Micropropagation of *Erodium olympicum* Endemic to Turkey

Basar Sevindik¹, Mehmet Tutuncu², Tolga İzgü³, Ehsan Mohammed Tagipur⁴, Pembe Curuk¹, Ozer Yilmaz⁵, Gonul Kaynak⁶, Yesim Yalcin Mendi¹, *²

¹Department of Horticulture, Faculty of Agriculture, University of Cukurova, Adana, Turkey
²Department of Horticulture, Faculty of Agriculture, Ondokuz Mayis University, Atakum, Samsun, Turkey
³Department of Horticulture, Faculty of Agriculture, Ege University, İzmir, Turkey
⁴Institute of Natural and Applied Sciences, Department of Biotechnology, University of Çukurova, Adana, Turkey
⁵Department of Biology, Faculty of Science and Art, Uludag University, Bursa, Turkey

Email address: basarsevindik@gmail.com (B. Sevindik), mtutuncu.tr01@gmail.com (M. Tutuncu), tolgaiizgu01@gmail.com (T. İzgü), e.tagipur@gmail.com (E. M. Tagipur), pcuruk@cu.edu.tr (P. Curuk), ozery@uludag.edu.tr (O. Yilmaz), gkaynak@uludag.edu.tr (G. Kaynak), yesimecan@cu.edu.tr (Y. Y. Mendi)

*Corresponding author

To cite this article: Basar Sevindik, Mehmet Tutuncu, Tolga İzgü, Ehsan Mohammed Tagipur, Pembe Curuk, Ozer Yilmaz, Gonul Kaynak, Yesim Yalcin Mendi. Micropropagation of *Erodium olympicum* Endemic to Turkey. *American Journal of Plant Biology*. Special Issue: Plant Molecular Biology and Biotechnology. Vol. 2, No. 3-1, 2017, pp. 24-27. doi: 10.11648/j.ajpb.s.2017020301.14

Received: March 7, 2017; Accepted: March 8, 2017; Published: March 23, 2017

Abstract: *Erodium* genus belonging to Geraniaceae has fifty species that are distributed over Balkan Peninsula, Mediterranean, Middle East, Central Europe and Central Asia and most of them are herbaceous annual plants. Members of the genus naturally grow in sandy soil with good drainage, foothills, pebbled places, and desert and semi desert areas. It is reported that the genus has more than two-hundred antimicrobial effective compounds and some species belong to the genus has been used in ethnomedicine since very ancient time. At present study, the effects of different plant growth regulators (PGR) on micropropagation of *Erodium olympicum* endemic to Turkey were investigated. Therefore, Murashige and Skoog (MS) media supplemented with different BA (0.1, 0.5, 1.0 mg L⁻¹) and GA₃ (0.1, 0.2 mg L⁻¹) concentrations and combination were used. Plant materials were collected from Uludağ Mountains in Turkey and surface sterilization was performed applying tap water for 30 min, EtOH 70% for 2 min, rinsing with distilled water for 3-4 times, NaOCl 20% for 20 min, rinsing with distilled water for 3-4 times, respectively. The highest shoot formation (58%) was obtained from MS medium with 0.5 mg L⁻¹ BA + 0.2 mg L⁻¹ GA₃. The best rooting was determined on MS medium containing 0,5mg L⁻¹ IBA as 25%.

Keywords: Biodiversity, Genetic Resources, Herbaceous Plant, *In vitro*

1. **Introduction**

Turkey is one of the richest countries in terms of large flora and endemic genetic resource due to its geographic location with different climates; Continental, Mediterranean and Oceanic [1]. Especially, Mediterranean basin is the centre of this floral diversity for Geraniaceae family. *Erodium, Palergeronium, Geranium, Monsonia* and *California* are well known genus in Geraniaceae family. *Erodium* species, mainly herbaceous perennials or subshrubs, are native to the Mediterranean and Eurasia and grow in mountainous areas in rocky, calcareous soil [2]. This genus is represented by 74 species. Among these species, 62 taxa occur in Mediterranean region, 31 of them are grown naturally in Anatolia and 16 of them are endemic to Turkey [3, 4]. *E. olympicum*, distributed to Uludağ Mountain, known as one of the important endemic species and under the threat of extinction due to human activity (grazing and urbanization, winter sports).

