Simulation and Analysis of Methylammonium Lead Iodide (CH$_3$NH$_3$PbI$_3$) Perovskite Solar Cell with Au Contact Using SCAPS 1D Simulator

Ali Husainat1,*, Warsame Ali2, Penrose Cofie2, John Attia2, John Fuller2

1Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, USA
2Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, Prairie View A&M University, Prairie View, USA

Email address: ahusainat@student.pvamu.edu (A. Husainat), whali@pvamu.edu (W. Ali), pscoifie@pvamu.edu (P. Cofie), joattia@pvamu.edu (J. Attia), jhfuller@pvamu.edu (J. Fuller)

*Corresponding author

Received: July 17, 2019; Accepted: August 10, 2019; Published: August 20, 2019

Abstract: Hybrid organic-inorganic perovskite solar cells have attracted the attention of researchers and scientists throughout the world. From 2009, when actual research work began on photovoltaic perovskite applications, a lab power conversion efficiency above 23.3% have been achieved. Whereas, silicon solar cells have only achieved power conversion efficiencies around 17.5% in both residential and commercial applications. A typical perovskite solar cell consists of 6 main layers of different materials: a glass layer, a thin layer of fluorine-doped tin oxide substrate (FTO), an electron transport layer of TiO$_2$, a perovskite active layer known as methylammonium lead iodide (CH$_3$NH$_3$PbI$_3$), a hole transport layer of Spiro-Ometad, and a gold (Au) electrode. This paper summarizes the research that focused on the selective use of the perovskite solar cell’s composite materials, specifically, the Spiro-Ometad layer, the methylammonium lead iodide layer (CH$_3$NH$_3$PbI$_3$), and the TiO$_2$ layer with a variation of the thickness of the perovskite layer. Initial simulation results show a power conversion efficiency of 20.34% when using a gold (Au) electrode. Further research is needed, in which new technology for device fabrication will create homogeneous thin-film layers that will be tested for increased efficiency.

Keywords: Modeling, Simulation, Perovskite Solar Cell, Photovoltaics, Inorganic Materials, Organic Materials

1. Introduction

Until now, the silicon solar cell has an efficiency in the range of 12-17.5% PCE, which lead to an extensive search for a new material with better efficiency. Thus, researchers started looking into hybrid materials for photovoltaic applications. Hybrid photovoltaic technology is an emerging field, compared with inorganic silicon solar cells. Since the 1950s, silicon materials used as the primary material in making solar cells. Hybrid organic-inorganic perovskite solar cells have gained special attention since 2009, with exponential efficiency increases from 3.8% to 23.3% PCE. Perovskite solar cells offer a compelling combination of extremely low-cost, ease of fabrication, and high device performance [1, 2]. The perovskite solar cell (PSC) has the optical and electrical property to absorb not only the visible light spectrum but also the near-infrared as well.

In contrast, the silicon solar cell can only absorb the visible light spectrum. Furthermore, the perovskite solar cell has passed the 23.0% PCE, which makes it an excellent and more efficient alternative to silicon. In this study, we have used a simulation program called Solar cell capacitance simulator (SCAPS) 1D. To model the perovskite solar cell, we used real experiment data in the simulator to analyze the perovskite solar cell. We have also examined the effect of the absorber layer thickness, doping concentrations, and defects on the performance of the solar cell performance [1].
2. Perovskite Structure

Any material that has a similar crystal structure to the mineral CaTiO$_3$ (Figure 1 and Figure 2) at a different transition state is called perovskite. The formula ABX$_3$ represents the perovskite crystal structure (Figure 5), where A is a large organic or inorganic cation, B is a smaller inorganic cation such as (Cu$^{2+}$, Sn$^{2+}$, Pb$^{2+}$) [4, 5], and X$_3$ is an ion from the halogen group (such as Cl$^-$, Br$^-$ and I$^-$) that is able to bond with both cations A and B [1]. There are two main categories of perovskite crystal structure and can be classified into 1) Haloalkanes perovskite and 2) organic-inorganic halide perovskite. Perovskite materials have excellent optoelectronic behavior, which makes them function well as the absorber layer for photovoltaic application, this is the result of their having high absorption coefficients, making them a more efficient alternative to silicon. Another important characteristic is their ferroelectric behavior, which was discovered half a century ago.

Perovskite has a direct bandgap of Eg between 1.3 to 2.2 eV, which gives it the optical properties necessary to harvest and convert near-infrared (NIR) and ultraviolet (UV) light into visible light, which can then be utilized by the perovskite active layer as shown in Figure 3 [5-7].

In the 1990s, scientists discovered that halide perovskite could convert light into electricity. Due to this discovery, the light-emitting diodes (LED) were made. Perovskite structure has four possible phases, such as 1) α is cubic structure phase occurs at T > 327 K. 2) β is a tetragonal structure phase occurs at T< 327° K, 3) γ is orthorhombic structure phase occurs at T=160° K. 4) δ is a polyhedral phase structure which is a none perovskite phase [8, 9].

