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Abstract: The effect of various inhomogeneity factors on propagation of Rayleigh waves in prestressed elastic granular 

medium are investigated. Inhomogeneities have been assumed to vary exponentially with depth. Lame’s potential is used to 

solve the problem.  Some special cases have also been deduced. Dispersion curves are computed numerically and pre-

sented graphically by using MathCAD. The results indicate that on neglecting various effects of inhomogeneity, initial 

stress and gravity, the calculations agrees with classical theories. 
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1. Introduction 

Rayleigh waves are a combination of compression and 

shear waves. Their traveling speed is slightly smaller than 

bulk shear waves [1]. The propagation of Rayleigh waves 

in a granular media is of considerable importance in soil 

mechanics, geophysics and earthquake science etc. 

Lot of literature on Rayleigh waves in granular media is 

available in articles written by many authors such as Datta 

[2],  Abd-Alla, El-Naggar and Ahmed [3, 4, 5, 10] , Shar-

ma JN and Kaur [6], Oshima [7-8], Paria [9]. Rayleigh 

waves in a magneto-elastic material under the influence of 

initial stress and a gravity field were discussed by Abd-Alla 

et al. [11]. Willson W and Yu CP and Tang S [12, 13] inves-

tigated the problem of the propagation of magneto-thermo, 

elastic plane waves. Gupta et al. [14] investigated surface 

waves in non homogeneous granular material under gravity. 

Recently, Xianhai Song et al. [15] studied the Applica-

tion of particle swarm optimization to interpret Rayleigh 

dispersion curves. Kakar [16, 17, 18, and 19] has discussed 

Rayleigh waves in non-homogeneous granular media, vis-

coelastic and in elastic media. Some problems on Love 

waves propagating in piezoelectric material under the effect 

of an electro-elastic field were also discussed by Britan [20], 

Danoyan [21], Du et al. [22], Eskandari [23] and Du et al. 

[24]. 

However, the combined effect of temperature and mag-

netic field on Rayleigh waves propagating in non-

homogeneous granular media has not been discussed so far; 

therefore authors solved the problem of Rayleigh waves 

propagating in a non- homogeneous granular medium under 

various inhomogeneities and the results presented in this 

paper should prove useful for researchers in material 

science. 

In this paper, the influence of magnetic field, gravity, 

temperature, initial compression and non- homogeneity on 

the propagation of Rayleigh waves in a granular half space 

supporting a different granular layer is studied. The fre-

quency equation of Rayleigh waves is obtained in the form 

of a 9x9 determinant. The non-homogeneities are assumed 

to vary exponentially with depth. It is assumed that the, 

medium is discontinuous and it is made up of numerous 

large or small grains. These grains not only translate but 

also rotate about its centre of gravity as shown in fig. 1. 

The motion of these grains produce friction, therefore the 

concept of friction has taken in the governing equations. 

Also, when the gravity, temperature, magnetic field, initial 

compression and non-homogeneity are neglected, the fre-

quency equation is in well agreement with the correspond-

ing classical result. The results are explained graphically by 

choosing standard parameters of the medium.  
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Figure 1. Schematic of the problem. 

2. Formulation of the Problem 

We consider Oxyz Cartesian co-ordinate system with o 

being any point on the free surface, here we consider the 

free surface and interface of granular layer resting on non-

homogeneous granular half space bounded by two planes of 

different material given by z = 0 and z = H respectively. 

Also it is assumed that oz being normal to half space and 

Rayleigh wave propagation in the positive direction of x-

axis. 

Here it is also assumed that at a great distance from cen-

tre of disturbance, the wave propagation is two dimensional 

and is polarized in xz-plane. 

Therefore the displacement components along x and z-

directions are non-zero i.e. u
1
 and u

3
 are non-zero while u

2
 

is zero. Also, it is assumed that, wave is surface wave as the 

disturbance is extensively confined to the boundary. (ξ, η, ζ) 

gives the rotation vector of the grain about its centre of 

gravity so there exists a stress tensor and stress couple 

which are non-symmetric i.e. σ
ij 

≠ σ
ji
 and M

ij
 ≠ M

ji
. 

The stress tensor σij can be expressed in symmetric and 

anti-symmetric tensors τ
ij
 and τ'ij  

i.e.  

σ
ij
= τ

ij
 + τ'ij,                (1) 

where  

τ
ij
= 

1

2
 (σ

ij
 + σ

ji
) 

and 

 τ'
ij
 = 

1

2
 (σ

ij
 – σ

ji
).                (2) 

Further symmetric strain tensor are given by relation 

e
ij
= e

ji
 = 

1

2

ji

j i

uu

x x

∂∂
∂ ∂
 

+  
 

.       (3) 

The anti-symmetric stresses τ'ij are given by 

τ'
23

= F
t

∂ξ
∂

− , τ'
31

 = F
t

∂η
∂

− , τ'
12

 = 
z

F
t

∂
∂

− ,  (4) 

τ'
11

= τ'
22

 = τ'
33

 = 0, 

where F be the co-efficient of friction. 

The stress couple M
ij
 is given by 

M
ij
= Mν

ij
,              (5) 

where M be the elastic constant, 

ν
11

 = 
x

∂ξ
∂

, ν
22

 = 0, ν
33

 = 
z

∂ξ
∂

; ν
23

 = 0, ν
31

 = 
z

∂ξ
∂

, 

ν
12

 = 
x

∂
∂

 (w2 + η), ν
32 

= 
z

∂
∂

 (w2 + η), 

ν
13

 = 
z

x

∂
∂

, ν
21

 = 0, 

where rotation vector 

w
1
 = 

1

2
 (u

3,y
 – u

2,z
),         (6) 

w
2
= 

1

2
 (u

1,z
 – u

3,x
), w

3
 = 

1

2
 (u

2,x
 – u

1,y
). 

Let g be the acceleration due to gravity and ρ be the den-

sity of the material, 

The state of initial stresses are given by 

σ
ij
 

;

0 ;

i j

i j

σ= = 
= ≠ 

where i, j = 1, 2, 3 

Further, σ is a function of z. 

