying bacteria group had the lowest values and Theta values (per sequence) from S of SNP for DNA polymorphism showed that heterotrophic nitrate-oxidizing bacteria group had the highest theta values in comparison of three groups. The present study, the HNR bacteria from sedimentary and water of striped catfish ponds, showed a very diverse community of HNR bacteria with a relatively high number of species involved in sedimentary and water samples and many isolates have nitrogen utilization ability at high concentration (800 – 1200 mM) and high G+C gram-positive bacteria strain occupied higher than low G+C gram-positive bacteria strain.

Keywords: Heterotrophic Nitrogen Removal, 16S Rrna Gene Sequence, Biologic Nitrogen Removal, Sedimentary And Water Of Striped Catfish Ponds, Gram-Positive Bacteria

1. Introduction

The Mekong delta has a total freshwater area of 641,350 ha or 67.2% total water surface [1]; This delta has the most diversified farming activities and great potential for increased aquaculture production and Catfish farming started at the beginning of the 1960s that included catfish (Pangasius bacourti)(Vietnamese name: basa) cultured in small cages and striped catfish (Pangasianodon hypophthalmus)(Vietnamese name: tra) cultured mostly in latrine ponds [1]. Striped catfish culture in the Mekong delta is considered a success story of aquaculture in Vietnam with the production and export turnover reached 1,200,000 t worth USD 1 billion in 2007; this result in new challenges for striped catfish production to change towards more sustainable production with respect to its environmental impact [2].

Water quality in catfish production systems in the Mekong Delta was investigated to assess the potential impacts of this activity on the environment. The feed has been used to catfish with low quality as low protein, high carbohydrate content extensively and the residue of feed and catfish fall down in the bottom of ponds and they have used the anaerobic bacteria and the toxicities have released in the water as ammonia, hydrogen sulfur.....[3]. High N (especially ammonia) in fish-pond water may be toxic to fish and it may be cause eutrophication in canals, streams, small rivers, it threatens the quality of water used for household purposes by many farm-families. Nitrification is the process of converting ammonia to nitrate via nitrite and is mediated by two
groups of chemolithoautotrophic bacteria, ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria [4]. Denitrification is part of the bioenergetic apparatus of the bacteria cell, where the N oxidations nitrate and nitrite and the gasous N oxides NO and N\textsubscript{2}O serve in lieu of O\textsubscript{2} as terminal acceptors for electron transport phosphorylation. Nitrogen removal (i.e., the conversion of ammonium and organic nitrogen to nitrogen gas forms) by heterotrophic microorganisms has attached increasing interest recently in wastewater treatment [5][6] and they has usually been reported as the result of simultaneous heterotrophic nitrification and aerobic denitrification [7]. Specifically, the pathway has been widely accepted as the removal of NH\textsubscript{4}+ to NO\textsubscript{2} or NO\textsubscript{3} (heterotrophic nitrification) and simultaneously aerobic conversion of the NO\textsubscript{3} or NO\textsubscript{2} to N\textsubscript{2}O and/or N\textsubscript{2} (aerobic denitrification) as Alcaligenes faecalis [8], Bacillus sp. [9], Acinetobacter calcoaceticus [10] and they were isolated from other different sludges.

At present, molecular methods based on 16S rRNA has been used widely to study the population structure of bacteria domain. In this study, molecular methods based on 16S rRNA was used to identify the population composition of heterotrophic nitrogen removal (HNR) bacteria and drop plate count method [11](Hoben and Somasegaran, 1982) to enumerate HNR bacteria in sedimentary and water of striped catfish ponds in the Mekong Delta, Vietnam. The aims of this study were to quantify HNR bacteria populations and identify their diversity in sedimentary and water of striped catfish ponds and isolates were identified gram staining, population and selected representative strains were identified at the molecular level using 16S rRNA sequence analysis.

