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Abstract: Diffusivity scaling on shear flow is investigated. Radial electrical field is the drive of the flow. The turning 

points of the trapped particle are not on the drift surface, but modified by the radial electrical field. For the first time, an 

analytical expression of the banana width in presence of shear flow is accurately derived. The particle diffusivity given by 

Rosenbluth is reproduced but with the shear flow modification. 
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1. Introduction

It is generally claimed that the shear flow plays an 

important role in the onset of the transition from the L mode 

to H-mode. Experimental evidence
1
 also showed that the 

plasma rotates rapidly in the improved confinement regime, 

implying that the radial electric field is generated. 

Neoclassical ion transport in rotating axisymmetric plasma 

has been systematically investigated by Hinton
2
. However, 

the energy loss sometimes in the experiment is smaller than 

the standard neoclassical prediction. The improvement is 

attributed to the squeezing factor
3
 treated as the shear flow in 

this paper. There are renewed interests in the neoclassical 

fluxes
4-6

 inside the thermal barriers. The diffusivity scaling 

on the shear flow presented by Catto
6
 and Shaing

5
 are 

different. There are intense arguments
6
 on this topic. It is 

important because it is related to the role of the shear flow in 

the thermal barrier. Physicists should give a definite answer. 

The discrepancy between Catto
6
 and Shaing

5
 comes from 

the trapped particle dynamics which is emphasized in this 

paper. Accurate banana width, bounce frequency, and the 

turning point position in the presence of the shear flow are 

presented. Drift kinetic equation is solved with a 

particle-conserved Krook collision operator. Rosenbluth’s 

result
7
 is reproduced but with the shear flow modification. 

The fraction of the trapped particles estimated here is the 

same as Shaing’s
5
, however, diffusivity scaling on shear 

flow is different. 

In section 2, a set of canonical guiding-center variables is 

derived by area-conserved transformation. Dynamics for the 

trapped particles is given in section 3. The drift kinetic 

equation is solved and the diffusivity scaling is derived in 

section 4. Summary is presented in the last section. 

2. Canonical Guiding-Center Variables 

For a tokamak configuration, the Hamiltonian
 

of a 

charged particle can be expressed as: 

Φ+−+

−+−=

eReRAP

eAPeAP
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,      (1) 

where AR, AZ, and Aφ are the vector potential components of 

the magnetic field, Φ the electrical potential assumed to be a 

function of the poloidal magnetic flux Ψ, M the mass of the 

charged particle set equal to unity for simplicity, and e the 

charge. PR, Pφ, and PZ are the canonical momentum in the 

cylindrical coordinates R, φ, and Z, respectively, which are 

as following: 

 RRR eAP +=υ ,                 (2) 

 eR+ φφφ υ ARP = ,               (3) 

  ZZZ eAP +=υ .                (4) 
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The magnetic field in tokamaks can be expressed as: 

 φφ ∇+Ψ∇×∇= IB ,             (5)  

where I is related to the poloidal current. The vector 

potential components are 

   , ln  , 0
0 R

A
R

R
IAA ZR

Ψ−=−== φ .     (6) 

As stated by Littlejohn, there has been a gradual evolution 

over the years away from the averaging approach and 

towards the transformation approach8. We introduce a 

generating function9 to change the cylindrical variables to 

guiding-center variables: 
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where 

 ln
0

00
R

R
RX CΩ= ,                (8) 

0Ω  is the toroidal gyrofrequency at the magnetic axis, ρ 

the Larmor radius, α the gyrophase, and the subscripts o and 

c refer to the values at the magnetic axis and the guiding 

center, respectively. X and α are the new coordinates 

conjugate to the new momenta: 

 2sin
4

sin 
2

αραρ
C

X
R

ZP ++= ,             (9) 

  
2

1 2ρα CP Ω= ,                   (10) 

where PX is the guiding center of the Z coordinate, Zc. The 

momentum is often transformed into the coordinate during 

area-conserved canonical transformation9. 