The Eq. of equilibrium of initial stresses are 

σ,x= 0 ; σ,z – ρg = 0            (7) 

The problem is dealing with magnetoelasticity. Therefore 

the basic equations will be electromagnetism and elasticity. 

Let us consider that the medium is a perfect electric con-

ductor, we take the linearized Maxwell equations governing 

the electromagnetic field, taking into account absence of 

the displacement current (in system-international unit) in 

the form 

 

0∇ ⋅Ε =
�� ��

, 0∇ ⋅Β =
�� ��

,
t

∂Β∇× Ε = −
∂

���

�� ��

,
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.e e
t

µ ε ∂Ε∇ ×Β =
∂

����

�� ��

                 (8a) 

Where, Ε
��

, Β
��

, eµ and eε are electric field, magnetic field 

induction, permeability and permittivity of the medium. 

The value of magnetic field intensity is 

( ) 00,0, iΗ Η = Η + Η
�� �� ��

        (8b)
 

We have considered an elastic solid under constant pri-

mary magnetic field 0Η
��

acting on the y-axis, gravity g, 

perturbation iΗ
��

 and an initial stress P along the x-axis. 

It is assumed that prior to the existence of any distur-

bance both the media are everywhere at the constant abso-

lute temperature T0. T is the absolute temperature over the 

initial temperature T
0
. In a thermo viscoelastic solid, the 

thermal parameters Ξ are given by Ξ= (3λ + 2µ) αt, where 

αt be the coefficient of linear expansion of solid. 

The dynamical equations of motion in the x and z dimen-

sions of granular medium under gravity are 

σ
11,x

 + σ
13,z

 – ρg u
3,x

 3, 2,( )y zP ω ω+ − + τ'31,z
 = ρu

1,tt , 

σ12,x + σ23,z + τ'12,x 3, yPω+  – τ'23,z = 0, 

σ13,x + σ33,z + ρg u1,x 2,xPω−  – τ'31,x = ρ u3,tt , 

and 

τ'
23 

+ σ
23

 – σ
32

 + M
11,x

 + M
31,z

 = 0, 

τ'
31

 + σ
31

 – σ
13

 + M
12,x

 + M
32,z

 = 0, 

τ'
12

 + σ
12

 – σ
21

 + M
13,x

 + M
33,z

 = 0.      (9) 

3. Solution of Problem 

Further the stress components are given by 

σ11
= (λ + 2µ) u

1,x
 + λ u3,z

 
2

0eH Tµ+∆ − Ξ  

= C11u1,x
 + C13 u3,z

 
2

0eH Tµ+∆ − Ξ , 

σ33
= λ u1,x

 + (λ + 2µ) u
3,z

 
2

0eH Tµ+∆ − Ξ  

= C13  u1,x
 + C33 u3,z

 
2

0eH Tµ+∆ − Ξ , 

σ
13

= µ (u
3,x

 + u
1,z

)= C44(u3,x
 + u

1,z
).     (10) 

putting Eq. (10), Eq. (5), Eq. (6) and Eq. (4) in Eq. (9) ; 

we get 

 

(λ + 2µ+ P) u
1,xx

 + µu
1,zz

 + (λ + µ+ P) u
3,xz

 + u
1,x

 
x

∂
∂

 (λ + 

2µ+ P) + u
3,z

 
x

∂
∂

 (λ+P)+ (u
3,x

 + u
1,z

) 
z

∂
∂

(µ) – ρg u
3,x

 – F 

t

∂
∂

 (η,z) –
t

∂η
∂ z

∂
∂

 (F)–
2

P
( u

1,zz
–u

3,xz) 
2

0eHµ+

(2u
1,xx

+u
3,xz)

T

x

∂
∂

− Ξ  = ρu
1,tt

 , 

(Fξ,t),z – (Fζ
,t
), x = 0, 

(λ + 2µ) u
3,zz

 + µ u
3,xx

 + (λ + µ) u
1,xz

 + (u
3,x

 + u
1,z

) 
x

∂
∂

(µ) 

+ u
1,x  

z

∂
∂

 (λ) + u
3,z  

z

∂
∂

 (λ + 2µ)
2

0eHµ+ ( u
1,xz

–u
3,xx) 

–
2

P
 ( u

1,xz
–u

3,xx) +(u
1,x

 + u
3,z

) 
2

0eHµ  +ρg u
1,x

 
T

z

∂
∂

− Ξ + 

F 
t

∂
∂

 (η,x) = ρ u
3,tt

 , 

F
t

∂ξ
∂

− + M∇
2
 ξ + ξ,z 

z

∂
∂

 (M) = 0, 

F
t

∂η
∂

− + M∇
2
 (η + w

2
) ( )2

M
w

z z

∂ ∂η
∂ ∂

+ +  = 0,(11a) 

z
F

t

∂
∂

− + M∇
2
 

( )
,z

M

z

∂
ζ

∂
+ = 0, 

where λ, µ are Lame’s constants and  

31
1, 3,x z

uu
u u

x z

∂∂∆ = + = +
∂ ∂

 

Now we assume the non-homogeneity of the granular 

half-space and co-efficient of friction are given by 

λ = λ
0 e

mz
, µ = µ

0
 e

mz
, ρ = ρ

0
 e

mz
, F = F

0
 e

mz
, 

M = M
0
 e

mz
 , P = P

0
 e

mz
 , µ

e=(µe)0
 e

mz
 Ξ = Ξ

0
 e

mz
 

Where m, λ
0
, µ

0
, ρ

0
, F

0
, M

0
, P

0
, (µe)0

, Ξ
0 
are dimension-

less constants.  

