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Abstract: Two important resources in a call center are the number of staff and the number of trunk lines required. In this 

paper, we focus on the decision of the number of trunk lines that a call center should have. The current practice is to use the 

Erlang B or the M/M/s/0 queueing model which assumes Poisson arrivals, exponential service times, s servers and no places in 

queue, i.e. no customers can wait. In this paper, we improve on the state of practice in determining the required number of 

trunk lines, by including two realistic features present in call centers. The first realistic feature is to consider nonstationarity of 

arrivals. The second feature is to consider the lognormal service time distribution instead of the exponential distribution. There 

is extensive empirical evidence for both features. In order to carry out our computations we use the results of a paper by 

Massey and Whitt, Operations Research, 44(6), 1996. We have two main findings. Firstly, we find numerically that in our 

nonstationary Erlang loss model, Mt/G/s/0, an insensitivity result holds. The blocking probability of arrivals at the call center 

depends only on the mean of the lognormal service time distribution and not on its variance. Our second finding is that current 

practice is quite robust. In particular, we find the number of trunk lines required using a stationary Poisson approximation. This 

approximation assumes stationary Poisson arrivals with an appropriately chosen arrival rate and exponential service times. The 

approximation does quite well in predicting the number of trunk lines required. 

Keywords: Queueing, OR in Service Industries, Call Centers, Nonstationary Arrivals, Lognormal Distribution 

 

1. Introduction 

Two important resources in a call center are the number of 

staff and the number of trunk lines required to connect calls 

to the call center. The first resource is certainly very 

important since it accounts for a major portion of the costs 

incurred in operating a call center. However the second 

resource, the number of trunk lines, has also got to be 

considered. The number of trunks in place determines the 

routing of calls to the staff and therefore has an important 

part to play in the realization of service level measures. 

There are quite a few service level measures. One is ASA 

(Average Speed of Answer), i.e. how many seconds does a 

call have to wait on average before being answered. This 

includes those calls that do not have to wait at all. A second 

service level measure is, Delay of Delayed Calls. As 

mentioned previously, some calls do not have to wait at all. 

For those that have to wait, what is the average wait? A third 

measure is Service Level, what x% of calls are answered 

within a fixed time interval, y seconds. A common Service 

Level measure in call centers is to have 80% of calls 

answered within 20 seconds. 

Usually, the cost of a trunk line is less than the cost of a 

single staff member or Customer Service Representative 

(CSR). If there are too few trunk lines, then of course calls 

get blocked from entering the call center. But if there are too 

many trunk lines relative to agents then that also can be a 

problem. Calls simply get put on hold and customer wait 

times increase significantly, resulting in bad service levels. 

Also many times the trunk lines are toll-free lines, so it is the 

call center instead of the customer, that is paying for the cost 

of waiting. This can also significantly increase costs for the 

call center. 

Current practice in determining the number of trunk lines 

in a call center, is to first set a service level target. The 

service level target here is what percentage of calls can be 

allowed to be blocked. A typical service level target as 

mentioned in Reynolds [1] is to allow 2% blocked calls. 
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Then the Erlang B or the M/M/s/0 queueing model is used. 

This model implies Poisson arrivals, exponential service 

times, s servers and no places in queue, i.e., no customers 

can wait. In this model, servers refer to trunk lines and do not 

have anything to do with CSRs (or Customer Service 

Representatives). A formula for the blocking probability in 

the Erlang B model is used, see for example, Gross et al. [2]. 

The blocking probability from this formula is equated to the 

required service level (e.g. 2% blocked calls). Given this, the 

value of s, or the number of trunk lines is found. 

For a more extensive discussion of call center trunking 

requirements, refer Reynolds [1], which is a good reference 

on call center workforce management. 

In this paper, the state of practice is improved, in 

determining the required number of trunk lines, by including 

two realistic features present in call centers. The first realistic 

feature is to consider nonstationarity of arrivals. It has been 

repeatedly found in call center data that the number of 

arrivals vary quite significantly over the period of time the 

call center operates. One such small data set from Reynolds 

[1], is considered in our analysis here. The second realistic 

feature is to consider the lognormal distribution as the 

distribution of service times in the call center, instead of the 

exponential distribution. Empirical analysis of service time 

data in call centers has shown that service times follow the 

lognormal distribution. This evidence is discussed below. So 

the usual assumption of exponential service times may not be 

a good one. We next discuss more on these two realistic 

features. 