Figure 1. Same as Figure 2, but different view: Many ABX$_3$ compounds adopt the perovskite structure, with A ions occupying large, 12-fold coordinated sites; B ions are in octahedral coordination by X.

Figure 2. CaTiO$_3$ Perovskite - TETRAGONAL phase: each titanium atom bonds to six nearest-neighbor oxygen atoms.
The tolerance factor giving by equation (1):

$$t = \frac{(R_A + R_X)}{\sqrt{2(R_A + R_X)}}$$

(1)

In order to maintain the cubic structure of the perovskite layer, the tolerance factor should be close to one, where, R_A, R_B, and R_X are the radius of the ions. In order to have a stable perovskite, the tolerance factor must be in the range of $0.7 < T < 1$, which maintain and hold the bond between both cations. Cation A \gg cation B to have a stable perovskite structure. Therefore, Methylammonium (MA$^+$) ion is one of the best organic material options. The transformation of perovskite depends on the tilting and rotation of BX$_6$ [6-8].

From 2013 to about mid of 2018, referenced studies [10-12] reported 15.6%, 15.9%, 16.7%, 19.3%, 20.1%, 22.1% and 22.7% PCE respectively. We can see that the PCE of the perovskite solar cell increased very rapidly, as shown in Figure 5.

This comparison makes the perovskite a promising candidate. The primary goal of designing a highly efficient solar cell is to optimize the power conversion efficiency (PCE) to cost ratio. Furthermore, and due to this rapid research and improvement of the perovskite family, MAPbBr$_3$, MAPbCl$_3$, and MAPbI$_3$. Methylammonium lead iodide (MAPbI3) is the one that proved to be the best perovskite material due to its excellent electrical and optical properties, low-temperature solution processability, long lifetime, and ferroelectricity. The efficiency of the perovskite solar cell can be further improved through different design techniques to not only the absorber layer but to all other six layers, as shown in Figure 6 [13].
Figure 6. Perovskite solar cell normal setup.

Figure 7. Energy Levels of the Device Layers.

Figure 7 shows the energy levels of the device Layers; it must be in this position for an easy transfer of the electrons and holes through their transport layers to the electrodes.

3. Experimental Details: Simulation and Analysis Approach of Perovskite Solar Cells

Simulation can show the physical operation, the viability of a proposed physical model and is an important way of understanding the device operation, and how the device parameters affect the physical operation and performance of the solar cell devices instantly without the need to wait for long or spend money prior seen a result. There are various simulation models used throughout the photovoltaics technology (AMPS, COMSOL MULTIPHYSICS, GPVDM, SCAPS, SILVACO, and TCAD). In this paper, we use SCAPS 1D simulator to model the perovskite-based solar cells [14] we can define up to 7 semiconductor layers. SCAPS 1D can be used to simulate PSC because it has a very intuitive operation window diversified models for grading, defects, recombination, and generation. Once all parameters defined, it behaves like a real-life counterpart. The following differential equations in one dimension, are applied:

$$\frac{\partial^2 \varphi(x)}{\partial x^2} = \frac{q}{\varepsilon} [n(x) - p(x) - N_A^+(x) + N_A^-(x) - p_i(x) + n_i(x)]$$

Poisson’s Equation

$$J_{n,p} = \frac{q}{\varepsilon} n \mu_n E + q D_n \frac{\partial n}{\partial x} + \frac{q}{\varepsilon} p \mu_p E - q D_p \frac{\partial p}{\partial x}$$

Transport equations

$$L_{n,p} = \sqrt{D_{n,p} \tau_{n,p}}$$

Diffusion Length

$$D_{n,p} = \left(\frac{k n T}{q} \right) \mu_{n,p}$$

Diffusivity

$$\frac{\partial n_{e,h}}{\partial t} = \frac{1}{q} \frac{\partial n_{e,h}}{\partial x} + (G_n - R_n) + \frac{1}{q} \frac{\partial p_{e,h}}{\partial x} + (G_p - R_p)$$

Continuity equation

$$V_{oc} = \frac{n k p T}{q} \ln \left(\frac{n}{n_0} + 1 \right)$$

Where \(\varphi \) is the electrostatic potential, \(q \) is an elementary charge, \(E \) is the permittivity, \(n \) is the density of free electron, \(p \) is the density of free hole, \(N_A^+ \) is the ionized donor (doping density), \(N_A^- \) is the ionized acceptor (doping density), \(p_i \) is the trapped hole density, \(n_i \) is the electron trapped density, \(L_n \) is the diffusion length of electron and holes, \(D_{n,p} \) is the electron, hole Diffusivity, \(\mu_n \) is the electron mobility, \(\mu_p \) is the electron/hole concentration, \(E \) is the electric field, \(\frac{\partial n_{e,h}}{\partial x} \) is the concentration gradient for the electrons/holes, \(G_{n,p} \) is the optical generation rate, \(R_{n,p} \) is the recombination rate [15, 16], \(V_{oc} \) is the open-circuit voltage, \(n_0 \) is the ideality factor, \(k \) is Boltzmann’s constant, \(T \) is the thermal voltage, \(I_L \) is the solar cell light generated current, and \(I_0 \) is the reverse saturation current.

