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Abstract: By handling the one dimensional partial differential equation with three methods i.e. Adomain decomposition 

method(ADM), Variation iteration method(VIM) and the New iterative method(NIM) and applied logarithmic and exponential 

functions as initial condition. A general framework of these methods is presented for analytical treatment of fractional partial 

differential equation arises in fluid mechanics. The fractional derivatives are described in the Caputo sense. The equation used 

in this paper is fractional wave equation, fractional burgers equation and fractional Klein-Gordon equation. After comparison 

of the results, the series of solution are found which is very helpful. The basic idea described in this paper is accepted to be 

further in use to solve other similar linear problems in fractional calculus. 

Keywords: Adomain Decomposition Method (ADM), Variation Iteration Method (VIM), New Iterative Method (NIM), 

Fractional Wave Equation, Fractional Burgers Equation, Fractional Klein-Gordon Equation 

 

1. Introduction 

Now a day’s fractional differential equations are motivated by 

new example of applications in fluid mechanics, mathematics, 

mathematical biology, physics, electrochemistry and 

viscoelasticity. Based on experimental data fractional partial 

differential equations for seepage flow in porous media are 

suggested in [1], and differential equation with fractional order 

have currently proved to be valuable tools to the modeling of 

many physical phenomena [2]. The NIM, planned by Daftardar-

Gejji and Jafari in 2006 [3] and improved by Hemeda [4], was 

effectively applied to a variety of linear and nonlinear equations 

such as algebraic equations, integral equations, 

integrodifferential equations, ordinary and partial differential 

equations of integer and fractional order, and system of 

equations as well. NIM is simple to understand and easy to 

implement using computer packages and yields better result [5] 

than the existing ADM [6], Homotopy perturbation 

method(HPM) [7], or VIM [8]. Henderson [9] investigates the 

existence of positive solutions for a system of nonlinear 

Riemann-Liouville fractional differential equations with coupled 

integral boundary conditions. Bekri [10] used the fractional 

complex transformation method to convert fractional order 

partial differential equation to ordinary differential equation. 

Yang [11] extended the classical HPM to local fractional HPM; 

Bhrawy [12] solve the second and fourth order fractional 

diffusion-wave equations and fractional wave equations with 

damping. 

The objective of this work is to extend the application of 

the ADM, VIM and the NIM to obtain analytical solutions 

with initial conditions like logarithmic and exponential 

function to some fractional partial differential equations in 

fluid mechanics. These equations include Wave equation, 

Burgers equation and Klein-Gordon equation. 

2. Preliminaries and Notations 

Some basic definitions and properties of the fractional 

calculus theory which are used in this paper are given in this 

section. 

Definition (1): A real function �(�), � > 0, is said to be in 

the space �	 ,µ ∈ � if there exists a real number	(> µ), such 

that �(�) = ����(�), where ��(�) ∈ �[0,∞), and it is said to 

be in the space	�µ
� iff	�(�) ∈ �µ, �є�. 

Definition (2): The Riemann-Liouville fractional integral 

operator of order � ≥ 0  of a function � ∈ �µ,µ ≥ −1 , is 

defined as 
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���(�) = ��(�)�(� − �)����(�)��,                  (1) 

� > 0, � > 0, 

� �(�) = �(�). 
Properties of the operators ��  can be found in [13]; we 

mention only the following: for � ∈ �	 , " ≥ −1, �, # ≥ 0 

and 	$ > −1, 

���%�(�) = ��&%�(�), 
���%�(�) = �%���(�), 

���' = Γ($ + 1)Γ(($ + 1 + �) ��&' . 
The Riemann-Liouville derivative has certain 

disadvantages when trying to model real-world phenomena 

with fractional differential equations. Therefore, we shall 

introduce a modified functional differential operator *�  

proposed by M. Caputo in his work on the theory of 

viscoelasticity [13]. 

Definition(3): The fractional derivative of �(�)in caputo 

sense is defined as 

*��(�) = �(���)*(�)�(�) 
= ��(���)� (� − �)������(�)(�)��+ ,                  (2) 

�,-	� − 1 < � ≤ �,� ∈ �, � > 0, � ∈ ���� . 

Also, we need here two of its basic properties. 