2. Method

2.1. Isolation of Heterotrophic Nitrogen Removal Bacteria (HNRB)

The sources for isolating micro-organisms were solid waste (sedimentation) and wastewater of catfish-ponds (10 provinces/city) in the Mekong Delta (Figure 1), samples were stored at 15-20\textdegree C in plastic containers and they were moved to laboratory to stored in the refrigerator.

2.2. Media

Media were used in this study [10] with a standard medium was prepared for enrichment and isolation of bacteria by dissolving 10 g of peptone, 10 g of beef extract, and 5 g of NaCl in distilled water (per liter). This standard medium was autoclaved for 30 min at 121\textdegree C.

The ingredients of a basal medium in 100 ml distilled water (pH 8) were as follows: 0.4 g of NaCl, 2.15 g of Na\textsubscript{2}HPO\textsubscript{4}, 0.09 g of KH\textsubscript{2}PO\textsubscript{4} and 3 ml of trace elements solution. The trace elements solution contained 0.3 g of MgSO\textsubscript{4}.7H\textsubscript{2}O, 0.1 g of MnSO\textsubscript{4}, 0.112 g of H\textsubscript{2}BO\textsubscript{3}, 0.03 g of FeSO\textsubscript{4}.7H\textsubscript{2}O and 0.06 g of CaCl\textsubscript{2} (per liter). Different amounts of nitrogen and organic carbon sources were added to basal medium for groups of nitrifiers or denitrifiers (Table 1). Each basal medium was autoclaved for 15 min at 110\textdegree C. The chemicals were purchased from Merck.

![Figure 1](image)

Figure 1. Samples were collected at sedimentary and water of striped catfish ponds of ten city/provinces (*) in the Mekong Delta, Vietnam (from Google map).

Table 1. List of nitrogen and carbon amount added in the basal medium (per 100 ml).

<table>
<thead>
<tr>
<th>Component</th>
<th>Nitrogen and carbon amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NH\textsubscript{4}Cl solution (ml)</td>
<td>12</td>
</tr>
<tr>
<td>NaNO\textsubscript{2} solution (ml)</td>
<td>4</td>
</tr>
<tr>
<td>NaNO\textsubscript{3} solution (ml)</td>
<td>4</td>
</tr>
<tr>
<td>Glucose (g)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

a contained 1 mg/ml of NH\textsubscript{4}+ -N

b contained 1 mg/ml of NO\textsubscript{2} -N

c contained 1 mg/ml of NO\textsubscript{3} -N

2.3. Count and isolation of Bacteria in the Material

The samples were agitated to obtain homogeneous suspensions between water and sedimentary in sterile distilled water. Suspended liquid (100 µl) was piped into a tube (10 ml) that contained the standard medium. After 48 h of aerobic incubation at 30\textdegree C and 120 rpm, 1 ml suspended liquid were suspended in 90 ml of sterile distilled water in flask-250 mL for 10 min a shaker [New Brunicks, USA]. The supernatant was appropriately diluted using sterile distilled water with 102, 103… dilution. Five drops put on the media A (for ammonium), the media B (for nitrite), the media C (for nitrate) and the media D (combination of ammonium, nitrite, nitrate) with each dilution and they were incubated in 30\textdegree C. After 24 or 48 h, generated colonies were counted for calculating colony-forming units per 1 ml or 1 g of dry matter (CFU g-1 DM). Simultaneously, each isolate was cultivated in each medium to detect the ability of ammonium, nitrite, nitrate or combination of three kinds of above nitrogen. Purified isolates were obtained by repeated streaking on fresh agar plates. A bacterium with high nitrogen removal efficiency was obtained and named and they were suspended in 20% glycerol solution at -80\textdegree C for
2.4. DNA Extraction, PCR Amplification and 16S rRNA Gene Sequence Analysis