To get rid of the extinction risk, some innovative methodologies have emerged to preserve genetic resources recently. Propagation and protection of these endemic species by biotechnological methods, especially tissue culture
techniques are remarkable as much as conventional techniques [5]. Micropropagation is an effective method for vegetative and clonal production using different plant tissues in aseptic conditions [6]. Efficiency of micropropagation depends on culture medium, growth regulators and genotypes [2]. Micropropagation with nodes, shoot tips, axillary buds, leaf and stem segments are widely accepted methods for medicinal and aromatic plants [7]. Tissue culture has been investigated in a few study on _Erodium_ sp. and using shoot tips of _E. sibthorpianum_ subs. _sibthorpianum_ as an explant source and MS medium containing 1 ppm BA were found very significant (%100) for micropropagation [2].

In this research, an efficient micropropagation protocol was developed for endemic _E. olympicum_, sampled from Uludağ Mountain in Bursa in the north-western part of Turkey, testing and effects of different PGRs concentrations on micropropagation. This is the first report about Turkey, testing and effects of different PGRs concentrations on micropropagation.

2. Material and Methods

2.1. Plant Material

For starting material, 75 plants were collected from Uludağ Mountain (NW Turkey) (40°05’27.55” N (long.), 29°10’26.26” E (lat.), 1600 m above sea level during August, 2012. Plants were cultivated individually in pots filled with peat, sand and perlite (1:1:1, v/v/v) in ornamental plant greenhouse (30°C; 2-11 MJ m⁻² day⁻¹) at Çukurova University and irrigated three times a week with tap water.

2.2. Surface Sterilization

2 cm long nodes were taken from young plants and they were washed under tap water for 30 min., then dipped in 0.1% HgCl₂ (Merck KGaA, Darmstadt, Germany) for 20 min. in a fume hood. Nodes were rinsed 4-5 times with distilled water and taken into laminar flow hood. Finally, explants dipped in 70% ethanol for 1-2 min, soaked in 20% NaOCl (4.6% active chlorine) (Domestos, Unilever, Turkey) for 20 min, then rinsed with sterilized distilled water 4-5 times.

2.3. Multiplication Medium

Nodes of the plantlets were cultured on MS medium including 2.5 mg L⁻¹ IBA. Callus induction was observed on MS medium containing 2.5 mg L⁻¹ IBA + 0.1 mg L⁻¹ GA3, 0.92±1.37ab (Table 1). At the first subculture, numerous shoot formations (1.33±1.28a) were observed in response to 0.5 mg L⁻¹ BA + 0.2 mg L⁻¹ GA3. After the second subculture, propagation coefficient was detected as 1.42±1.54a on the same medium (Table 1). After two subculture, shoots were formed in 58% of explants (Figure 1). During _in vitro_ cultivation, vitrification was detected in some node explants cultured on MS medium with 0.1 mg L⁻¹ BA + 0.1 mg L⁻¹ GA3, 0.1 mg L⁻¹ BA + 0.2 mg L⁻¹ GA3, then, regenerated shoots were transferred to rooting medium after 8 weeks of cultivation. Limited root formation was observed from all MS medium supplemented with IBA (Table 2). In control medium, there was no rooting due to absence of auxin and cytokinin. MS medium containing 0.5 mg L⁻¹ IBA showed better root formation than the other concentrations (Table 2). Callus induction was observed on MS medium containing 2.5 mg L⁻¹ and 3 mg L⁻¹ IBA.