Lemma(1): If �− 1 < � ≤ �,� ∈ � and � ∈ �	�, " ≥−1, then *����(�) = �(�), 
��*��(�) = �(�) − 0 �1(0&) �12! , � > 0���

14 
 

The Caputo fractional derivative is considered here 

because it allows traditional initial and boundary conditions 

to be included in the formulation of problem [14]. In this 

paper, we consider the one-dimensional linear 

inhomogeneous functional partial differential equations in 

fluid mechanics, where the unknown function 5(6, �)  is 

assumed to be a causal function of time, i.e., vanishing 

for	� < 0. The fractional derivative is taken in caputo sense 

as follows. 

Definition(4): For �  to be the smallest integer that 

exceeds �, the caputo time-fractional derivative operator of 

order � > 0 is defined as 

*+�5(6, �) = 7�5(6, �)7��  

89
: ��(���)� (� − �)����� ;<;=< 5(6, �)+ ��,	�,-	� − 1 < � < �;<;+< 5(6, �), �,-	� = �,� ∈ �.               (3) 

3. Linear Equation 

To include ADM [15], VIM [15] and NIM [16], the three 

linear fractional partial differential equations will be studied. 

The three methods are used to construct the solution of the 

given examples. 

Example(1): Consider the following One-dimensional 

linear inhomogeneous fraction wave equation 

;>?;+> + ;?;@ = +AB>�(C��) sin(6) + tcos(6),                (4) 

� > 0, 6 ∈ �, 0 < � ≤ 1, 

subject to initial condition 

5(6, 0) = log 6                                 (5) 

Problem “(4)” and “(5)” can be obtain by using ADM [15] 

the recurrence relation is given by 

5 (6, �) = 5(6, 0) + �� L +AB>�(C��) sin(6) + � cos(6)M, 

5N&�(6, �) = −�� O ;;@ 5N(6, �)P , Q ≥ 0.               (6) 

In view of “(6)” equation 5 , 5�, 5C⋯ are as follows: 

5 (6, �) = log 6 + � sin(6) 
+ +>SA�(�&C) cos(6),                              (7) 

5�(6, �) = −16 ��Γ(� + 1) − ��&�Γ(� + 2) cos(6) 
+ +U>SA�(C�&C) sin(6),                            (8) 

5C(6, �) = − 16C �C�Γ(2� + 1) − �C�&�Γ(2� + 2) sin(6) 
− +V>SA�(W�&C) cos(6),                                (9) 

⋮ 
and so on, in this way the remaining equations of ADM in 

series can be obtain. The solution in series form is given by 

5(6, �) = log 6 + � sin(6) + ��&�Γ(� + 2) cos(6) 
−16 ��Γ(� + 1) − ��&�Γ(� + 2) cos(6) 

+ �C�&�Γ(2� + 2) sin(6) − 16C �C�Γ(2� + 1) − �C�&�	Γ(2� + 2) 
sin(6) − +V>SA�(W�&C) cos(6) + ⋯                 (10) 

Cancelling the noise terms and keeping the non-noise 

terms we yield, 
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5(6, �) = log 6 + � sin(6) − 16 ��Γ(� + 1) 
− �@U +U>�(C�&�)−⋯                                  (11) 

Where in Mittage-Leffer form it is written as 

5(6, �) = log 6 + � sin(6) − Y0 16Z
[
Z4�

��ZΓ(�\ + 1)] 
= log 6 + � sin(6) − ^� 16 �� 

where ^�  is the Mittage-Leffer function. 

Also the problem “(4)” and “(5)” is solved in [15] by using 

the VIM. By using iteration formula as 

51&�(6, �) = 51(6, �) −	�+� _ ;>;+> 51(6, �) + `̀a51(6, �) − bABc�(C�d) sin(6) − 	� cos(6)e (12) 

In view of “(12)” 5�, 5C⋯ and by benign with 5 = log 6, 

we can obtain, 

5�(6, �)= log 6 − 16 ��Γ(� + 1) + � sin(6) + ��&�Γ(� + 2) 
cos(6),                                  (13) 

5C(6, �)= log 6 − 16 ��Γ(� + 1) + � sin(6) + ��&�Γ(� + 2) 
cos(6) − 16C �C�Γ(2� + 1) − ��&�Γ(� + 2) cos(6) 

+ +U>SA�(C�&C) sin(6)                                  (14) 

⋮ 
Cancelling the noise terms and keeping the non-noise term 

we yield, 

5(6, �) = log 6 + � sin(6) − 16 ��Γ(� + 1) − 16C 

+U>�(C�&�) −⋯                                  (15) 