DNA was extracted from a bacterial suspension (1 ml from a TSB medium at 30°C and 120 rpm for 24h) to DNA protocol of Neumann et al. [12]. Primers 8F (5′-AGAGTTTGATCCTGCTCAG-3′) and 1492R (5′-TACGGYTACCTTGTTACGACTT-3′)[13] were used to amplify 16S rRNA gene by a PCR protocol. Amplification was performed in a total volume of 50 µl in 0.2 ml Eppendorf tubes using a DNA thermocycle (BioRAD). The reaction mix was prepared using the following: 1 x PCR buffer (20 mM Tris-HCl-NH4SO4) with 5 µl, 4 µl dNTP (20 nmol of each deoxynucleoside triphosphate), 2 µl primer 8F; 2 µl primer 1492R (30 pmol of each primer), 0.5 µl BSA (100 µg of bovine albumin per ml), 2 µl of template DNA and 2.5 U of Taq DNA polymerase (Fermentas, Singapore) and 24 µl biH₂O. The standard thermal profile used for amplification of the 16S rRNA sequence was as follows: 5 min at 95°C; then 30 cycles consisting of 30 s at 94°C (denaturation), 30 s at 53°C (annealing), and 90 s at 72°C (elongation) and a final cycle of consisting of 10 min at 72°C. Aliquots (10 µl) of PCR products were electrophoresed and visualized in 1% agarose gels using standard electrophoresis procedures. Partial 16S rRNA gene of selected isolates in public of Korea (dna.macrogen.com). Finally, 16S rRNA bor-joining method based on 500 bootstraps. Nucleotide diversity (Ө) was calculated by the method described by Halushka et al. [15].

\[
\Theta = \frac{K}{aL} \quad \text{a} = \sum \frac{l(i - 1)}{i = 2}
\]

where K is the number of SNPs identified in an alignment length, n is alleles and L is the total length of sequence (bp).

3. Results and Discussion

The suspended solid wastewaters have high concentration of ammonia and pH varied from 4.12 to 7.47 (Table 2) especially pH of sedimentary and water from striped catfish ponds related with nitrogen removal bacterial population closely (Figure 2).

Table 2. pH and nitrogen concentrations in piggy sewage of 13 city/provinces in the Mekong Delta, Vietnam.

<table>
<thead>
<tr>
<th>Location</th>
<th>pH</th>
<th>NH₄⁺ concentration in sewage (mg/wet litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry season</td>
<td>Wet season</td>
</tr>
<tr>
<td>AN GIANG</td>
<td>3.53 – 7.52</td>
<td>105 - 557</td>
</tr>
<tr>
<td>BAC LIỀU</td>
<td>4.86 – 7.10</td>
<td>1226 - 1710</td>
</tr>
<tr>
<td>BẾN TRE</td>
<td>4.63 – 7.08</td>
<td>1036 - 2018</td>
</tr>
<tr>
<td>CÂ MAU</td>
<td>3.73 – 7.33</td>
<td>521 - 584</td>
</tr>
<tr>
<td>CẦN THO</td>
<td>4.32 – 7.11</td>
<td>68 - 113</td>
</tr>
<tr>
<td>DÔNG THẤP</td>
<td>5.55 – 7.05</td>
<td>3000 - 3331</td>
</tr>
<tr>
<td>HẦU GIANG</td>
<td>4.03 – 7.58</td>
<td>185 - 4270</td>
</tr>
<tr>
<td>LONG AN</td>
<td>4.95 – 7.49</td>
<td>1313 - 1877</td>
</tr>
<tr>
<td>KIẾN GIANG</td>
<td>4.01 – 7.33</td>
<td>448 - 755</td>
</tr>
<tr>
<td>SƠC TRĂNG</td>
<td>6.51 – 8.02</td>
<td>18 - 23</td>
</tr>
<tr>
<td>TIẾN GIANG</td>
<td>5.71 – 7.41</td>
<td>616 - 837</td>
</tr>
<tr>
<td>TRÀ VINH</td>
<td>5.61 – 7.93</td>
<td>657 - 679</td>
</tr>
<tr>
<td>VĨNH LONG</td>
<td>5.56 – 7.44</td>
<td>1313 - 1877</td>
</tr>
</tbody>
</table>

From 159 sedimentary+water samples of striped catfish pond, 1682 heterotrophic nitrogen removal bacterial isolates were isolated with 402 heterotrophic ammonia-oxidizing bacteria (HAOB) isolates, 438 heterotrophic nitrite-oxidizing bacteria (HNOB) isolates, 444 heterotrophic nitrate-oxidizing bacteria (HNaOB) isolates and 398 heterotrophic nitrifying and denitrifying bacteria (HNDB) isolates (Table 3) especially many isolates can utilize at high concentration (800 – 1200 mM)(ammonium, nitrite or nitrate) in each group however the bacterial isolates having three kinds of nitrogen ability only grew on 300 mM (ammonium+nitrite+nitrate) media.

long-term storage.