The Hamiltonian is rewritten as: 

2 2 2 2

2

1
[( ) sin cos ] [ ]

2
= Ω + + + Ψ + ΦC

C

R
H P P e e

R R
α ϕα α . (11) 

The canonical transformation makes the Hamiltonian 

exact in the new coordinates. The canonical guiding-center 

variables, , , , , ,XP P P Xα φ α φ , are derived and satisfy the 

Hamiltonian equations: 

i
i

q

H
P

∂
∂−=ɺ ,                     (12) 

i
i

P

H
q

∂
∂=ɺ ,                     (13) 

where the P and q are known as the generalized momenta 

and coordinates. The Jacobian is unity for the 

area-conserved transformation
9
, that is, 

1= =
X

J dP dP dP d dXdα φ α φ .            (14) 

For the tokamaks, the ordering is 

~ / ~ / /∼r r R B Bθ φδ ρ ,             (15) 

where r and R are the minor and major radii respectively 

and 
0 cosR R r θ= + . To the first order, the gyro-averaged 

Hamiltonian in Eq. (11) is approximately expressed as: 

( )2

2

1

2
= Ω + + Ψ + Φc c cH P P e e

R
α ξ .     (16) 

We have a set of equations of motion in the guiding-center 

system: 

 dυυ
p
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B
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where ( ) /= + Ψ cP e Rϕ φυ , 
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∂
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Ψ
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2

d

0 0

1
= ( ) Ω +

Ω C
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φυ µ υ
, Ψυ  is in the radial direction whereas υp is 

in the poloidal direction. Equations (17) and (18) are the 

generalized versions of the equations of motion obtained by 

Balescu
10

. 

3. Dynamics for the Trapped Particles 

For the trapped particles, the toroidal velocity is smaller 

than the perpendicular velocity, 

1 1

2 2/ / (2 )  ⊥ = Ω ∼
c
Pφ φ αυ υ υ δ .          (19) 

In the rotation frame, we can construct a Hamiltonian in 

the developed canonical variables, , , , , ,XP P P Xα φ α φ , 
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where 
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T
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φ φ
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p
ρ  is the poloidal Larmor radius, /

E t
υ υ  is the order of δ , 

2 /=
t

T Mυ  is the particle thermal velocity, S is the 

squeezing factor, the shear flow. The different forms of the 

Hamiltonian describe the same motion. Eqs.(17) and (18) 

can be reproduced from Eq.(20).  

With the small inverse aspect ratio approximation, we 

have 
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2 2
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The 
0

r  should be banana center position. The turning 

points 
t

θ  of the banana orbit are decided by the following 

formula, 

2 2
sin 1

2

tk
θ

= .                 (24) 

Once =
t

θ π  we have 
2 1=k  and 

1

2 2
max

(2 )⊥=u uφ ε  for 

the trapped particles.  

We set 0Ψ  as the banana center surface where turning 

points are evaluated and then we expand Ψ  and 
E

υ  near 

0
Ψ . The banana width and the position of banana center 

surface are obtained after the expansion, 

0 0

1 1
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where ∆  is the banana width, 

0 2 2

1 1
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Ω Ω
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u u
k

S S
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0 * 0
/Ψ = Ψ +

E
R eυ ,             (27) 

where 
*

/P eφΨ = −  is drift surface and 
0E

υ  is the value of 

E
υ  on the banana center surface. We can see that the turning 

points of the trapped particle are not on the drift surface but 

shifted to banana center surface due to the radial electrical 

field. 

We form an invariant9 variable, 

0 0 0

0

1
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Ω Ω
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which is actually the flux enclosed by banana orbit. Now we 

introduce a new angle which satisfies the equation, 

2 2 2
sin sin

2
= k

θβ  ,              (29) 

then, 
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where 2 2

1

−=k k , K and E are complete elliptic functions. 

The bounce frequency of the trapped particle is 

1

2 2

0 1

(2 )
( )

2 2 ( )
b

SH

qR K k

ε υ πω ⊥∂= =
∂Π

.            (31) 

Eqs. (21-31) give, for the first time, a so clear picture of 

the trapped particle motion dependent on the shear flow. It is 

real motion no other choice. 

For a Maxwellian distribution function, the fraction of the 

trapped particles can easily calculated via 

max
2 2

max0

2

x

y x

x

F yd y e dxπ
∞

− −

−

= ∫ ∫ ,           (32) 

where / , /⊥= =t ty x
φ

υ υ υ υ , and 

1 1 1

22 2 2
max max

(2 )⊥= =S u Sφ φυ ευ . For the trapped particles, x is 

small, thus it leads 

2
1 1

2 2 2

0

4 (2 ) (2 )

∞
−= =∫

y
F dye y S Sπ ε ε ,        (33) 

which agrees with Shaing’s
5
 and disagrees with Catto’s

6
. 

Since the trapped particle pitch angle is limited, the effective 

collision frequency 
eff

ν  here should be 
2 2

/ ( / )uφν υ . Thus, 

the diffusivity is 
1

2 2 2 2 2/ (2 / )
p

F u Sφνυ νρ ε∆ ≈  which is 

different with Shaing’s
5
. 