Nonstationarity of arrivals is highly prevalent in call 

centers. Green, Kolesar and Whitt [3] plot hourly arrival 

rates for a financial services call center. There is significant 

variation in arrivals by time of day. Reynolds [1], reiterates 

this by mentioning, `The most accurate approach for call 

center forecasting involves time series analysis, which takes 

into account both trend and seasonality. It is the approach 

used in most call centers and serves as the basis for most of 

the automated workforce management forecasting models’. 

Brown et al [4] perform extensive statistical analysis of call 

center data. Their data comprises a complete operational 

history of a small Israeli banking call center, call by call, 

over a full year. Their plot of arrivals in calls/hour by time of 

day shows clear nonstationarity of arrivals. 

Next evidence for the lognormal service time distribution 

is discussed. Firstly, a service time refers to the time spent by 

a CSR in talking to the customer, the time spent `on hold’ 

while the CSR is processing the customer’s request and 

lastly the time spent after the customer hangs up but while 

the CSR is still doing work related to the customer’s request. 

Gans et al [5] provide extensive evidence of the lognormal 

distribution as the distribution of service times in a call 

center. Confirmations of the lognormal fit are provided in 

Bolotin [6], Chlebus [7], and Mandelbaum et al [8]. The 

authors also mention that the lognormal distribution has been 

found in unpublished call center data of a Dutch bank. 

We now quote from Brown et al [4]. `Looking at the figure 

we see that the distribution of service times is clearly not 

exponential, as is assumed by standard queueing theory. In 

fact, after separating the calls with very short service times, 

our analysis reveals a remarkable fit to the lognormal 

distribution’. For all these reasons, the lognormal distribution 

as the service time distribution has been chosen. 

The queueing model we consider in the paper, is the 

nonstationary Erlang loss model, Mt/G/s/0, which has 

nonstationary Poisson arrivals, s servers (i.e. trunk lines) in 

parallel, no extra waiting spaces and i.i.d. service times 

which follow the lognormal distribution. Massey and Whitt 

[9] have analyzed this model for a general service time 

distribution. Their results have been used in this paper to do 

computations for determining the number of trunk lines 

required. 

Massey and Whitt [9] in their paper, approximate a 

queueing model with a nonstationary arrival process with a 

queueing model with a stationary arrival process. The 

authors consider a fixed time interval and divide it into 

subintervals. They consider approximations for the blocking 

probabilities over subintervals by replacing the nonstationary 

arrival process over the subinterval by a stationary arrival 

process. The authors act as if the nonstationary Mt arrival 

process were a stationary G arrival process and then try to 

approximate the stochastic variability. The approximation 

they propose is based on a heavy traffic peakedness formula. 

We discuss more on the results from their paper, as we use 

them in our calculations, in Section 3. 

As mentioned before, in this paper we find the number of 

trunk lines required in call centers using nonstationary arrival 

data and the lognormal service time distribution. For our 

analysis, we consider two different lognormal distributions. 

Both have the same mean, but the second distribution has a 

variance double that of the first. 

We have two main findings. Firstly, we find numerically 

that in our nonstationary Erlang loss model, an insensitivity 

result holds. The blocking probability of arrivals at the call 

center depends only on the mean of the lognormal service 

time distribution and not on its variance. In particular, both 

the lognormal service time distributions predict the same 

requirement of trunk lines. 

Our second finding is that current practice is quite robust. 

In particular, we find the number of trunk lines required 

using a stationary Poisson approximation. This 

approximation assumes stationary Poisson arrivals with an 

appropriately chosen arrival rate and exponential service 

times (the Erlang B formula). The approximation predicts the 

same requirement of trunk lines as the original model. That 

this happens is not too surprising, given a statement made in 

this regard in the paper by Davis, Massey and Whitt [10]. 

However, it is still worthwhile to go through the numerical 

analysis and verify that the original model and the Poisson 

approximation match quite closely. 

Kim and Park [11] consider ‘two-stage’ call centers where 

some incoming calls are completed by first service while 

others require an additional second service. The authors 

develop an effective outsourcing strategy in ‘two-stage’ call 

centers. To this end, they model a ‘two-stage’ service system 
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and propose several call routing structures. The structures are 

compared through numerical testing. 