Inserting Inhomogeneities in Eq. (11), we get 

(λ0 + 2µ0+ P0) u1,xx
 + µ0u1,zz

 + (λ0 + µ0+ P0) u3,xz
 + u

1,x
 

x

∂
∂

 

(λ0 + 2µ0+ P0) + u
3,z

 
x

∂
∂

 (λ0+P0) + (u
3,x

 + u
1,z

) 
z

∂
∂

(µ0) – 

ρ0g u
3,x

 – F0

t

∂
∂

 (η,z) –
t

∂η
∂ z

∂
∂

(F0) 
2

0 0( )e Hµ+
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(2u
1,xx

+u
3,xz) –

0

2

P
( u

1,zz
–u

3,xz) 0

T

x

∂
∂

− Ξ  = ρ0u1,tt
 , 

∴(F0ξ,t),z – (F0ζ,t
), x = 0, 

(λ0+ 2µ0) u3,zz
 + µ0 u3,xx

 + (λ0 +µ0) u1,xz
 + (u

3,x
 + u

1,z
) 

x

∂
∂

(µ0) + u
1,x  

z

∂
∂

 (λ0) + u
3,z  

z

∂
∂

 (λ0 + 2µ0) 2

0 0( )e Hµ+  

( u
1,xz

–u
3,xx) –

0

2

P
 ( u

1,xz
–u

3,xx) +(u
1,x

 + u
3,z

) 
2

0 0( )e Hµ+  

+ρ0g u
1,x

 
0

T

z

∂
∂

− Ξ + F0

t

∂
∂

 (η,x) = ρ0 u3,tt
 , 

0
t

F
∂ξ
∂

− + M0∇
2
 ξ + ξ,z 

z

∂
∂

 (M0) = 0, 

0
t

F
∂η
∂

− + M0∇
2
 (η + w

2
) ( )2

0w
z z

M∂∂ η
∂ ∂

+ +  = 0,(11b) 

0

z

t
F

∂
∂

− + M0∇
2
 ζ ( )

,

0

z

M

z

∂
ζ

∂
+

= 0, 

To determine T, Fourier’s law of heat conduction 

p ∇
2

T= ( )2

0 L

T
C T G

t t
ν

∂ ∂ φ
∂ ∂

+ ∇ ,(12) 

where K be the thermal conductivity and obeys the law 

as given by K = K0 emz, 

 p = 
0

0

K

ρ  and C  be the specific heat  of the body at 

constant volume. 

Further to investigate the surface wave propagation, we 

introduce displacement potentials in terms of displacement 

components are given by 

u
1
 = φ,x – ψ

,z , u
3
 = φ

,z
 + ψ

,x
      (13) 

Introducing Eq. (12), (13) into Eq. (11b), we get 

α
2
 ∇

2
 φ – φ

,tt
 + g ψ

,x
 + mβ'

2
 (2φ

,z
 + ψ

,x
) – δ2T = 0,  (14) 

t

∂
∂

 (ξ
,z
 – ζ

,x
) + mξ

,t
 = 0,          (15) 

β
2 ∇

2
 ψ – ψ

,tt
 + gφ

,x
 + s

η,t
 + m (γ2 φ

,x
 + 2β

2
 ψ

,z
) = 0, (16) 

–F
0
 ξ

,t
 + M

0
 ∇

2
 ξ + M

0 mξ
,z
 = 0,   (17) 

–s' η,t
 + ∇

2 η – ∇
4
 ψ – m [η

,z
 – ∇

2
 (ψ

, z
)] = 0,   (18) 

–s' ξ
,t
 + ∇

2 ξ + mζ
,z
 = 0,      (19) 

where  

2

0 0 0 0 0

0

2 ( )eP Hλ µ µ
ρ

+ + +
= α

2
, 

β
2
 = 

0 0

0

2

2

Pµ
ρ
+

, γ
2
 = 

2

0 0 0

0

( )e Hλ µ
ρ

+
, 

s = 
0

0

F

ρ , δ2 = 
0

0

K

ρ  , s' = 
0

0

F

M
, β'

2=β
2
–

0

02

P

ρ    (20) 

Eliminating η from Eq. (16) and Eq. (18) ; we get 

2 's m
t z

∂ ∂
∂ ∂

 ∇ − + 
 

[β
2
 ∇

2
 ψ – ψ

,tt
 + gφ,x + m (γ

2 

φ,x + 2β
2 ψ,z)]+ s ∇

4
 (ψ,t

) + ms ∇
2
 (ψ,zt) = 0.(21) 

To solve Eq. (14) to Eq. (19), we assume that 

φ (x, z, t)= φ
1
 (z) ei(lx–bt) , 

ψ (x, z, t)= ψ
1
 (z) ei(lx–bt) , 

ξ (x, z, t)= ξ
1
 (z) ei(lx–bt) , 

η (x, z, t)= η
1
 (z) ei(lx–bt) ,        (22) 

ζ (x, z, t)= ζ
1
 (z) ei(lx–bt) . 

putting Eq. (22) in Eq. (14) and Eq. (21), we get 

(α
2
 D

2
 – A) φ

1
 – B ψ

1
 = 0,         (23) 

(A' D
4
 + B' D

3
 + C' D

2
 + d' D 

 + E) ψ
1
 + (E' D

2
 + F') φ

1
 = 0,        (24) 

Where 

D= 
d

dz
, A = α

2 l
2
 – b

2
 – 2mβ

2
, 

B = ilg – ilmβ
2
 , 

A' = β
2
 – ibs, B' = 3mβ

2
 – imsb, 

C' = b (b + iβ
2
 s') – 2l

2
 (B

2
 – ibs) + 2m

2
 β

2
 , 

d' = (–2β
2
 l

2 m + 2β
2
 is'm – ml

2
 β

2
 + mb

2
 + imsbl

2
), 

E= l
4
 (β

2
 – ibs) – bl

2
 (b + iβ

2
 s') + ib

3
s', E' = (ilg + iml γ

2
), 

F'= (–ig l
3
 – gl bs' – iml

3
 γ

2
 – ms' γ

2
 b

2
 + ilgm + il m

2
 γ

2
).(25) 
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Therefore the solutions of Eq. (23) and Eq. (24) is of the 

form 

φ
1
= 

j jz z

j jA e B e
λ λ−+ ,    (26) 