PSC used in the simulation is an n-i-p structure laid between the n-type semiconductor Titanium Oxide (TiO₂) as an Electron Transport Layer (ETL) and p-type SpiroOMeTAD as a Hole Transport Layer (HTL). A SnO₂: F as Fluorine doped Tin Oxide (FTO) is the transparent conductive oxide (TCO), and Au (Gold) as conductor Figure 6 [17, 18]. Solar Cell Capacitance Simulator (SCAPS) is used to simulate PSCs. SCAPS -1D is one of the most widely used device simulators in inorganic solar cells. The simulator uses the three main differential equations 1) Poisson’s equation, 2) transport equation, and 3) continuity equation, which is developed by a group of researchers at the University of Gent, Belgium.
4. Photovoltaic Characteristics Used for Device Modeling

In order to study the PSC, SCAPS-1D simulator used Figure 8 and Figure 9 show the input panel to start defining the solar cell different layers. Figure 6 shows PSC structure with different layers such as the contact layer is gold (Au) with a work function of 5.1 eV, Spiro-OMeTAD as Hole Transport Layer (HTL) and a p-type with total defect density N_t of 1×10^{15} cm$^{-3}$. The active layer CH$_3$NH$_3$PbI$_3$ or called the absorber layer, which is the heart of the device [19, 20]. It is an n-type material, the density set 9×10^{20} cm$^{-3}$, and the energetic distribution is Gaussian type, which has a characteristic energy value of 0.1 eV and capture cross-section for the electrons and holes are 2×10^{14} cm$^{-2}$ and a defect density of 8.5×10^{13} cm$^{-3}$, which give a carrier diffusion length for electrons and holes of 5.8×10^{-1} µm. The Electron Transport Layer (ETL) is an n-type with total defect density N_t of 1×10^{15} cm$^{-3}$. The simulations were performed under the Standard Test Condition (STC) AM1.5G, 1000 W/m2, and $T=300$ K.

Table 1. Photovoltaic characteristics of PSC used in the simulation.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>SnO$_2$: F</th>
<th>TiO$_2$</th>
<th>CH$_3$NH$_3$PbI$_3$</th>
<th>Spiro-OMeTAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (nm)</td>
<td>500</td>
<td>100</td>
<td>50-600</td>
<td>300</td>
</tr>
<tr>
<td>bandgap (eV) Eg</td>
<td>3.5</td>
<td>3.2</td>
<td>1.55</td>
<td>2.9</td>
</tr>
<tr>
<td>electron affinity (eV) χ</td>
<td>4</td>
<td>4.26</td>
<td>3.9</td>
<td>2.2</td>
</tr>
<tr>
<td>dielectric permittivity ε_r</td>
<td>9</td>
<td>38-108</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>CB effective density of states (1/cm3)</td>
<td>2×10^{17}</td>
<td>2×10^{18}</td>
<td>2.2×10^{14}</td>
<td>2.5×10^{18}</td>
</tr>
<tr>
<td>VB effective density of states (1/cm3)</td>
<td>2.2×10^{16}</td>
<td>1.8×10^{19}</td>
<td>1.0×10^{14}</td>
<td>1.8×10^{19}</td>
</tr>
<tr>
<td>electron thermal velocity (cm/s)</td>
<td>1×10^7</td>
<td>1×10^7</td>
<td>1×10^7</td>
<td>1×10^7</td>
</tr>
<tr>
<td>hole thermal velocity (cm/s)</td>
<td>1×10^7</td>
<td>1×10^7</td>
<td>1×10^7</td>
<td>1×10^7</td>
</tr>
<tr>
<td>electron mobility (cm2/Vs)</td>
<td>2×10^4</td>
<td>2×10^4</td>
<td>2.20</td>
<td>2.00×10^{-4}</td>
</tr>
<tr>
<td>hole mobility (cm2/Vs)</td>
<td>10</td>
<td>1×10^4</td>
<td>2.2</td>
<td>2.00×10^{-4}</td>
</tr>
<tr>
<td>shallow uniform donor density ND (1/cm3)</td>
<td>1×10^{19}</td>
<td>6×10^9</td>
<td>9×10^7</td>
<td>0</td>
</tr>
<tr>
<td>shallow uniform acceptor density NA (1/cm3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1×10^{22}</td>
</tr>
<tr>
<td>N_t, Total (cm$^{-3}$)</td>
<td>1×10^{15}</td>
<td>1×10^{15}</td>
<td>8.5×10^{13}</td>
<td>1×10^{15}</td>
</tr>
</tbody>
</table>