Where in Mittage-Leffer form 

5(6, �) = log 6 + � sin(6) − Y0 16Z
[
Z4�

��ZΓ(�\ + 1)] 
= log 6 + � sin(6) − ^� 16 �� 

According to the NIM [16], and by using the formula, 

5(6, �) = 0 ℎ1(6) �12!
���
14 

+ �+�g + �+�h 

= � + �(5),                                  (16) 

where 

� = 0 ℎ1(6) �12!
���
14 

+ �+�g 

and �(5) = ���h and 5 = �, 5i&� = �(5), 
j = 0, 1, 2,⋯ 

Therefore in view of “(16)” we obtain 

5 (6, �) = log 6 + � sin(6) + +>SA�(�&C) cos 6,         (17) 

5�(6, �) = �k5 (6, �)l = −�+� m 776 5 (6, �)n 
= −16 ��Γ(� + 1) − ��&�Γ(� + 2) cos(6) 

+ +U>SA�(C�&C) sin(6),                    (18) 

5C(6, �) = �k5�(6, �)l = −�+� m 776 5�(6, �)n 
= − 16C �C�Γ(2� + 1) − �C�&�Γ(2� + 2) sin(6) 

− +V>SA�(W�&C) cos(6)                    (19) 

⋮ 
The NIM in series form is given by 

5(6, �) = log 6 + � sin(6) + ��&�Γ(� + 2) cos(6) 
−16 ��Γ(� + 1) − ��&�Γ(� + 2) cos(6) 

+ �C�&�Γ(2� + 2) sin(6) − 16C �C�Γ(2� + 1) 
− �C�&�Γ(2� + 2) sin(6) 
− +V>SA�(W�&C) cos(6) − ⋯                      (20) 

Cancelling the noise terms and keeping the non-noise 

terms we yield, 

5(6, �) = log 6 + � sin(6) − 16 ��Γ(� + 1) 
− �@U +U>�(C�&�)−⋯                           (21) 

Where in Mittage-Leffer form 
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5(6, �) = log 6 + � sin(6) − Y0 16Z
[
Z4�

��ZΓ(�\ + 1)] 
= log 6 + � sin(6) − ^� 16 �� 

From “(11)”, “(15)” and “(21)”, it is clear that the three 

methods have the same results. 

Example(2): Consider the following One-dimensional 

linear inhomogeneous fraction wave equation 

;>?;+> + ;?;@ = +AB>�(C��) sin(6) + tcos(6),              (22) 

� > 0, 6 ∈ �, 0 < � ≤ 1, 

subject to initial condition 

5(6, 0) = o@                              (23) 

Problem “(22)” and “(23)” can be obtain by using ADM 

[15] the recurrence relation is given by 

5 (6, �) = 5(6, 0) + �� L +AB>�(C��) sin(6) + � cos(6)M    (24) 

5N&�(6, �) = −�� O ;;@ 5N(6, �)P , Q ≥ 0. 

In View of “(24)” 5 , 5�, 5C⋯ are as follows: 

5 (6, �) = o@ + � sin(6) + +>SA�(�&C) cos(6),          (25) 

5�(6, �) = −o@ ��Γ(� + 1) − ��&�Γ(� + 2) cos(6) 
+ +U>SA�(C�&C) sin(6),                       (26) 

5C(6, �) = o@ �C�Γ(2� + 1) − �C�&�Γ(2� + 2) sin(6) 
− +V>SA�(W�&C) cos(6)                        (27) 

⋮ 
The solution in series form is given by 

5(6, �) = o@ + � sin(6) + ��&�Γ(� + 2) cos(6) 
−o@ ��Γ(� + 1) − ��&�Γ(� + 2) cos(6) 
+ �C�&�Γ(2� + 2) sin(6) + o@ �C�Γ(2� + 1) 

− �C�&�Γ(2� + 2) sin(6) − �W�&�Γ(3� + 2) cos(6) 
−⋯                                         (28) 

Cancelling the noise terms and keeping the non-noise 

terms we yield, 

5(6, �) = o@ + � sin(6) − o@ ��Γ(� + 1) 
+o@ +U>�(C�&�)−⋯                               (29) 

Where in Mittage-Leffer form 

5(6, �) = � sin(6) + o@ Y1 −0 16Z
[
Z4�

��ZΓ(�\ + 1)] 
= � sin(6) + o@ − o@^�(��) 