ψ
1
= 

j jz z

j jE e F e
λ λ−+ , j = 3, 4, 5   (27) 

where  

j (j = 3, 4, 5) are the real roots of the following equation 

D
6
 + P

1
 D

5
 + P

2
 D

4
 + P

3 D
3
 + P

4 D
2
 + P

5
 D + P

6
 = 0,(28) 

Where, 

P
1
 = 

2

2

3m imsb

ibs

β
β

−
−

, 

( ) ( )

( ) ( )
( )

2 2 2 2

2 2 2

2 2 2 2 2

2 2 2

' 2

2

2
,

 + − −
 
 +
 
− − − − 
 =

−

b b i s l ibs

m

ibs l b m
P

ibs

α β α β

α β
β α β

α β

 

( )
( ) ( )

( )

2 2 2 2 2 2 2 2

2 2 2 2 2

3 2 2

2 2 '

2 3
,

− + − + +

− − − −
=

−

l is ml mb imsbl

l b m m imsb
P

ibs

α β β β

α β β
α β

 

P
4
 = ( )

2

2 2

' 'E AC BE

ibs

α
α β

− +
−

, P
5
 = ( )2 2

'Ad

ibsα β
−

− , 

 P
6
 = ( )2 2

'BF AE

ibsα β
−

− ,                   (29) 

where A', B', C', D', E', E, F, A, B are given by Eq. (25). 

Further the constants A
j
, B

j
 (j = 3, 4, 5) are related with 

constants Ej, Fj respectively by means of Eq. (23). Equating 

the coefficients of e
λjz

, e–λjz
 (j = 3, 4, 5) to zero and  using 

Eq. (23) and (24) ; we get 

Where, 

A
j
= η

j
 E

j
 and B

j 
= η

j
 F

j
 (j = 3, 4, 5),    (30) 

η
j
= 

2

2 2 2 2 2 2

lg

2

i il m

j l b m

β
α λ α β

−
− + +

 (j = 3, 4, 5)(31) 

Now solving Eq. (16) and Eq. (23) for η1 and ψ1, we get 

(a
1
 D

4
 + a

2
 D

3
 + a

3
 D

2
 + a

4
 D + a

5
) ψ

1
 

– isb (α
2 D

2
 + a

6
) η

1
 = 0      (32) 

Now eliminating ψ
1
 from Eq. (18) and Eq. (32), we get 

[q
1
 D

6
 + q

2
 D

5
 + q

3
 D

4 + q
4
 D

3
 

+ q
5
 D

2
 + q

6
 D + q

7
] η = 0,    (33) 

Where 

q
1
= a

1
 – isbα

2
, 

q
2
= ma

1
 + a

2
 – isbα

2
 m, 

q
3
= a

1
 (is'b – l

2
) + a

2
m + a

3
 – isba

6
 + 2isbl

2 α
2
, 

q
4
= a

2
 (is'b – l

2
) + a

3
m + a

4
 – isbma

6 
+ isbml

2
α

2
, 

q
5
= a

3
 (is' b – l

2
) + a

4
m + a

5
 + 2isbl

2
 a

6
 + α

2 l
4
 (–isb), 

q
6
= (is'b – l

2
) a

4
 + ma

5
 + isb ml

2
 a

6
, 

q
7
= a

5
 (is'b – l

2
) – isbl

4
 a

6
, 

a
1
= α

2
 β

2
, 

a
2
= 2m α

2
 β

2
, 

a
3
= β

2
 (–α

2
 l

2
 – b

2
 + 2mβ

2
) + (b

2 – l
2
 β

2
) α

2
, 

a
4
= 2mβ

2
 (–α

2 l
2
 + b

2
 + 2mβ

2
), 

a
5
 = (b

2
 – l

2 β
2
) (–α

2
 l

2 + b
2
 + 2mβ

2
) + il (g + mγ

2
) (ilg – 

ilmβ
2
), 

a
6
 = b

2
 + 2mβ

2
 – α

2
 l

2
 .       (34) 

The solution of Eq. (33) is of the form 

η
j
= ( )j jz z

j jE e F e
λ λ−+ δ

j
 ,(35) 

where λ
j
 (j = 3, 4, 5) are the real roots of Eq. (33) 

and 

δ
j
= 

i

bs

−
 [β

2
 (λ

j

2
 – l

2
) + b

2
 + (ilg + m i l γ

2
) n

j
 + 2mβ

2
 λ

j
],(36) 

where j = 3, 4, 5 and nj is given by Eq. (31). 

Further substituting Eq. (22) into Eq. (15), Eq. (17) and 

Eq. (19), we get 

(D + m) ξ
1
 – ilζ

1
= 0,        (37) 

(D
2
 + mD + h

2
) ξ

1
= 0,      (38) 

(D
2
 + mD + h

2
) ζ

1
= 0,       (39) 
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Where 

h
2
= is'b – l

2
 , 

The solutions of Eq. (38) and Eq. (39) are given by 

ξ
1
= A

1
 e

αz
 + Az e

–βz
,           (40) 

ζ
1
= B

1
 e

αz
 + B

2
z e

–βz
,          (41) 

where 

α=  
2 24

2

m m h− + −
, 

β = 
2 24

2

m m h+ −
, m

2
 – 4h

2
 > 0. 

Substituting Eq. (40), Eq. (41) into Eq. (37), we get 

(A
1
 α + A

1 m) e
αz

 + (–A
2
 β + 

 m A
2
) e

–βz
 = il (B

1
 e

αz + B
2
 e

–βz
).     (42) 

Equating the co-efficients of eαz and e–βz to zero in Eq. 

(42), we get 

A
1
= 1i lB

mα +
, A

2
 = 

2i lB

m β−
.       (43) 

Let λ
0
, µ

0
, ρ

0
, F

0
, M

0
 are the characteristics of layer and 

0 0 0 0 0, , , ,F Mλ µ ρ  are the characteristics of half-space, 

also for the lower half-space and description of surface 

wave propagation ξ
1
, φ

1
, η

1
, ψ

1
, ζ

1
 goes to zero as z → ∞, 

also the non-homogeneity constant m is replaced by con-

stant m  for lower granular half-space also it is assumed 

that the real parts of  (j = 3, 4, 5) are positive. 