Kilincli and Zhang [12] consider staff scheduling in call 

centers with cross-trained workers. Call centers face demand 

variations over time across multiple service categories and 

typically employ a cross-trained workforce with flexible 

schedules to hedge against these fluctuations. In practice, it 

is often impossible to cross-train agents in each category, 

thus partial and limited cross-training are the norm. To solve 

the problem an integer program that addresses cross-training, 

shift schedule, days off and break assignments across 

multiple service categories is proposed. The model is hard to 

solve and a two-phase sequential approach is developed. 

Experimental results with data from a call center with nine 

categories clearly demonstrate the significance of cross-

training. The authors find that partial limited cross-training, 

where 30% of staff is cross-trained with two skills or 10% of 

staff is cross-trained with three skills, could result in 

considerable cost saving. However, these savings could 

diminish quickly with the increase of efficiency loss in 

secondary skills. 

Yu et al [13] consider delay announcements for call 

centers with hyperexponential patience modelling. Using real 

call center data, the patience distribution is modeled by the 

hyperexponential distribution. A state-dependent Markovian 

approximation is applied for computing abandonment. An 

empirical study shows good fit to real call center data. 

Simulation experiments indicate that the model and 

approximation are reasonable. The authors conclude that the 

approach could be applied to a voice response system of real 

call centers. 

Li et al [14] state that efficient management of call centers 

needs accurate modeling of customer waiting behavior. This 

customer waiting behavior contains important information 

about customer patience (how long a customer is willing to 

wait) and service quality (how long a customer needs to wait 

to get served). The authors develop a two-way functional 

hazards model to study customer waiting behavior. The 

authors analyze data from a US Bank call center and provide 

insights about customer patience and service quality. The 

findings also provide inputs for call center agent staffing and 

scheduling. 

Bimpikis and Markakis [15] motivated by applications 

such as call centers and healthcare, consider service systems 

that process two types of tasks that are unknown beforehand. 

There are also two kinds of servers with different skillsets. 

The service provider wants to maximize the systems long 

term throughput. Given this, what should be the resource 

allocation policy, i.e. how to assign tasks to severs over 

time? The authors show that the performance loss of the 

system due to uncertainty in task types can be significant. 

The authors also show that one optimal design could be a 

hierarchical structure. Tasks are initially routed to the least 

skilled servers and then progressively moved to more skilled 

servers. 

The paper is organized as follows. In Section 2, the 

performance measure, i.e. call congestion is discussed. In 

Section 3, we discuss the results of Massey and Whitt [9] as 

used in the paper for our calculations. Section 4 describes the 

lognormal distribution while in Section 5 Boole’s rule on 

numerical integration is presented. In Section 6, we present 

the data and the application of the method discussed in 

Section 3. Section 7 considers the stationary Poisson 

approximation and Section 8 presents Conclusions. 

2. Performance Measure 

The arrival process is a nonstationary Poisson process and 

is described by the deterministic arrival rate function, ( )tλ , 

defined over the interval [0, T]. The average arrival rate over 

the time interval is, 

( )
0

T

t dt

T

λ

λ =
∫

. As in Massey and Whitt 

[9], we assume that the mean service time of a customer is 1. 

We also assume that T is not too small or too large. For a 

justification of this, please refer Massey and Whitt [9]. The 

authors recommend that T should be between 6 and 20. We 

take T =10. We assume that the average length of a call at the 

call center is 3 minutes and the planning interval under 

consideration is 30 minutes. Thus, if 3 minutes is taken as a 

service time of 1 time unit, we have T = 10 time units. 

Let Q(t) be the number of busy servers at time t. The 

blocking probability is, 

( ) ( )( )t P Q t sβ = =                          (1) 

which is the probability that all s servers (trunk lines) are 

busy at time t. 

The performance measure that is considered is the call 

congestion, cβ . This is the ratio of the expected number of 

lost customers to the expected number of arrivals. As in 

Massey and Whitt [9], let B(t) be the number of blocked calls 

in the interval [0, t] and A(t) be the number of arrivals in the 

interval [0, t]. The ratio is, 

( ) ( )

( )

0

0

( )

( )

T

c T

t t dt
EB T

EA T
t dt

λ β

β

λ

= =
∫

∫
                          (2) 

We next discuss the results of Massey and Whitt [9]. 

3. Results of Massey and Whitt [9] as 

Used in the Paper 

As mentioned before, a queueing model with a 

nonstationary Poisson arrival process is approximated by a 

queueing model with a general stationary arrival process. In 

particular, the distribution of Q(t) in the nonstationary 

Mt/G/s/0 model over the interval (0, T] is approximated by 

the distribution of Q(t) in the stationary G/G/s/0 model. Here, 
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in our case, the distribution G is the lognormal distribution. 