Also the problem “(22)” and “(23)” is solved in [15] by 

using the VIM. By using iteration formula as 

51&�(6, �) = 51(6, �) − �+�[ 7�7�� 51(6, �) 
+ 776 51(6, �) − t��dΓ(2 − α) sin	(x) 

−� cos(6)]                                (30) 

In view of “(30)” 5�, 5C⋯ and by benign with 5 = o@ we 

can obtain, 

5�(6, �) = o@ − o@ ��Γ(� + 1) + � sin(6) + ��&�Γ(� + 2) 
cos(6),                                      (31) 

5C(6, �) = o@ − o@ ��Γ(� + 1) + � sin(6) + ��&�Γ(� + 2) 
cos(6) + o@ �C�Γ(2� + 1) − ��&�Γ(� + 2) cos 6 

+ +U>SA�(C�&C) sin 6,                            (32) 

⋮ 
Cancelling the noise terms and keeping the non-noise term 

we yield, 

5(6, �) = o@ + � sin(6) − o@ ��Γ(� + 1) + o@ 

+U>�(C�&�) −⋯                               (33) 

Where in Mittage-Leffer form 

5(6, �) = � sin(6) + o@ Y1 −0 16Z
[
Z4�

��ZΓ(�\ + 1)] 
= � sin(6) + o@ − o@^�(��) 

According to the NIM [16], and by using the formula, 
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5(6, �) = 0 ℎ1(6) �12!
���
14 

+ �+�g + �+�h 

= � + �(5),                              (34) 

where 

� = 0 ℎ1(6) �12!
���
14 

+ �+�g 

and �(5) = ���h and 5 = �, 5i&� = �(5), 
j = 0, 1, 2,⋯ 

Therefore in view of “(34)” we obtain 

5 (6, �) = o@ + � sin(6) + +>SA�(�&C) cos 6,           (35) 

5�(6, �) = −o@ ��Γ(� + 1) − ��&�Γ(� + 2) cos(6) 
+ +U>SA�(C�&C) sin(6),                           (36) 

5C(6, �) = o@ �C�Γ(2� + 1) − �C�&�Γ(2� + 2) sin(6) 
− +V>SA�(W�&C) cos(6),                        (37) 

⋮ 
The NIM in series form is given by 

5(6, �) = o@ + � sin(6) + ��&�Γ(� + 2) cos(6) 
−o@ ��Γ(� + 1) − ��&�Γ(� + 2) cos(6) 
+ �C�&�Γ(2� + 2) sin(6) + o@ �C�Γ(2� + 1) 

− �C�&�Γ(2� + 2) sin(6) − �W�&�Γ(3� + 2) cos(6) 
−⋯                                         (38) 

Cancelling the noise terms and keeping the non-noise 

terms we yield, 

5(6, �) = o@ + � sin(6) − o@ ��Γ(� + 1) 
+o@ +U>�(C�&�)−⋯                           (39) 

Where in Mittage-Leffer form 

5(6, �) = � sin(6) + o@ Y1 −0 16Z
[
Z4�

��ZΓ(�\ + 1)] 

= � sin(6) + o@ − o@^�(��) 
From “(29)”, “(33)” and “(39)”, it is clear that the three 

methods have the same results. 

Example(3): Consider the following One-dimensional 

linear inhomogeneous fractional Burger’s equation 

;>?;+> + ;?;@ − ;U?;@U = C+UB>�(W��)+ 26 − 2,                     (40) 

� < 0, 6 ∈ �, 0 < � ≤ 1, 

subject to initial condition 

5(6, 0) = log 6                                 (41) 

Problem “(40)” and “(41)” can be obtain by using ADM 

[15] the recurrence relation is given by 

5 (6, �) = 5(6, 0) + �� L C+UB>�(W��) 26 − 2M, 

5N&�(6, �) = −�� t ;;@ 5N(6, �) − ;U;@U 5N(6, �)u, 

Q ≥ 0.                                     (42) 

In View of “(42)”equations 5 , 5�, 5C⋯ are as follows: 

5 (6, �) = log 6 + �C + (26 − 2) +>�(�&�),            (43) 

5�(6, �) = −L�@ + �@UM +>�(�&�)− C+U>�(C�&�),            (44) 

5C(6, �) = O− 16C − 26WP �C�Γ(2� + 1) − O 26W + 66wP 

+U>�(C�&�),                                (45) 