Thus for lower half-space 

1φ  = j z

j jF e
λη −

,          (44) 

1ψ  = 
j z

jF e λ−
,           (45) 

1η  = j z

j jF e
λδ −

,         (46) 

1ξ  = 2

zi l
B e

m

β

β
−

−
,       (47) 

1z  =  
2

zB e β−  (j = 3, 4, 5).    (48) 

4. Boundary Conditions and Dispersion 

Equation 

Case-I The boundary conditions on interface z = H are 

(i) u
1
 = 1u , 

(ii) u
3
 = 

3u , 

(iii) ξ = ξ , 

(iv) η = η , 

(v) ζ = z , 

(vi) M
33

 = 
33M

, 

(vii) M
31

 = 
31M

 , 

(viii) M
32

 = 
32M

, 

(ix) σ33
 = 

33σ , 

(x) σ31
 = 

31σ , 

(xi) σ32
 = 

32σ . 

(xii)T=T  

(xiii) 
T T

T T
z z

θ θ∂ ∂+ = +
∂ ∂

  (49) 

Case-II The boundary conditions on free surface z = 0 

are 

(xii) M
33

 = 0, 

(xiii) M
31

 = 0, 

(xiv) M
32

 = 0, 

(xv) σ33
 = 0, 

(xvi) σ31
 = 0, 

(xvii) σ32
 = 0,          (50) 

where 

M
31

= M
0
 e

mz
 ξ, z , 

M
32

= M
0
 e

mz
 (η – ∇

2
 ψ), z 

M
33

= M
0
 e

mz
 ζ,z,            (51) 
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σ31
= µ0

 e
mz

 (2φ,xz
 – ψ,zz

 + ψ,xx
) – F

0
 e

mz η,t , 

σ32
= –F

0
 e

mz
 ξ,t

 , 

σ33
= λ0

 e
mz

 ∇
2
 φ + 2µ (φ,zz

 + ψ,xz
). 

From the boundary conditions (iii), (v), (vi) and (vii), we 

get 

1 2H HB B
e e

m m

α β

α β
−+

+ −
=

2 HB
e

m

β

β
−

−
 ,(52) 

B
1
 e

αH
 + B

2
 e

–βH
 = 

2

HB e β−
,        (53) 

M
0
 e

mH
 [B

1
 α e

αH
 – B

2
 β e

–βH
] = 

0 2

mH HM e B e ββ −− ,           (54) 

 
1 2

0

H H
mH B e B e

M e
m m

α βα β
α β

− 
− + − 

= 

2
0

mH HB
M e e

m

ββ
β

−−
−

.      (55) 

From Eq. (52) to Eq. (55), we have 

B
1
= B

2
 = 

2B  = 0          (56) 

i.e.ξ= ζ = z  = ξ = 0.     (57) 

The other boundary conditions gives the following rela-

tions, conditions (xii) and (xiii) are identities due to Eq. 

(57). 

(xiv) gives, i.e. K
1
E

3
 + K

2
E

4
 + K

3
E

5
 – K

1
F

3 – K
2 

F
4
 – K

3
F

5
 = 0, 

(xv) gives, K
4 E3

 + K
5
E

4
 + K

6 E5
 + K

7 F3
 + K

8 F4
 

+ K
9
 F

3
 = 0, 

(xvi) gives,  K10
 E

3
 + K

11
 E

4
 + K

12
 E

5
 + K

13
 F

3
 + 

K
14

 F
4
 + K

15 F5
 = 0, 

while condition (xviii) and (xi) is an identity, 

(i) gives, K16  

3 5 34

3 17 4 18 5 19 3

H H HH
e E K e E K e E K e F

λ λ λλ −+ + +  

+ 54

20 4 21 5

HH
K e F K e F

λλ −− +  = 

3 54

19 3 20 4 21 5

H HHK e F K e F K e Fλ λλ− −−+ + , 

(ii) gives (il + n
3
 λ3

) 3H
e

λ E
3
 + (il + n

4
 λ4

) 4Heλ E
4
 

+ (il + n
5
 λ5

) 5H
e

λ E
5
 

+ (il – n
3
 λ3

) 3H
e

λ−  F
3
 + (il – n

4
 λ4

) 4He λ− F
4
 + (il 

– n
5
 λ5

) 5H
e

λ−  F
5
 

= 
( )

( ) ( )
3

54

3 3 3

4 4 4 5 5 5

−

−−

−

+ − + −

H

HH

il n e F

il n e F il n e F

λ

λλ

λ

λ λ
, 

(iv) gives, δ3
 3H

e
λ E

3
 + δ4

 4Heλ  E
4
 + δ5  5H

e
λ E

5
 + 

δ3
 3H

e
λ− F

3
 

+ 54

4 4 5 5

HH
e F e F

λλδ δ −− +  = 

3 54

3 3 4 4 5 5

H HHe F e F e Fλ λλδ δ δ− −−+ + , 

(viii) gives,M
0
 e

mH
  

3 5 34

1 3 2 4 3 5 1

H H HH
K e E K e E K e E K e

λ λ λλ − + + −  

54

3 2 4 3 5

HH
F K e F K e F

λλ −− − −   

= 

3

54

1 3

0

2 4 3 5

−

−−

 +
−  

+  

H

mH

HH

K e F
M e

K e F K e F

λ

λλ
, 

(ix) gives,  e
mH 

3 5 34

4 3 5 4 6 5 7 3

H H HH
K e E K e E K e E K e F

λ λ λλ − + + +  

+ 54

8 4 9 5

HH
K e F K e F

λλ −− +  = 

3 54

7 3 8 4 9 5

H HHmHe K e F K e F K e F
λ λλ− −− + +  , 

(x) gives,  e
mH  

3 4

5 3

10 3 11 4

12 5 13 3

−

 + +


+

H H

H H

K e E K e E

K e E K e F

λ λ

λ λ
 

+ 54

14 4 15 5

HH
K e F K e F

λλ −− +   

= 

3

54

13 3

14 4 15 5

−

−−

 +
 

+  

H

mH

HH

K e F
e

K e F K e F

λ

λλ
,   (58) 