The first approach in Massey and Whitt [9] is to construct 

a stationary point process from the nonstationary Poisson 

arrival process. Let ( ){ }: 0N N t t= ≥ be the stationary point 

process constructed, please see Massey and Whitt [9], for 

details. The authors characterize the variability of the 

stationary point process using the index of dispersion for 

counts, I(t), i.e. 

( )
( )

( )[ ] [ ]
( )

Var N t Var N t
I t

E N t tλ
= =

  
                    (3) 

The authors define 2 (1)c I=  and find the value of 2c  for 

the special case of the linear arrival rate function, i.e. when 

( ) ,  0t a bt t Tλ = + ≤ ≤ . For this special case, 

( )
2 2

2 1
6 2

b T
c

a bT
= +

+
                                (4) 

We need this expression for 2c  in the approximation for 

the blocking probability that we use. 

The second expression that we need for approximating the 

blocking probability is the expression for peakedness. 

According to Massey and Whitt [9], peakedness is defined as 

`the ratio of the variance to the mean of the steady-state 

number of busy servers in an associated infinite-server model 

with the same service time distribution and the same arrival 

process’. 

The authors consider the limiting behaviour of the 

peakedness as the arrival rate grows. The heavy traffic 

peakedness is, (see Massey and Whitt [9]) 

( ) [ ] ( ) 22

0

1
 1 + 1 1z c G t dt

E S

∞

 = − − ∫                (5) 

with E[S]=1 and as mentioned before, G(.) being the cdf of 

the lognormal distribution. 

Let B(s, a) be the Erlang blocking formula for s servers 

and offered load a, extended to nonintegral s. Then, as the 

final result, we have the Hayward approximation. The call 

congestion is approximated by, 

( )  / , /c B s z zβ λ≅                              (6) 

Here we need to specify the expression for B(s, a). For 

nonintegral s, 

( ) ( ),
1,

s aa e
B s a

s a

−
=

Γ +
                             (7) 

where ( )1,s aΓ +  is the incomplete gamma function, 

( )1, s t

a

s a t e dt

∞
−Γ + = ∫                            (8) 

By partial integration, it is possible to show that for 

integral values of s, 

( )1, ! 1 ...
1! !

s
a a a

s a s e
s

−  
Γ + = + + +  

 
              (9) 

So, in this case for integral s, the above formula becomes, 

( ) !,

1 ...
1! !

s

s

a

sB s a
a a

s

=
+ + +

                          (10) 

which is the standard Erlang loss formula for integral s, see 

Gross et al. [2]. 

We next discuss the lognormal distribution. 

4. The Lognormal Distribution 

For a discussion of the lognormal distribution, refer 

Wikipedia. The lognormal distribution is a continuous 

probability distribution. The lognormal random variable is 

such that its logarithm follows the normal distribution. 

Define, Y Zµ σ= + , where Z has the standard normal 

distribution. Then Y has a normal distribution with mean µ  

and standard deviation σ . We have, 
YX e=  has the lognormal distribution. 

Its support is the positive real line. The pdf is, 

( )2

2

ln

2
1

( )
2

,  0

x

f e xx
x

µ
σ

σ π

−
−

= >                 (11) 

The mean is, 2exp( / 2)µ σ+                  (12) 

and the variance is,  

2 2[exp( ) 1]*exp(2 )σ µ σ− +
.                (13) 

The cdf is 
1 1 ln

( ) erf
2 2 2

[ ]x
F x

µ
σ
−= + .              (14) 

In the above erf(.) or the error function is a special 

function of sigmoid shape. 

We have, 

2 2

0

1 2
erf( ) dt  = d

x x

t t

x

x e e t
π π

− −

−

= ∫ ∫             (15) 

For non-negative values of x, the error function has the 

following interpretation, as given in Wikipedia. For a 

random variable X that is normally distributed with mean 0 

and variance ½, erf(x) is the probability of X lying in the 

range [-x, x]. 

Next numerical integration is discussed. 



 American Journal of Operations Management and Information Systems 2019; 4(3): 71-79 75 

 

5. Numerical Integration: Boole’s Rule 

In the expression for the peakedness z, the following 

integral needs to be evaluated numerically, 

( ) 2

0

1 G t dt

∞

 − ∫  

where G(.) is the cdf of the lognormal distribution. This is 

done using Boole’s rule, which is a quadrature formula. 