3. Results and Discussion

The nodes with 1 cm long of _E. olympicum_ were cultured on MS medium containing different concentration of BA and GA3 to obtain efficient _in vitro_ multiplication and influential micropropagation protocol was developed. Considerable propagation coefficient was acquired on MS medium including 0.5 mg L⁻¹ BA + 0.2 mg L⁻¹ GA3 (Table 1). After the first subculture, numerous shoot formations (1.33±1.28a) were observed in response to 0.5 mg L⁻¹ BA + 0.2 mg L⁻¹ GA3. After the second subculture, propagation coefficient was detected as 1.42±1.54a on the same medium (Table 1). After two subculture, shoots were formed in 58% of explants (Figure 1). During _in vitro_ cultivation, vitrification was detected in some node explants cultured on MS medium with 0.1 mg L⁻¹ BA + 0.1 mg L⁻¹ GA3, 0.1 mg L⁻¹ BA + 0.2 mg L⁻¹ GA3, then, regenerated shoots were transferred to rooting medium after 8 weeks of cultivation. Limited root formation was observed from all MS medium supplemented with IBA (Table 2). In control medium, there was no rooting due to absence of auxin and cytokinin. MS medium containing 0.5 mg L⁻¹ IBA showed better root formation than the other concentrations (Table 2). Callus induction was observed on MS medium containing 2.5 mg L⁻¹ and 3 mg L⁻¹ IBA.

<table>
<thead>
<tr>
<th>PGR combinations</th>
<th>1st subculture Propagation coefficient (no±S.E)</th>
<th>2nd subculture Propagation coefficient (no±S.E)</th>
<th>Shoot formation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 mg L⁻¹ BA + 0.0 mg L⁻¹ GA3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1 mg L⁻¹ BA + 0.1 mg L⁻¹ GA3</td>
<td>0.54±0.38c</td>
<td>0.11±0.40c</td>
<td>20c (26.42)</td>
</tr>
<tr>
<td>0.1 mg L⁻¹ BA + 0.2 mg L⁻¹ GA3</td>
<td>0.92±0.66c</td>
<td>0.28±0.66c</td>
<td>20c (26.19)</td>
</tr>
<tr>
<td>0.5 mg L⁻¹ BA + 0.1 mg L⁻¹ GA3</td>
<td>1.08±0.77b</td>
<td>1.03±0.44ab</td>
<td>31b (33.79)</td>
</tr>
<tr>
<td>0.5 mg L⁻¹ BA + 0.2 mg L⁻¹ GA3</td>
<td>1.33±1.28a</td>
<td>1.42±1.54a</td>
<td>38a (49.65)</td>
</tr>
<tr>
<td>1.0 mg L⁻¹ BA + 0.1 mg L⁻¹ GA3</td>
<td>0.95±1.48</td>
<td>1.22±0.84a</td>
<td>25bc (29.95)</td>
</tr>
<tr>
<td>1.0 mg L⁻¹ BA + 0.2 mg L⁻¹ GA3</td>
<td>0.92±1.37ab</td>
<td>1.05±1.14ab</td>
<td>24bc (29.26)</td>
</tr>
</tbody>
</table>

S.E: Standard error, Statistical analyzes were realized with ANOVA. (LSD test: p<0.05)

LSD, 0.001 (p<0.001)