5W(6, �) = −O 26W + 66wP �W�Γ(3� + 1) + O− 66w − 246yP 

�W�Γ(3� + 1) + O− 66w − 246yP �W�Γ(3� + 1) 
+LCw@z + �C @{ M +V>�(W�&�),                     (46) 

The solution in series form is given by 

5(6, �) = log 6 + �C + (26 − 2) ��Γ(� + 1) 
−O16 + 16CP ��Γ(� + 1) − 2�C�Γ(2� + 1) 

+O− 16C − 26WP �C�Γ(2� + 1) − O 26W + 66wP 

�C�Γ(2� + 1) − O 26W + 66wP �W�Γ(3� + 1) 
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+O− 66w − 246yP �W�Γ(3� + 1) + O− 66w − 246yP 

+V>�(W�&�) + LCw@z + �C @{ M +V>�(W�&�)+⋯                (47) 

The exact solution of ADM is 

5(6, �) = log 6 + �C + (26 − 2) ��Γ(� + 1) 
−O16 + 16CP ��Γ(� + 1) 

+O−2 − 16C − 46W − 66CP �C�Γ(2� + 1) 
+O− 26W − 186w − 726y − 1206~ P �W�Γ(3� + 1) 

+⋯                                         (48) 

Also the problem “(40)” and “(41)” is solved in [15] by 

using the VIM. By using iteration formula as 

51&�(6, �) = 51(6, �) − �+�[ 7�7�� 51(6, �) 
+ 776 51(6, �) − 7C76C 51(6, �) 

− C+UB>�(W��)− 26 + 2]                          (49) 

In view of “(49)” 5�, 5C⋯ and by benign with 

5 = log 6 we can obtain, 

5�(6, �)= log 6 − O16 + 16CP ��Γ(� + 1) + �C 

+(26 − 2) +>�(�&�),                          (50) 

5C(6, �)= log 6 − O16 + 16CP ��Γ(� + 1) + �C 

+(26 − 2) ��Γ(� + 1) + O− 16C − 26WP 

�C�Γ(2� + 1) − 2�C�Γ(2� + 1) − O 26W + 66wP 

+U>�(C�&�),                               (51) 

5W(6, �)= log 6 − O16 + 16CP ��Γ(� + 1) + �C 

+(26 − 2) ��Γ(� + 1) + O− 16C − 26WP 

�C�Γ(2� + 1) − 2�C�Γ(2� + 1) − O 26W + 66wP 

�C�Γ(2� + 1) − O 26W + 66wP �W�Γ(3� + 1) 
+O 66w + 246yP �W�Γ(3� + 1) + O− 66w − 246yP 

+V>�(W�&�) − LCw@z + �C @{ M +V>�(W�&�),                     (52) 

⋮ 
The exact solution is 

5(6, �) = log 6 + �C + (26 − 2) ��Γ(� + 1) 
−L�@ + �@UM +>�(�&�) + L−2 − �@U − w@V −	 ~@�M +U>�(C�&�)+L− C@V − ��@� − �C@z −	�C @{ M + ⋯               (53) 

According to the NIM [16] and using the formula, 

5(6, �) = 0 ℎ1(6) �12!
���
14 

+ �+�g + �+�h 

= � + �(5),                              (54) 

where 

� = 0 ℎ1(6) �12!
���
14 

+ �+�g 

and �(5) = ���h and 5 = �, 5i&� = �(5), 
j = 0, 1, 2,⋯ 

Therefore in view of “(54)” we obtain 

5 (6, �) = log 6 + �C + (26 − 2) +>�(�&�),             (55) 

5�(6, �) = −L�@ + �@UM +>�(�&�)− C+U>�(C�&�),             (56) 

5C(6, �) = O− 16C − 26WP �C�Γ(2� + 1) − O 26W + 66wP 

+U>�(C�&�),                              (57) 

5W(6, �) = −O 26W + 66wP �W�Γ(3� + 1) + O− 66w − 246yP 

�W�Γ(3� + 1) + O− 66w − 246yP �W�Γ(3� + 1) 
−LCw@z + �C @{ M +V>�(W�&�),                     (58) 

⋮ 
The NIM in series form is given by 
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5(6, �) = log 6 + �C + (26 − 2) ��Γ(� + 1) 
−O16 + 16CP ��Γ(� + 1) − 2�C�Γ(2� + 1) 