Before stating the rule, we state some definitions. For a 

discussion of Numerical Integration, refer Mathews and Fink 

[16]. 

Definition 1. Suppose that 0 1 ... Ma x x x b= < < < = . A 

formula of the form 

( )
0

[ ]

M

k k

k

Q f w f x

=

=∑  

with the property that 

( ) [ ] [ ]

b

a

f x dx Q f E f= +∫                        (16) 

is a numerical integration or quadrature formula. The term 

[ ]E f  is the truncation error for integration. The values 

{ }
0

M

k k
x =  are the quadrature nodes and { }

0

M

k k
w =  are the 

weights. 

Definition 2. The degree of precision of a quadrature 

formula is the positive integer n such that 0iE P =    for all 

polynomials ( )iP x  of degree i n≤ , but for which 

1 0nE P + ≠   for some polynomial ( )1nP x+  of degree n+1. 

Theorem. The general form of the truncation error term is, 

[ ] ( ) ( )1n
E f Kf c

+= , where K is a suitably chosen constant 

and n is the degree of precision. 

Boole’s rule, along with the Trapezoidal rule and the 

Simpson’s rule, is an example of a closed Newton-Cotes 

Quadrature formula. 

Boole’s Rule. Assume that 0kx x kh= +  are equally 

spaced nodes and ( )k kf f x= . Boole’s rule is, 

( ) ( )
4

0

0 1 2 3 4

2
7 32 12 32 7

45

x

x

h
f x dx f f f f f≈ + + + +∫   (17) 

Theorem. Boole’s Rule has degree of precision n=5. If 
6[ , ]f C a b∈ , then 

( ) ( ) ( )
4

0

7
(6)

0 1 2 3 4

2 8
7 32 12 32 7

45 945

x

x

h h
f x dx f f f f f f c= + + + + −∫  (18) 

Next the data and the application of the method above is 

discussed. 

6. Data and Application of the Method 

Reynolds [1] has the following data (Chapter 3, page 35), 

which are samples from a call center that takes calls from 

8:00 AM to 6:00 PM daily. The data represents half-hourly 

call volumes for the previous three Mondays. 

Table 1. Half-hourly call volumes for Monday. 

 June 5 June 12 June 19 Average 

0800 205 200 210 205 

0830 265 255 260 260 

0900 300 310 305 305 

0930 345 345 345 345 

1000 380 385 390 385 

1030 400 405 410 405 

1100 395 400 405 400 

1130 385 395 390 390 

1200 355 360 365 360 

1230 350 355 360 355 

1300 385 390 395 390 

1330 375 385 380 380 

1400 395 395 395 395 

1430 400 405 410 405 

1500 360 365 370 365 

1530 320 320 320 320 

1600 270 265 275 270 

1630 190 195 200 195 

1700 160 155 150 155 

1730 105 100 95 100 

Total    6385 

 

Figure 1. Average half-hourly call volume for Monday. 

From Figure 1, it is seen that there is significant variation 

in call volumes by time of day. The maximum number of 

calls in a half-hour are 405 from 10:30-11:00, while the 

minimum calls during a half-hour are 100 from 5:30-6:00. 

This variation indicates a significant amount of 

nonstationarity in the arrival process. 

It is assumed that the 10 hour interval is divided into 20 

half-hour periods and that ( )tλ  varies linearly during each 

of the half-hour periods. For each of the 20 periods, given

( )0λ and ( )10λ  (since T=10), we calculate 
2

,  ,   and a b c λ . 

These calculations are shown below. 
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Table 2. Calculations of 
2,  ,   and a b c λ  for each of the 20 time intervals. 