4. Neoclassical Transport
 

To illustrate the significance of the trapped-particle 

dynamics, the particle diffusivity is calculated. Instead of 

canonical gyrokinetic variables, , , , , ,XP P P Xα φ α φ , we use 

extended phase space variables
11

, , , , , , , ,P P r H tα φ α φ β , in 

the drift kinetic equation, 

( )
∂ ∂ ∂+ + =
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f d f dr f

C f
t dt dt r

β
β

.           (34) 

We define an averaged angle velocity, 

1 2d d
dt

dt T dt T

β β π< >= =∫� ,             (35) 
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where T is the bounce period. We can see that the averaged 

angle velocity is the bounce frequency in Eq. (31). To 

illustrate flow shear effects on the neoclassical transport, we 

take  

* * 0 1 1
sin cos= + = + + +

s c
f f g f g g gβ β ,     (36) 

where 
*

f  is equilibrium distribution function in a 

Maxwellian form with H at the place of energy and Pφ  at 

the place of position, 

*

ln
( )[1 ]m

n
f F r

p r

φυ ∂= −
Ω ∂

 ,              (37) 

* 0
∂ =
∂
f

r
.                     (38) 

To catch the key points and avoid the complexity we only 

consider density gradient. Temperature gradient can change 

the expression of diffusivity, but can not change the scaling 

on the shear flow.  

Eq. (34) is rewritten as  

sin ( )
d m

g g f
C g g

t r t

β θυ
β

∂ ∂ ∂ ∂− = − −
∂ ∂ ∂ ∂

,       (39) 
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p

n
g F

r
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To make Eq. (39) tractable, we take 

≈< >=
b

d d

dt dt

β β ω ,              (41) 

and 

( ) ( )− = −
m eff m

C g g g gν .            (42) 

Furthermore, it is assumed that 
1

k  and 
t

θ  are small, 

which means deeply trapped particles dominate. In Eq. (36) 

g1s and g1c are one order smaller than g0. From Eq. (29) and 

Eq. (39) we obtain g0 =gm, 

0
1

1 2 2

2 eff

s

b eff

g
k

rg

ν

ω ν

∂
∂=

+
, 

1 = − b

c

eff

g
ω
ν

.  

With Eq. (37) and Eq. (38) the drift equation of Eq. (39) 

after the bounce average turns to be 

2 2

1

2 2

2
0

∂∂ ∂− =
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eff d m

b eff

k Ff

t r r

ν υ
ω ν

.             (43) 

In the banana regime, we have 

2

2
≈eff

b

ν
δ

ω .                      (44) 

 

After integrating Eq. (43) over velocity space, we get the 

continuity equation 

0
∂ ∂+ Γ =
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n

t r
,                  (45) 

where 
∂Γ = −
∂
n

D
r

, 

max
2 2
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2 2 1
1 2 2

2
0

2
2 0.75 2 /

x

eff d y x

p

x b

k
D ydy dx e S

ν υ
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(46) 

where 
max

2
, , 2

t t t

S
x y x S y

φυ υ ε υ ε
υ υ υ

⊥ ⊥= = = = . From 

Eq.(46) we can see that Rosenbluth’s result
9
 is reproduced 

but with the shear flow modification. 

5. Summary 

The area-conserved transformation proposed by 

Lichtenberg and Lieberman9 is employed. A complete set of 

canonical guiding-center variables, , , , , ,XP P P Xα φ α φ , are 

derived. The accurate relation between the particle motion 

and the shear flow for the trapped particles is also derived, 

including the banana width 
0 2 2

1 1

2 2

1 sin
2

∆ = = −
Ω Ωp p

u u
k

S S

φ φ θ
, 

the position of banana center surface 0 * 0
/Ψ = Ψ +

E
R eυ  

and the bounce frequency 

1

2 2

0 1

(2 )
( )

2 2 ( )

⊥∂= =
∂Πb

SH

qR K k

ε υ πω . For 

a Maxwellian distribution function, the fraction of the 

trapped particles is calculated as 

2
1 1

2 2 2

0

4 (2 ) (2 )

∞
−= =∫

yF dye y S Sπ ε ε  which agrees with 

Shaing’s5 and disagrees with Catto’s6. Since the trapped 

particle pitch angle is limited, the effective collision 

frequency eff
ν  here should be 

2 2
/ ( / )uφν υ , therefore, the 

diffusivity is 
1

2 2 2 2 2/ (2 / )∆ ≈ pF u Sφνυ νρ ε  which is different 

with Shaing’s5. Drift kinetic equation is solved with 

particle-conserved Krook collision operator. Rosenbluth’s 

result7 is reproduced but with shear flow modification in 

this paper. 
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