2.6. Nucleotide Diversity (Θ)

Nucleotide diversity (Θ) was calculated by the method described by Halushka et al. [15].

Figure 2. Correlation between pH and nitrogen removal bacterial population in sedimentary and water of striped catfish pond samples in 10 city/provinces on the Mekong Delta, Vietnam.

Table 3. Nitrogen removal bacterial isolates isolated from 159 sedimentary and water samples from striped catfish ponds in 10 city/provinces of the Mekong Delta, Vietnam.

<table>
<thead>
<tr>
<th>No</th>
<th>City/province</th>
<th>HA OB</th>
<th>HNi OB</th>
<th>HNa OB</th>
<th>Combination*</th>
<th>Total **</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>An Giang</td>
<td>55</td>
<td>65</td>
<td>52</td>
<td>75</td>
<td>247</td>
</tr>
<tr>
<td>02</td>
<td>Ben Tre</td>
<td>29</td>
<td>45</td>
<td>51</td>
<td>37</td>
<td>162</td>
</tr>
<tr>
<td>03</td>
<td>Can Tho</td>
<td>49</td>
<td>61</td>
<td>51</td>
<td>5</td>
<td>166</td>
</tr>
<tr>
<td>04</td>
<td>Dong Thap</td>
<td>58</td>
<td>55</td>
<td>55</td>
<td>51</td>
<td>219</td>
</tr>
<tr>
<td>05</td>
<td>Hau Giang</td>
<td>66</td>
<td>67</td>
<td>65</td>
<td>77</td>
<td>275</td>
</tr>
<tr>
<td>06</td>
<td>Kien Giang</td>
<td>22</td>
<td>29</td>
<td>31</td>
<td>32</td>
<td>114</td>
</tr>
<tr>
<td>07</td>
<td>Soc Trang</td>
<td>42</td>
<td>33</td>
<td>47</td>
<td>44</td>
<td>166</td>
</tr>
<tr>
<td>08</td>
<td>Tien Giang</td>
<td>13</td>
<td>30</td>
<td>32</td>
<td>10</td>
<td>85</td>
</tr>
<tr>
<td>09</td>
<td>Tra Vinh</td>
<td>40</td>
<td>27</td>
<td>18</td>
<td>27</td>
<td>112</td>
</tr>
<tr>
<td>10</td>
<td>Vinh Long</td>
<td>28</td>
<td>26</td>
<td>42</td>
<td>40</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>402</td>
<td>438</td>
<td>444</td>
<td>398</td>
<td>1682</td>
</tr>
</tbody>
</table>

HAOB: Heterotrophic Ammonium Oxidation Bacteria
HNiOB: Heterotrophic Nitrite Oxidation Bacteria
HNaOB: Heterotrophic Nitrate Oxidation Bacteria
* bacterial isolates utilize three kinds of nitrogen (ammonium, nitrite, nitrate)
** total of four groups

Their colonies have round-shaped or not identified; milky; light brown, pink yellow; entire or lobate margin (Fig. 3) and all of them are Gram-positive by Gram stain. The cells were observed by SEM and appeared as short rods and most of them have motility (Figure 4).