Figure 8 shows the SCAPS-1D Solar definition panel as it consists of 7 layers that can be defined with different materials and parameters, as seen in figure 9.
5. Results and Discussion

In this study, we observed the thickness of the absorber layer, which has a very high absorption coefficient up to 105cm\(^{-1}\). It is a very critical parameter that affects the PSC performance, and it is electrical properties such as (Jsc, Voc, FF, and PCE), the short-circuit current density, the open-circuit voltage, Fill Factor and the power conversion efficiency, respectively. As the absorber thickness (vary from 50 to 600 nm). The default parameters for the other layers set, as mentioned in Table 1. As shown in Figure 10, which shows the optimal cell performance around the thickness of 300nm for the active layer, and then decreases slightly. While Voc increases to an optimal value at 200nm and then decreases afterward. For fill factor, it increases slowly when the thickness increases. The behavior of the efficiency is very similar to Voc, increasing to an optimal value between 300nm and 400nm, and then decreases with the thickness increase. Another important property is the charge carriers in the perovskite active layer has a longer diffusion length than 300nm as the case of our model, where the electron and hole can reach their corresponding electrode before they recombine, which can enhance the efficiency [21].

Moreover, Voc is defined by equation (8). More excess carrier’s concentration gives a higher value of I\(_L\), while I\(_0\) stays at a low level because of not much recombination in the cell. This is the reason why Voc increases for the first time. Fill Factor is defined as the ratio of the maximum generated power to the product of Voc and Isc when the thickness is less than 500nm. However, the PCE is increasing with the thickness increases to some degree. The internal power depletion is also increasing after 300 nm. While the thickness of more than 300 nm, we start noticing the decreasing effect on the PCE, which caused by more recombination happens because of the increasing number of traps and because more and more excess carriers cannot reach the electrodes. In this case, thicker absorber brings drops of Voc and PCE. In this simulation, the performance of a solar cell is dominated by two factors, 1) How efficient is the active layer can absorb the photon. 2) How fast the charge carrier can move to the corresponding electrode [22, 23].
6. Conclusion

We employed the device simulator SCAPS 1D in the modeling of PSC. SCAPS-1D [24] simulator. The researchers widely use this program from around the world for modeling all type of solar cell. We have Au as a contact layer with a work function of 5.1 eV, Spiro-OMetaled, \(\text{CH}_3\text{NH}_3\text{PbI}_3 \) as an absorber layer with a different thickness between 50 nm to 600 nm, the results are shown in Table 2. Figure 10 shows a 300nm thickness is an optimal thickness for the absorber with an efficiency of 20.34%, and TiO\(_2\) as ETL.

<table>
<thead>
<tr>
<th>Thickness (nm)</th>
<th>(\text{Voc}) (V)</th>
<th>(\text{Jsc}) (mA/cm(^2))</th>
<th>FF%</th>
<th>Efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.4551</td>
<td>5.936405</td>
<td>89</td>
<td>7.7</td>
</tr>
<tr>
<td>100</td>
<td>1.4711</td>
<td>9.708584</td>
<td>90</td>
<td>12.85</td>
</tr>
<tr>
<td>200</td>
<td>1.4772</td>
<td>13.804484</td>
<td>91</td>
<td>18.49</td>
</tr>
<tr>
<td>300</td>
<td>1.4758</td>
<td>15.158235</td>
<td>91</td>
<td>20.34</td>
</tr>
<tr>
<td>400</td>
<td>1.4726</td>
<td>15.042101</td>
<td>91</td>
<td>20.16</td>
</tr>
<tr>
<td>500</td>
<td>1.4689</td>
<td>14.159126</td>
<td>91</td>
<td>18.93</td>
</tr>
<tr>
<td>600</td>
<td>1.4652</td>
<td>12.912388</td>
<td>91</td>
<td>17.22</td>
</tr>
</tbody>
</table>

Acknowledgements

We would like to thank Dr. Marc Burgelman and his staff, at the University of Gent, Belgium, for the freely distributed SCAPS-1D simulator.

References

[8] Keith T. Butler, Jarvis M. Frost, and Aron Walsh, Band alignment of the hybrid Halide perovskites \(\text{CH}_3\text{NH}_3\text{PbI}_3 \), \(\text{CH}_3\text{NH}_3\text{PbBr}_3 \), and \(\text{CH}_3\text{NH}_3\text{PbI}_3 \). Materials Horizons. 2014; 2: 228-231.

[18] G. Haacke, the New figure of merit for transparent conductors, J. Appl. Phys. 47.