+O− 16C − 26WP �C�Γ(2� + 1) − O 26W + 66wP 

�C�Γ(2� + 1) − O 26W + 66wP �W�Γ(3� + 1) 
+O− 66w − 246yP �W�Γ(3� + 1) + O− 66w − 246yP 

+V>�(W�&�) − LCw@z + �C @{ M +V>�(W�&�)+⋯           (59) 

The exact solution is 

5(6, �) = log 6 + �C + (26 − 2) ��Γ(� + 1) 
−L�@ + �@UM +>�(�&�) + L−2 − �@U −	 w@V − ~@�M +U>�(C�&�)+L− C@V − ��@� − �C@z +	�C @{ M +V>�(W�&�)+⋯                     (60) 

From “(48)”, “(53)” and “(60)”, it is clear that the three 

methods have the same results. 

Example(4): Consider the following One-dimensional 

linear inhomogeneous fractional Burger’s equation 

;>?;+> + ;?;@ − ;U?;@U = C+UB>�(W��)+ 26 − 2,               (61) 

� < 0, 6 ∈ �, 0 < � ≤ 1, 

subject to initial condition 

5(6, 0) = o@.                              (62) 

Problem “(60)” and “(61)” can be obtain by using ADM 

[15] the recurrence relation is given by 

5 (6, �) = 5(6, 0) + �� L C+UB>�(W��) 26 − 2M, 

5N&�(6, �) = −�� t ;;@ 5N(6, �) − ;U;@U 5N(6, �)u, 

Q ≥ 0.                                   (63) 

In View of “(63)” equation 5 , 5�, 5C⋯ are as follows: 

5 (6, �) = o@ + �C + (26 − 2) +>�(�&�),           (64) 

5�(6, �) = − C+U>�(C�&�),                         (65) 

5C(6, �) = 0.                               (66) 

The exact solution of ADM is 

5(6, �) = o@ + �C + (26 − 2) ��Γ(� + 1) 
− C+U>�(C�&�)                            (67) 

Also the problem is solved by using VIM [15] 

with 5 = o@ the following approximation can be obtain by 

using the formula 

51&�(6, �) = 51(6, �) − �+�[ 7�7�� 51(6, �) 
+ 776 51(6, �) − 7C76C 51(6, �) 

C+UB>�(W��) − 26 + 2]                         (68) 

In view of “(68)”5�, 5C⋯ and by benign with 5 = o@ we 

can obtain, 

5�(6, �) = o@ + �C + (26 − 2) +>�(�&�),           (69) 

5C(6, �) = o@ + �C + (26 − 2) ��Γ(� + 1) 
− C+U>�(C�&�),                                 (70) 

The exact solution of ADM is 

5(6, �) = o@ + �C + (26 − 2) ��Γ(� + 1) 
− C+U>�(C�&�)                                (71) 

According to the NIM [16] and by using the formula, 

5(6, �) = 0 ℎ1(6) �12!
���
14 

+ �+�g + �+�h 

= � + �(5),                                (72) 

where 

� = 0 ℎ1(6) �12!
���
14 

+ �+�g 

and �(5) = ���h and 5 = �, 5i&� = �(5), 
j = 0, 1, 2,⋯ 

Therefore in view of “(72)” we obtain 

5 (6, �) = o@ + �C + (26 − 2) +>�(�&�),       (73) 

5�(6, �) = − C+U>�(C�&�),                           (74) 

5C(6, �) = 0.                                (75) 
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The NIM in series form and the exact solution is 

5(6, �) = o@ + �C + (26 − 2) ��Γ(� + 1) 
− C+U>�(C�&�)                                   (76) 

From “(67)”, “(71)” and “(76)”, it is clear that the three 

methods have the same results. 

Example(5): Consider the following One-dimensional 

linear inhomogeneous fractional Klein-Gordon equation 

;>?;+> − ;U?;@U + 5 = 66W� + (6W − 66)�W,          (77) 

� < 0, 6 ∈ �, 1 < � ≤ 2, 

subject to initial condition 

5(6, 0) = log 6, 5+(6, 0) = 0               (78) 

Problem “(77)” and “(78)” can be obtain by using ADM 

[15] the recurrence relation is given by 

5 (6, �) = 5(6, �) + �5+(6, 0) + ��(66W� 
+(6W − 66)�W), 

5N&�(6, �) = �� t ;U;@U 5N(6, �) − 5N(6, �)u, 

Q ≥ 0.                                (79) 