where 

K
j–2

= λj
 (δj – λj

2
 + l

2
), 
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2jK − = ( )2 2

j j j lλ δ λ− + , 

K
j+1

= nj [(λj + 2µ0
) λj

2
 – λ0

 l
2
] + 2ilµ0

 λj
, 

1jK + = ( ) 2 2

0 0 0 02 2j j jn l i lλ µ λ λ µ λ + − +  , 

K
j+4

= nj [(λj + 2µj) λj
2
 – λ0

 l
2
] – 2ilµ0

 λj
, 

4jK + = ( ) 2 2

0 0 0 02 2j j jn l i lλ µ λ λ µ λ + − −  , 

K
j+7

= ib F
0
 δj

 + 2i lµ0 n j
 λj 

– µ0
 (λj

2
 + l

2
), 

7jK + = ( )2 2

0 0 02j j j jib F il n lδ µ λ µ λ+ − + , 

Kj+10= ibF
0
 δj

 – 2i lµ0 nj
 λj

 – µ0
 (λj

2
 + l

2
), 

10jK + = ( )2 2

0 0 02j j j jib F il n lδ µ λ µ λ− − + , 

K
j+13

= iln
j
 – λj

,            (59) 

K
j+16

= iln
j
 + λj

, 

16jK + = j ji ln λ+ . 

Eliminating E
3
, E

4
, E

5
, F

3
, F

4
, F

5
, 3 4 5, ,F F F  from Eq. 

(58), 

We get 9 × 9 determinant, which gives wave-velocity eq-

uation, 

i.e. |a
ij
| = 0, where i, j = 1, 2, ..... 9   (60) 

Equation (60) gives the dispersion equation of Rayleigh 

waves for a granular non-homogeneous medium under the 

influence of gravity. 

Where, 

a
11

 = 3

1

H
K e

λ− , a
12

 = 4

2

H
K e

λ− , 

a
13

 = 5

3

H
K e

λ− , a
14

 = 3

1

H
K e

λ , 

a
15

 = 4

2

H
K e

λ  , a
16

 = 5

3

H
K e

λ , 

a
17

 = a
18

 = a
19

 = 0, 

a
21

 = 3

4

H
K e

λ− , a
22

 =  4

5

H
K e

λ− , 

a
23 = 5

6

H
K e

λ− , a
24

 = 3

7

H
K e

λ , a
25

 = 4

8

H
K e

λ , 

a
26

 = 5

9

H
K e

λ , a
27

 =  a
28

 = a
29 = 0, 

a
31

 = 3

10

H
K e

λ− , a
32

 = 4

11

H
K e

λ− , 

a
33

 = 5

12

H
K e

λ− , a
34

 = 3

13

H
K e

λ , 

a
35

 = 4

14

H
K e

λ , a
36

 = K
15

 5H
e

λ , a
37

 = a
38

 = a
39

 = 0, 

a
41

 = K
16

 ; a
42

 = K
17

, a
43

 = K
18

, 

a
44

 = K
19

, a
45

 = K
20

, a
46

 = K
47

, 

a
47

 = 
19K

, a
48

 = 
20K

, a
49

 = 
21K

, 

a
51

 = il + n
3
 λ3

 , a
52

 = il + n
4
 λ4

, 

a
53

 = il + n
5
 λ5

, a
54

 = il – n
3
 λ3

, 

a
55

 = il – n
4
 λ4

,a
56

 = il – n
5
 λ5

, 

a
57

 = 
3 3il n λ− , a

58
 = 

4 4il n λ− , 

a
59

 = 
5 5il n λ− ,a

61
 = δ3

, a
62

 = δ4
, 

a
63

 = δ5
, δ64

 = δ3
, a

65
 = δ4

, a
66

 = δ5
, 

a
67

 = 
3δ , a

68
 = 

4δ , a
69

 = 
5δ , 

a
71

 = M
0 

e
mH

 K
1
, a

72
 = M

0
 e

mH
 K

2
, 

a
73

 = M
0
 e

mH
 K

3
, a

74
 = –K

1
 M

0
 e

mH
, 

a
75

 = –K
2
 M

0
 e

mH
, 

a
76

 = –K
3
 M

0
 e

mH
, a

77
 = 

1 0

mHK M e− , 

a
78

 = 
2 0

mHK M e− , a
79

 = 
3 0

mHK M e− , 

a
81

 = K
4
 e

mH
, a

82
 = K

5
 e

mH
, 

a
83

 = K
6
 e

mH
, a

84
 = K

7
 e

mH
, 

a
85

 = K
8
 e

mH
, a

86
 = K

9
 e

mH
, 

a
87 = 

7

mHK e
, a

88
 = 

8

mHK e
, 

a
89

 = 
9

mHK e
, 

a
91

 = K
10

 e
mH

, a
92

 = K
11

 e
mH

, 
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a
93

 = K
12

 e
mH

, a
94

 = K
13

 e
mH

, 

a
95

 = K
14

 e
mH

,           (61) 

a
96

 = K
15

 e
mH

, a
97

 = 
13

mHK e
, 

a
98

 = 
14

mHK e
, a

99
 = 

15

mHK e
. 

5. Particular Cases 

Equation (60) in determinant form gives the wave veloci-

ty equation of Rayleigh wave in granular non-homogeneous 

medium under the influence of gravity, clearly from Eq. (60) 

we find that wave velocity c = 
b

l
 not only depends on 

gravity, temperature ,magnetic field, initial stress but also 

on the non-homogeneity of material. 