30 min 

Interval 

Avg. Call 

Volume 
( )0λλλλ  ( )10λλλλ  a  b  2

c   λλλλ  

1 205 20.5 20.5 20.5 0 1 20.5 

2 260 20.5 26 20.5 0.55 1.10842 23.25 

3 305 26 30.5 26 0.45 1.05973 28.25 

4 345 30.5 34.5 30.5 0.4 1.04103 32.5 

5 385 34.5 38.5 34.5 0.4 1.03653 36.5 

6 405 38.5 40.5 38.5 0.2 1.00844 39.5 

7 400 40.5 40 40.5 -0.05 1.00052 40.25 

8 390 40 39 40 -0.1 1.00211 39.5 

9 360 39 36 39 -0.3 1.02 37.5 

10 355 36 35.5 36 -0.05 1.00058 35.75 

11 390 35.5 39 35.5 0.35 1.0274 37.25 

12 380 39 38 39 -0.1 1.00216 38.5 

13 395 38 39.5 38 0.15 1.00484 38.75 

14 405 39.5 40.5 39.5 0.1 1.00208 40 

15 365 40.5 36.5 40.5 -0.4 1.03463 38.5 

16 320 36.5 32 36.5 -0.45 1.04927 34.25 

17 270 32 27 32 -0.5 1.07062 29.5 

18 195 27 19.5 27 -0.75 1.20161 23.25 

19 155 19.5 15.5 19.5 -0.4 1.07619 17.5 

20 100 15.5 10 15.5 -0.55 1.19771 12.75 

As regards the service time distribution, it is lognormal 

with mean 1. For our numerical work, took two lognormal 

distributions were taken, one with variance 1 and one with 

variance 2. The first lognormal distribution has a SCV 

(squared coefficient of variation, variance divided by the 

square of the mean) of 1, the same as an exponential, and so 

that is an important benchmark. The second lognormal 

distribution has a SCV of 2, much higher than the 

exponential. Since performance tends to degrade in a system 

with higher variance, we decided to use this distribution. In 

particular, in our application, degraded performance would 

imply that a higher number of trunk lines are required to 

achieve the same low blocking probability. We wanted to 

investigate if that is the case. 

For a lognormal distribution with mean 1 and variance 1, 

it follows from equations (12) and (13), 

2exp( / 2) 1µ σ+ =  

and 

2 2[exp( ) 1]*exp(2 ) 1σ µ σ− + =  

or 

2[exp( ) 1] 1σ − =  

i.e ( )2 ln 2σ =  and ( )0. ln 25µ = −  

Substituting these values in the cdf of the lognormal, the 

cdf G(t) is found. Then the integral ( )( )2
1

b

a

G t dt−∫ , 

numerically evaluated using Boole’s rule is as given below. 

Table 3. Numerical integration using Boole’s rule for the lognormal 

distribution with variance 1. 

a  b  ( )( )2
1−∫

b

a

G t dt  

0 1 0.50843 

1 2 0.04273 

2 3 0.0049 

3 4 0.00084 

4 5 0.00018 

5 6 5E-05 

Overall Integral, ( )( )
6

2

0

1 G t dt−∫  0.55713 

Although in the equation for peakedness, z, the upper limit 

of the integral is infinity, for practical purposes, it suffices to 

evaluate the integral upto an upper limit of 6 to get sufficient 

numerical accuracy. The upper limit of 6 in this case 

corresponds to Mean + 5*Standard Deviation. 

Similarly, for the case of the lognormal distribution with 

variance 2, we have, ( )2 ln 3σ = and ( )0. ln 35µ = − . 

These values are again substituted in the cdf of the 

lognormal. Then the integral ( )( )2
1

b

a

G t dt−∫ , numerically 

evaluated using Boole’s rule is as given below. 

Table 4. Numerical integration using Boole’s rule for the lognormal 

distribution with variance 2. 

a  b  ( )( )2
1−∫

b

a

G t dt  

0 1 0.40371 

1 2 0.03884 

2 3 0.00723 

3 4 0.00195 

4 5 0.00066 

5 6 2.6E-04 

6 7 1.1E-04 

7 8 5.3E-05 

Overall Integral, ( )( )
8

2

0

1−∫ G t dt  0.45281 

It is again found that an upper limit of 8 gives sufficient 

numerical accuracy and corresponds to roughly Mean + 

5.6*Standard Deviation, similar to the previous case. 

Now that 2c and the two integrals have been evaluated, 

one each for each lognormal distribution, we can find the 

value of the peakedness z using equation (5) for each of the 

20 time intervals and for each distribution. 

Table 5. Peakedness z for each of the 20 time intervals and for each 

distribution. 