In view of “(79)” the first few components are derived as 

follows 

5 (6, �) = log 6 + 66W ��&�Γ(� + 2) + (6W − 66) 
~+>SV�(�&w),                                (80) 

5�(6, �) = − 16C ��Γ(� + 1) + 366 �C�&�Γ(2� + 2) 
+366 �C�&WΓ(2� + 4) − log 6 ��Γ(� + 1) 

−66W +U>SA�(C�&C)+ (6W − 66) ~+U>SV�(C�&w),         (81) 

⋮ 
The solution in series form is 

5(6, �) = log 6 + 66W ��&�Γ(� + 2) + (6W − 66) 
6��&WΓ(� + 4) − 16C ��Γ(� + 1) + 366 �C�&�Γ(2� + 2) 
+366 �C�&WΓ(2� + 4) − log 6 ��Γ(� + 1) 

−66W �C�&�Γ(2� + 2) + (6W − 66) 6�C�&WΓ(2� + 4) 
+⋯                                       (82) 

According to VIM [15], the iteration formula for the 

problem is given by 

51&�(6, �) = 51(6, �) − (� − 1)�+�[ 7�7�� 51(6, �) 
− 7C76C 51(6, �) + 51(6, �) − 66W� 

−(6W − 66)�W]                                (83) 

By above Variation iteration formula, if we begin 

with 5 (6, �) = log 6 , we can obtain the following 

approximations 

5�(6, �) = 	log 6 + (� − 1) _− �@ +>�(�&�) + 	66W +>SA�(�&C)+(6W − 66) ~+>SV�(�&w)e,                            (84) 

5C(6, �) = 	log 6 + (� − 1) �−16 ��Γ(� + 1) + 	66W ��&�Γ(� + 2)
+ (6W − 66) 6��&WΓ(� + 4)� 

+((� − 1)C − (� − 1)) 16C ��Γ(� + 1) 
+(� − 1)C L− ~@� +U>�(C�&�) + 	366 +U>SA�(C�&C) + 366 +U>SV�(C�&w)M,  (85) 

⋮ 
Now according to NIM [16] and by using the formula, 

5(6, �) = 0 ℎ1(6) �12!
���
14 

+ �+�g + �+�h 

= � + �(5),                                (86) 

where 

� = 0 ℎ1(6) �12!
���
14 

+ �+�g 

and �(5) = ���h and 5 = �, 5i&� = �(5), 
j = 0, 1, 2,⋯ 

Therefore in view of “(86)” we obtain 

5 (6, �) = log 6 + 66W ��&�Γ(� + 2) + (6W − 66) 
~+>SV�(�&w),                                (87) 
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5�(6, �) = − 16C ��Γ(� + 1) + 366 �C�&�Γ(2� + 2) 
+366 �C�&WΓ(2� + 4) − log 6 ��Γ(� + 1) 

−66W +U>SA�(C�&C)+ (6W − 66) ~+U>SV�(C�&w),      (88) 

⋮ 
The NIM in series form and the exact solution is 

5(6, �) = log 6 + 66W ��&�Γ(� + 2) + (6W − 66) 
6��&WΓ(� + 4) − 16C ��Γ(� + 1) + 366 �C�&�Γ(2� + 2) 
+366 �C�&WΓ(2� + 4) − log 6 ��Γ(� + 1) 

−66W �C�&�Γ(2� + 2) 
+(6W − 66) ~+U>SV�(C�&w) +⋯                  (89) 

The ADM, the VIM and the NIM gives the same solution 

for Classical Klein-Gordon equation(when	� = 2) which is 

given by 

5(6, �) = log 6 + 6W�W + (6W − 66)6 �yΓ(6) 
− 16C �CΓ(3) + 366 �yΓ(6) + 366 ��Γ(8) 

− log 6 �CΓ(3) − 66W �yΓ(6) 
+(6W − 66)6 +��(�)+⋯                      (90) 

Cancelling the nose terms and keeping the non-noise terms 

in above equation yield the exact solution of the problem, for 

the case when � = 2 

5(6, �) = log 6 + 6W�W.                         (91) 

Example(6): Consider the following One-dimensional 

linear inhomogeneous fractional Klein-Gordon equation 

;>?;+> − ;U?;@U + 5 = 66W� + (6W − 66)�W,            (92) 

� < 0, 6 ∈ �, 1 < � ≤ 2, 

subject to initial condition 

5(6, 0) = o@, 5+(6, 0) = 0                (93) 