Case-I In the absence of granular rotations, we get 

0 0
jLt Lt

M s
λ

→ → = t
j
, 

0 0
jLt Lt s

M s
δ

→ → = ν
j
 (j = 3, 4, 5),   (62) 

where 

ν
j
= 

i

b
−  [β

2
 (t

j

2
 – l

2
) + b

2
 + (ilg + milγ

2
) η

j
 + 2mβ

2
 t

j
] 

and tj are the roots of the equation by using Eq. (33) 

α
2
 β

2
 t

j

6
 + (3mα

2
 β

2
) t

j

5
 + b

1
 t

j

4
 + b

2
 t

j

3
 + b

3
t
j

2
 + b

4
t
j
 + b

5
 = 0, 

where  

b
1
 = –3α

2
 β

2
 l

2
 + 2m

2
 α

2
 β

2
 + b

2
 (α

2
 + β

2
) + 2mβ

4
, 

b
2
 = –6m α

2
 β

2
 l

2
 + mb

2
 (α

2
 + β

2
) + 6m

2
 β

4
 + 2mβ

2
 b

2
, 

b
3
= –l

2
 [–2l

2
 α

2
 β

2
 + 2mβ

4
 + (α

2
+β

2
) b

2
] + 2m

2
β

2
 (–

α
2
l
2
+b

2
+2mβ

2
)+ (b

2
 – l

2
 β

2
) (–α

2
 l

2
 + b

2
 + 2mβ

2
) + il (g + 

mγ
2
) (ilg – ilmβ

2
), 

b
4
 = –2ml

2 β
2
 (–α

2
 l

2
 + b

2
 + 2mβ

2
) + (mb

2
 – ml

2
 β

2
) 

(–α
2
l
2
 + b

2 + 2mβ
2
) + iml (g + mγ

2
) (ilg – ilmβ

2
), 

b
5
 = –l

2
 [(b

2
 – l

2
 β

2
) (–α

2
 l

2
 + b

2
 + 2mβ

2
) + il (g + mγ

2
) (ilg 

– ilmβ
2
). 

So Eq. (60) together with relation given by Eq. (62) 

forms the dispersion equation for the semi-infinite elastic, 

isotropic and non-homogeneous medium overlain by a gra-

nular layer under the influence of gravity, magnetic field 

and temperature. 

Case-II In the absence of non-homogeneity, Eq. (60) 

gives the Dispersion equation of Rayleigh waves for a gra-

nular medium under the influence of gravity, magnetic field 

and temperature. 

Where, 

a
71

 = M
0
K

1
, a

72
 = M

0
K

2
, a

73
 = M

0
K

3
, 

a
74

 = –M
0
K

1
, a

75
 = –M

0
K

2
, 

a
76

 = –M
0
 K

3
, a

77
 = 

1 0K M− , 

a
78

 = 
2 0K M− , a

79
 = 

3 0K M− , 

a
81

 = K
4
, a

82
 = K

5
, a

83
 = K

6
, 

a
84

 = K
7
, a

85
 = K

8
, K

86
 = K

9
, a

87
 = 

7K
, 

a
88

 = 
8K

 , a
89

 = 
9K

, 

a
91

 = K
10

, a
92

 = K
11

, a
93

 = K
12

,  

a
94

 = K
13

, a
95

 = K
14

, a
96

 = K
15

,       (63) 

a
97

 = 
13K

, a
98

 = 
14K

, a
99

 = 
15K

, 

and rest of aij’s are same as in Eq. (61). 

Case-III In the absence of granular rotations and non-

homogeneity, we get 

0 0 0
jLt Lt Lt

m M s
λ

→ → →  = x
j
, 

 ( )
0 0 0

jLt Lt Lt s
m M s

δ
→ → → = W

j
 (j = 3, 4, 5)  (64) 

where 

W
j
= ( )2 2 2 2

j j

i
x l b il gn

b
β − − + + 

, 

η
j
 = 2 2 2 2 2

j

i l g

x l bα α− +  

and x
j
 are the roots of the equation 

α
2
 β

2
 x

j

6
 + [(α

2
 + β

2
) b

2
 – 3α

2
 β

2
 l

2
] x

j

4
 + [2l

4
 α

2
 β

2
 – b

2
 l

2
 

(α
2
 + β

2
) 

+ (b
2
 – l

2
 β

2
) (b

2 – l
2
 α

2
) – l

2
 g

2
] x

j

2
 + [(b

2
 – l

2
 β

2
) l

2
 (α

2
 l

2
 – 

b
2
) + l

4
 g

2
] = 0 

Thus the equation |a
ij
| = 0, where i, j = 1, 2, ..... 9 

where a
ij
's are given by Eq. (63) gives the Dispersion eq-



16 Rajneesh Kakar et al.: Rayleigh waves in a non-homogeneous, thermo, magneto, prestressed  

granular material with variable density under the effect of gravity 

uation for the semi-infinite, elastic and isotropic medium 

overlain by a granular layer under the influence of gravity. 

Case-IV In the absence of gravity, magnetic field H0=0, 

temperature T0=0, initial stress P0=0 and non-homogeneity, 

we get 

λ
5

2
= 

2
2

2

b
l

α
− , 

(λ
3

2
, λ

4

2
) = ( )

( )

2 2 2 2

2
2 2 2

2

2 '

2 ' 4 '

2

− − −

± − −

−

l b ib s

ib l s b b i s b ss

ibs

β β

β

β

. 

so by making η
3
, η

4
 → 0, the dispersion Eq. (60) reduces 

to  

|b
ij
|= 0 where i, j = 1, 2, ..... 9,  (65) 