Values in parentheses indicate arcsine transformed % values.
There have been a lot of researches on micropropagation of other medicinal and aromatic plants spread around Mediterranean basin such as *Origanum* sp. [8-15], *Sideritis* sp. [16-24] etc., but limited reports were presented about *in vitro* regeneration of *Erodium* species [2, 25]. In this study, the effects of BA+GA$_3$ combinations on *E. olympicum* were investigated. MS medium including 0.5 mg L$^{-1}$ BA + 0.1 mg L$^{-1}$ GA$_3$ was found as the best PGR combination for shoot formation and MS medium containing 0.5 mg L$^{-1}$ IBA was prominent media for rooting. Akın et al. [2] obtained significant shoot formation from the seedlings of *E. sibthorpianum* subs. *sibthorpianum* on MS medium containing 1 ppm BA. In contrast to this study, explants, cultured on MS medium supplemented with 1 mg L$^{-1}$ BA+0.2 mg L$^{-1}$ GA$_3$ was not effective as 0.5 mg L$^{-1}$ BA combined with 0.2 mg L$^{-1}$ GA$_3$. In the other study, micropropagation of *E. somanum* H. Peşmen was investigated and the most efficient explant for shoot formation was found as leaf and medium was MS medium involved 2 mg L$^{-1}$ BAP and 1 mg L$^{-1}$ IBA. GA$_3$ is known as effective plant growth regulator to increase the length of shoots during multiplication [27]. But in the present study, length of the shoots was nearly the same during the 8 week cultivation. On the other hand, Akın et al. [2] implied that hormone free MS medium was the best for the highest shoot length for *E. sibthorpianum*. Although there is a few studies on *Erodium* genus, there has been so many paper about other species in Geraniaceae family especially *Palergonium* genus. For instance, Saxena et al. [29] indicated that MS medium including 5 mg L$^{-1}$ KIN and 1 mg L$^{-1}$ NAA provided efficient regeneration for leaf explants while 8 mg L$^{-1}$ KIN and 1 mg L$^{-1}$ NAA gave impulsive regeneration for nodes of *Palergonium*. Similarly, Pattanik and Chand [26] reported that the combination of BA and GA increased the effect of bud break and shoot multiplication for nodal explants of *Morus cathayana*. In tissue culture studies, cytokinin is necessary for plant cell due to regulator effect on protein synthesis [27]. BA is the most effective and low priced cytokinin for tissue culture studies [26]. As indicated Ueno and Shetty [28], the best micropropagation was obtained from the medium with 1 mg L$^{-1}$ BA in *Origanum vulgare*. GA$_3$ is known as one of the important shoot stimulator for some plants and it was reported that combination GA$_3$ with BA increased organ and shoot regenerations [27]. Rooting is provided by auxin without any combination with other PGR. Secondly, level of auxin is one of the most important factors for root induction. In the present study, efficient rooting was observed on MS medium containing 0.5 mg L$^{-1}$ IBA. IBA known as significant auxin for root induction due to it’s effect on lateral root stimulation. In our study, while low concentrations of IBA promoted rooting, 2.5 mg L$^{-1}$ and 3 mg L$^{-1}$ IBA caused callus induction. Comparably, impressive root formations were observed on MS medium supplied with 0.5 mg L$^{-1}$ and 1 mg L$^{-1}$ IBA for *E. somanum* [25]. Likewise, *E. sibthorpianum* rooted best on modified MS medium with the presence of 0.1 mg L$^{-1}$ and 0.5 mg L$^{-1}$ IBA on modified MS medium [2]. Contrary to our study, researchers indicate that rooting was spontaneous in *O. vulgare* [10].

4. Conclusion

Tissue culture is one of the most important preserving methods for rare endemic genetic resource of Turkish *E. olympicum*. The combination of BA and GA$_3$ is very effective to stimulate shoot formation from node explants. After shoot formation, IBA has significant effects on rooting. Shoot formation protocol and rooting protocol was developed for Turkish endemic *E. olympicum* species.

Acknowledgments

This study was supported by TAGEM (TAGEM 11/ARGE 14 project (2011-2013).

Table 2. Rooting of *E. olympicum*.

<table>
<thead>
<tr>
<th>IBA concentration</th>
<th>Rooting of plantlets derived from nodes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 mgL$^{-1}$</td>
<td>0</td>
</tr>
<tr>
<td>0.5 mgL$^{-1}$</td>
<td>25a (29.91)</td>
</tr>
<tr>
<td>1.0 mgL$^{-1}$</td>
<td>7bc (15.12)</td>
</tr>
<tr>
<td>1.5 mgL$^{-1}$</td>
<td>15ab (22.67)</td>
</tr>
<tr>
<td>2.0 mgL$^{-1}$</td>
<td>3cd (7.75)</td>
</tr>
<tr>
<td>2.5 mgL$^{-1}$</td>
<td>3cd (7.75)</td>
</tr>
<tr>
<td>3.0 mgL$^{-1}$</td>
<td>3d (6.27)</td>
</tr>
</tbody>
</table>

LSD$_{0.01}$ = 7.6516 (p<0.001)
Values in parentheses indicate arcsine transformed % values

Figure 1. Micropropagation stages of *E. olympicum*. A-B-C) Regeneration of nodes on MS medium containing 0.5 mg L$^{-1}$ BA + 0.2 mg L$^{-1}$ GA$_3$. D) Shoot formations of *E. olympicum*. E) Multiplication of shoots. F) Plantlets obtained from node explants.
References