30 minute interval 
Peakedness, z 

Variance =1 Variance = 2 

1 1 1 

2 1.060406 1.049095 
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30 minute interval 
Peakedness, z 

Variance =1 Variance = 2 

3 1.03328 1.027048 

4 1.022857 1.018577 

5 1.020352 1.016541 

6 1.004702 1.003821 

7 1.000288 1.000234 

8 1.001175 1.000955 

9 1.011143 1.009056 

10 1.000325 1.000264 

11 1.015268 1.012409 

12 1.001206 1.00098 

13 1.002696 1.002191 

14 1.001161 1.000943 

15 1.019295 1.015682 

16 1.02745 1.02231 

17 1.039345 1.031978 

18 1.112325 1.091292 

19 1.042448 1.0345 

20 1.110152 1.089526 

We are now ready to do the final calculation of the 

number of trunk lines required for each time interval and 

for each of the two distributions. Based on Reynold’s [1], 

we set a blocking probability of 0.02. That is, number of 

trunk lines to make the blocking probability just below 

0.02 is chosen. 

This is done as follows. We start with a low integral 

number of trunk lines, s, and keep increasing them till the 

blocking probability, ( )/ , /B s z zλ as given by equation (7), 

just falls below 0.02 for the first time. The value of s for 

which this happens is chosen as the number of trunk lines. 

This is done for each time interval and for each distribution. 

Results are shown below. 

Table 6. Number of trunk lines required for each of the 20 time intervals and 

for each distribution. 

30 minute interval 
Number of trunk lines required, s 

Variance =1 Variance = 2 

1 29 29 

2 32 32 

3 38 38 

4 42 42 

5 47 47 

6 50 50 

7 50 50 

8 50 50 

9 48 48 

10 46 46 

11 47 47 

12 49 49 

13 49 49 

14 50 50 

15 49 49 

16 44 44 

17 39 39 

18 33 32 

19 26 26 

20 20 20 

For each distribution, the number of trunk lines required is 

chosen as the maximum over all the 20 time intervals. 

 

Table 7. Number of trunk lines required for each distribution. 

Number of trunk lines chosen, s 

Variance =1 Variance =2 

50 50 

Thus for both the lognormal distributions, 50 trunk lines 

are required to achieve a low 2% blocking probability. 

If we look at Table 6 above, we find that the same number 

of trunk lines are required for each of the two service time 

distributions for each time interval. This is so barring one 

time interval. The two service time distributions have the 

same mean and differ significantly in their variance. For the 

standard M/M/s/0 Erlang loss model, it is known that an 

insensitivity result holds. That is, the blocking probability 

depends only on the mean of the service time distribution 

and not on the second moment and higher moments. 

This insensitivity result need not hold for the 

nonstationary Erlang loss model. Davis, Massey and Whitt 

[10] find that `the service time distribution beyond the mean 

can have a significant impact on the time-dependent blocking 

probability in the nonstationary Erlang loss model’. 

The authors consider the nonstationary Mt/PH/s/0 model 

with a phase type (PH) service time distribution consisting of 

two phases. In the paper, the authors consider five different 

service time distributions, all of them being special two 

phase PH distributions. These are an Erlang (E2), an 

exponential (M) and three hyperexponential (H2) 

distributions. All the five distributions have mean 1. The 

SCVs (squared coefficient of variation) are 0.5 for E2, 1 for 

M and 4 for the three H2 distributions. The authors find that 

the peak time-dependent blocking probabilities for the 

different service time distributions can differ by as much as a 

factor of 3.5. So the service time distribution beyond the 

mean can affect the blocking probability in the nonstationary 

Erlang loss model. 

However the above situation does not always have to hold 

for the nonstationary Erlang loss model. In our case, both the 

lognormal service time distributions have mean 1. The first 

distribution has variance 1, the second has variance 2. We 

numerically find that in our case, in the Mt/G/s/0 model, an 

insensitivity result holds. The blocking probability depends 

only on the mean of the lognormal service time distribution 

and not on its variance. 

Next the stationary Poisson approximation is discussed. 

7. Stationary Poisson Approximation 

In this approximation, the nonstationary Poisson process is 

replaced with a stationary Poisson process having arrival rate

λ . Again the 10 hour time period is divided into 20 half 

hour intervals. The interval which has the highest average 

arrival rate is found. This is the arrival rate λ that we use in 

the Erlang B formula of the Erlang loss model, stated below. 

The service rate is 1. The Erlang B blocking formula is given 

below for the blocking probability ( )ˆ ,B s λ  in the M/M/s/0 

model, see Gross et al. [2]. 
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The calculation of the Erlang B formula can cause 

numerical problems, because of the large values of s!, as s is 

reasonably large. It is discussed in Gross et al [2] that 

( )ˆ ,B s λ  can be computed using the following iterative 

method. 