where 

b
11

 = 
3

1

H
r e

λ− , b
12

 = –
3

1

H
r e

λ , 

b
13

 = 
4

2

H
r e

λ−  , b
14

 = 
4

2

H
r e

λ− , 

b
15

 = b
16

 = b
17

 = b
18

 = b
19

 = 0, 

b
21

 = 
3

3

H
r e

λ− , b
22

 = 
3

3

H
r e

λ− , 

b
23

 =  
4

4

H
r e

λ− , b
24

 = 
4

4

H
r e

λ− , b
25

 = 
5

5

H
r e

λ− , 

b
26

 = 
5

5

H
r e

λ− , b
27

 = b
28

 = b
29

 = 0, 

b
31

 = 
3

6

H
r e

λ− , b
32

 = 
3

6

H
r e

λ− , 

b
33

 = 
4

7

H
r e

λ− , b
34

 = 
4

7

H
r e

λ− , b
35

 = 
5

8

H
r e

λ− , 

b
36

 = 
5

8

H
r e

λ− , b
37

 = b
38

 = b
39

 = 0, 

b
41

 = –λ
3
, b

42
 = λ

3
, b

43
 = –λ

4
, 

b
44

 = λ
4
, b

45
 = il, 

b
46

 = il, b
47

 = 
3λ , b

48
 = 

4λ , b
49

 = il, 

b
51

 = b
52

 = b
53

 = b
54

 = il, b
55

 = λ
5
, 

b
56

 = –λ
5
, b

57
 = b

58
 = il, b

59
 = –

5λ , 

b
61

 = b
62

 = δ
3
, b

63
 = b

64
 = δ

4
, 

b
65

 = b
66

 = 0, b
67

 = 
3δ , b

68
 = 

4δ , b
69

 = 0, 

b
71

 = M
0 
r1, b

72
 = –M

0 
r

1
, 

b
73

 = M
0 
r

2
, b

74
 = –M

0 
r

2
, b

75
 = b

76
 = 0, 

b
77

 = 
0 1M r

, b
78

 = 
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Eq. (67) gives the Dispersion equation of Rayleigh 

waves for a granular medium in the absence of gravity and 

non-homogeneity and is in complete agreement with that 

obtained by Bhattacharaya et al. [22]. 

Case-V In the absence of gravity, granular rotations, 

magnetic field H0=0, temperature T0=0, initial stress P0=0 

and non-homogeneity. 

Now using Eq. (65) and (66) into Eq. (67), we get 
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Similar results are also holds for lower medium. 

Now using Eq. (68) into Eq. (67), then after some simpli-

fication we get  

6 × 6 determinantal equation 

|d
ij
| = 0 where i, j = 1, 2, 3, ..... 6,    (69) 
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Thus Eq. (69) gives the Dispersion equation of Rayleigh 

waves for semi-infinite elastic and isotropic medium over-

lain by granular layer of thickness H in the absence of grav-

ity and non-homogeneity is in complete agreement with the 

equation obtained by Ewing et al. [22] 

6. Numerical Analysis 

Numerical results have been obtained graphically to 

show the effect non-homogeneities and phase velocity on 

initial stress and dimensionless wave number. The parame-

ters for the material are as  

C11=135 GPa, C13=67.9 GPa, 

C44=22.2 GPa, C33=113 GPa, 

3

0 7.5 10ρ = ×
 Kg/m3. 

Various graphs are plotted with the help of MathCAD. 

Fig. 2 shows the effect of initial compression on the Ray-

leigh Waves, it is obvious that Rayleigh wave velocity de-

creases with an increasing of the various values of the ini-

tial stress P also with the wave number. 

Fig. 3 represents the variation of phase velocity with di-

mensionless less wave number at different values of initial 

stress. The three modes of Rayleigh waves have been plot-

ted at two different values of initial stress i.e. at P = 1 and P 

= 0.1. The value of magnetic field and temperature is fixed 

at 0.4 Tesla and 293 K. It is clear from fig. 3 as the value of 

initial compression increases the phase velocity decreases 

sharply with dimension less wave number. 

Fig. 4 is plotted to observe the effect of various non-
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homogeneities factor 'W in (%) on Rayleigh waves veloci-

ty with respect wave number at P= 1and P= 0.1. In graph 

W represents the zero
th

 level of non-homogeneities. 

 

Figure 2. Variation of Rayleigh waves velocity respect to initial stress with the various values of the wave number, H = 0.4 Tesla, g = 9.8 m/s, T = 293 K, 

granular rotations =0. 

 

Figure 3. Variation of Rayleigh waves velocity respect wave number, H = 0.4 Tesla, T = 293 K, g = 9.8 m/s, P= 1, P= 0.1, granular rotations =0. 
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Figure 4. Effect of various non-homogeneities in (%) on Rayleigh waves velocity with respect wave number keeping initial stress at P= 1and P= 0.1. 

7. Conclusions 

The frequency equation contains terms involving gravity 

and non-homogeneity, so the phase velocity not only de-

pends on gravity field but also on the non-homogeneity of 

the material medium, magnetic field, temperature, initial 

stress and granular notations. The transcendental equation 

(60) in determinant form gives the wave velocity equation 

of Rayleigh waves in magneto, thermo, granular non-

homogeneous medium under the influence of gravity and 

initial compression. Clearly, from equation (60) we find 

that wave velocity not only depends on gravity but also on 

the non-homogeneity of material medium, temperature, 

magnetic field, friction and initial stress. The results are in 

complete agreement with the corresponding classical results 

in the absence of all factors. Further in the absence of gravi-

ty, temperature, non-homogeneity, magnetic field, initial 

stress, equation (65) gives the Dispersion equation of Ray-

leigh waves for a granular medium and it is same as ob-

tained by Bhattacharaya et. al [22]. 

Also, equation (69) gives the Dispersion equation of 

Rayleigh waves for semi infinite elastic and isotropic me-

dium overlain by granular layer of thickness H in the ab-

sence of gravity, temperature, granular rotations, non-

homogeneity, magnetic field, initial compression and is 

incomplete agreement with the equation as obtained by 

Ewing et al [23]. 

The exact solution for inhomogeneous half-space sub-

jected to gravity field, temperature field and mechanical 

field is obtained. All material coefficients are assumed to 

have the same exponent-law dependence on the depth of 

the half space. The governing equations in Cartesian coor-

dinates are recorded for future reference. The present study 

reveals the influence of magnetic field, temperature, gravity 

and non-homogeneity on the propagation of Rayleigh wave 

type in a granular half space supporting an initially stressed 

granular layer. The dispersion equation in the form of ninth 

order determinant form has been derived. The real part 

gives the velocity of Rayleigh waves and its imaginary part 

determines the attenuation of the waves due to granular 

nature of the medium. 
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