Problem “(92)” and “(93)” can be obtain by using ADM 

[15] the recurrence relation is given by 

5 (6, �) = 5(6, 0) + �5+(6, 0) + ��(66W 

+(6W − 66)�W) 
5N&�(6, �) = −�� t ;U;@U 5N(6, �) − 5N(6, �)u, 

Q ≥ 0.                                (94) 

In view of “(94)” the first few components are derived as 

follows 

5 (6, �) = o@ +66W ��&�Γ(� + 2) + (6W − 66) 
~+>SV�(�&w),                                    (95) 

5�(6, �) = 366 �C�&�Γ(2� + 2) + 366 �C�&WΓ(2� + 4) 
−66W �C�&�Γ(2� + 2) + (6W − 66) 

~+U>SV�(C�&w),                                  (96) 

⋮ 
The solution in series form is 

5(6, �) = o@ +66W +>SA�(�&C)+ (6W − 66) ~+>SV�(�&w), 

+366 �C�&�Γ(2� + 2) + 366 �C�&WΓ(2� + 4) 
−66W �C�&�Γ(2� + 2) − (6W − 66) 6�C�&WΓ(2� + 4) 

+⋯                                   (97) 

According to VIM [15], the iteration formula for the 

problem is given by 

51&�(6, �) = 51(6, �) − (� − 1)�+�[ 7�7�� 51(6, �) 
− 7C76C 51(6, �) + 51(6, �) − 66W� 

−(6W − 66)�W]                                (98) 

By above Variation iteration formula, if we begin 

with 	5 (6, �) = o@ , we can obtain the following 

approximations 

5�(6, �) = o@ +(� − 1) _o@ +>�(�&�) + 66W +>SA�(�&C) +	(6W −66) ~+>SV�(�&w)e,                                  (99) 
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5C(6, �) = o@ +(� − 1) �o@ ��Γ(� + 1) + 66W ��&�Γ(� + 2)
+	(6W − 66) 6��&WΓ(� + 4)� 

+(� − 1)C L−o@ +U>�(C�&�)− 	366 +U>SA�(C�&C)− 366 +U>SV�(C�&w)M, (100) 

⋮ 
Now according to NIM [16] and by using the formula, 

5(6, �) = 0 ℎ1(6) �12!
���
14 

+ �+�g + �+�h 

= � + �(5),                                (101) 

where 

� = 0 ℎ1(6) �12!
���
14 

+ �+�g 

and �(5) = ���h and 5 = �, 5i&� = �(5), j = 0, 1, 2,⋯ 

Therefore in view of “(101)” we obtain 

5 (6, �) = o@ +66W ��&�Γ(� + 2) + (6W − 66) 
~+>SV�(�&w),                                     (102) 

5�(6, �) = 366 �C�&�Γ(2� + 2) + 366 �C�&WΓ(2� + 4) 
−66W �C�&�Γ(2� + 2) − (6W − 66) 

~+U>SV�(C�&w),                                    (103) 

⋮ 
The solution in series form is 

5(6, �) = o@ +66W +>SA�(�&C)+ (6W − 66) ~+>SV�(�&w), 

+366 �C�&�Γ(2� + 2) + 366 �C�&WΓ(2� + 4) 
−66W �C�&�Γ(2� + 2) − (6W − 66) 6�C�&WΓ(2� + 4) 

+⋯                                    (104) 

The ADM, the VIM and the NIM gives the same solution 

for Classical Klein-Gordon equation(when	� = 2) which is 

given by 

5(6, �) = o@ + 6W�W + (6W − 66)6 �yΓ(6) 

+366 �yΓ(6) + 366 ��Γ(8) − 66W �yΓ(6) 
−(6W − 66)6 +��(�)+⋯                    (105) 

Cancelling the nose terms and keeping the non-noise terms 

in above equation yield the exact solution of the problem, for 

the case when � = 2 

5(6, �) = o@ + 6W�W.                      (106) 

4. Conclusion 

These three types of method, i.e., ADM, VIM and the 

NIM are many useful for solving partial differential 

equations, ordinary differential equations and other 

equations. The present paper shows great potential for 

solving linear fraction partial differential equations. And 

using logarithmic and exponential function as initial 

condition in the given problem, the series of solution is 

obtained. This work can also be expected for further solving 

similar type of linear as well as nonlinear problems in 

fraction calculus. 
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