The fragments of 1485 bp 16S rRNA were obtained from PCR and sequencing. Homology searches of the 16S rRNA gene sequence of selected strain in GenBank by BLAST revealed that they had high similarity to sequences of Firmicutes phylum. A neighbor-joining phylogenetic tree in HAOB group showing the two clusters: big cluster with two clusters as cluster A1 Bacillus with VINHLONG, BENTRE, SOCTRANG, TRA VINH, KIEN GIANG isolates and cluster A2 with DONGTHAP, ANGIANG, CANTHO, HAUGIANG were classified as Arthrobacter. Cluster B with TIENGIANG was identified as Pseudomonas (Gram-negative bacteria) (Figure 5). The results showed that HAOB group had relationship closely even through they were isolated from various sites in the Mekong Delta.

In HNiOB group, phylogenetic tree showed that two clusters with genus Arthrobacter and Rhodococcus (high G+C gram-positive bacteria) in cluster A with HAUGIANG, VINHLONG, BENTRE, DONGTHAP, CANTHO, SOCTRANG and Bacillus and Pseudomonas (gram-negative bacteria) in cluster B with ANGIANG, TIENGIANG, KIENGIANG, TRA VINH (Figure 6).

In Figure 7 presented two clusters in HNaOB group with SOCTRANG, CANTHO, VINHLONG, KIENGIANG, HAUGIANG, TRA VINH, ANGIANG, BENTRE isolates were determined as genus Bacillus in cluster A while cluster B composed of TIENGIANG and DONGTHAP isolates were genus Corynebacterium and Arthrobacter. With HNDB group, phylogenetic tree showed that two clusters: cluster A composed of cluster A with ANGIANG, SOCTRANG, KIENGIANG, TRA VINH isolates in genera Bacillus and cluster B1 with HAUGIANG and TIENGIANG isolates were genus Rhodococcus and cluster B2 with BENTRE, CANTHO, DONGTHAP isolates were classified in genus Arthrobacter (Figure 8).
Cluster A1

Cluster A2

Cluster B

Figure 5. Phylogenetic tree showing the relative position of HAOB (ammonia utilization) by the neighbor-joining method of complete 16S rRNA sequences. Bootstrap values of 500 replicates are shown at the nodes of the trees.

Figure 6. Phylogenetic tree showing the relative position of HNiB (nitrite utilization) by the neighbor-joining method of complete 16S rRNA sequences. Bootstrap values of 500 replicates are shown at the nodes of the trees.
Figure 7. Phylogenetic tree showing the relative position of HNaB (nitrate utilization) by the neighbor-joining method of complete 16S rRNA sequences. Bootstrap values of 500 replicates are shown at the nodes of the trees.

Figure 8. Phylogenetic tree showing the relative position of HNDB (ammonia, nitrite, nitrate utilization) by the neighbor-joining method of complete 16S rRNA sequences. Bootstrap values of 500 replicates are shown at the nodes of the trees.

Nucleotide polymorphism can be measured by many methods, for example, haplotype (gene) diversity, nucleotide diversity, π, Theta (Θ) (per site), etc.

In this study, nucleotide diversity was estimated as Theta (Θ), the number of segregating sites [16], and its standard deviation (SO). These parameters were estimated by DNA Sequence Polymorphism software version 4.0 [17]. Pi value explained nucleotide diversity of sequences for each gene. The higher values, the more diversity among HAOB group had highest values and HNDB group had the lowest values. Theta values (per sequence) from S of SNP for DNA polymorphism were calculated for each group.
Pseudomonas stutzeri, Bacillus subtilis, Bacillus licheniformis have been diluted and removed by the rains and the floods from catfish-ponds in the Mekong Delta, Vietnam and the best heterotrophic nitrogen removal strains will be applied to treat water pollution in catfish ponds.

4. Conclusion

Bacillus is main genus in nitrogen remove bacteria groups which was found in sedimentary and water of striped catfish-ponds in the Mekong Delta, Vietnam and the best heterotrophic nitrogen removal strains will be applied to treat water pollution in catfish ponds.

Acknowledgements

This work was supported by Ministry of Science and Technology, Vietnam Government. The author thank the helpness of Biotechnology MSc. students and technicians in the Environment Microbiology Laboratory, Biotechnology R&D Institute, Can Tho University, Vietnam

References