( ) ( )
( )

ˆ 1,
ˆ ,

ˆ 1,

B s
B s

s B s

λ λ
λ

λ λ

−
=

+ −
, 1s ≥                 (20) 

with ( )ˆ 0, 1B λ = . 

The above iterative method is used to compute ( )ˆ ,B s λ . 

We substitute 40.25λ = , which is the highest average 

arrival rate for time interval 7 (see Table 2 ). The value of s 

such that ( )ˆ ,B s λ  goes below 0.02 for the first time is found. 

We have the following results. For s=49, ( )ˆ ,B s λ = 0.0253 

and for s=50, ( )ˆ ,B s λ = 0.0199. 

Therefore using the stationary Poisson approximation, the 

number of trunk lines required to achieve a 2% blocking 

probability is 50. 

We can compare this result with the result in Table 7. We 

thus find in our numerical work that the stationary Poisson 

approximation is robust and works quite well. 

In this paper, we have considered finding the number of 

trunk lines required using a nonstationary Poisson process 

and the lognormal service time distribution. The 

nonstationary Poisson arrival process has been observed 

in many call centers and the lognormal service time 

distribution is also justified by empirical work. Existing 

practice for determining the number of trunk lines 

assumes a stationary Poisson arrival process and 

exponential service times and uses the Erlang loss model. 

Our numerical work finds that existing practice is quite 

robust and works well in determining the number of trunk 

lines required, despite the limiting assumptions in the 

analysis. 

This finding of the robustness of existing practice, also 

finds support in a statement made in Davis, Massey and 

Whitt [10]. According to the authors, a common engineering 

approach is to use the stationary Erlang loss model with a 

constant arrival rate during the time interval over which the 

system is most heavily loaded. With this approach, the 

assumed arrival rate in the model is usually greater than the 

real arrival rate the majority of the time. According to the 

authors, this approach has been very successful in designing 

systems with a fixed number of servers that must be able to 

satisfy demand at any time. 

Given the above, it is not too surprising that the stationary 

Poisson approximation works so well, in this case. 

The computations discussed in this section and the 

previous section, were carried out in Excel and MATLAB. 

We next present Conclusions. 

8. Conclusions 

Two important resources in a call center are the number 

of staff and the number of trunk lines required. In this 

paper, we focus on the decision of the number of trunk lines 

to have. The current practice is to use the Erlang B or the 

M/M/s/0 queueing model which assumes Poisson arrivals, 

exponential service times, s servers and no places in queue, 

i.e. no customers can wait. In this paper, we improve on the 

state of practice in determining the required number of 

trunk lines, by including two realistic features present in 

call centers. There is extensive empirical evidence for both 

features as found in the papers by Gans et al [5] and Brown 

et al [4]. 

In order to carry out our computations we use the results 

of a paper by Massey and Whitt [9]. The authors 

approximate a queueing model with a nonstationary arrival 

process with a queueing model with a stationary arrival 

process. In particular, the distribution of the number of busy 

servers in the nonstationary Mt/G/s/0 model is approximated 

by the distribution of the number of busy servers in the 

stationary G/G/s/0 model. Here, in our case, the distribution 

G is the lognormal distribution. 

We have two main findings. Firstly, we find 

numerically that in our nonstationary Erlang loss model, 

Mt/G/s/0, an insensitivity result holds. The blocking 

probability of arrivals at the call center depends only on 

the mean of the lognormal service time distribution and 

not on its variance. In particular, both the lognormal 

service time distributions predict the same requirement of 

trunk lines. In the stationary M/M/s/0 Erlang loss model, 

the insensitivity result theoretically holds, as is well 

known. Davis, Massey and Whitt [10] have shown that in 

the nonstationary Erlang loss model, the insensitivity 

result need not hold. We find numerically find that in our 

model, it holds. 

Our second finding is that current practice is quite robust. 

In particular, we find the number of trunk lines required 

using a stationary Poisson approximation. This 

approximation assumes stationary Poisson arrivals with an 

appropriately chosen arrival rate and exponential service 

times. The approximation does quite well in predicting the 

number of trunk lines required. Based on a statement in 

Davis, Massey and Whitt [10], this finding is not too 

surprising. However, it is worthwhile to go through the 

numerical analysis and come to this conclusion. 

Future work could consider determining call center 

staffing levels under these more realistic assumptions. We 

are presently working along those lines. 
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