The role of thiamine in autism

Khanh vinh quốc Lương*, Lan Thi Hoàng Nguyễn

Vietnamese American Medical Research Foundation, Westminster, California, U.S.A

Email address: Lng2687765@aol.com(K. v. q. Lương)

To cite this article:

Abstract: Autism spectrum disorders are a group of neuro-developmental conditions characterized by varying degrees of language impairment, including verbal and non-verbal communication, impaired social skill, and repetitive behaviors. In this paper, we review the evidence for an association between autism and thiamine. A relationship between thiamine status and the development of autism has been established, with thiamine supplementation exhibiting a beneficial clinical effect on children with autism. Thiamine may involve in autism via apoptotic factors (transcription factor p53, Bcl-2, and caspase-3), neurotransmitter systems (serotonin, acetylcholine, and glutamate), and oxidative stress (prostaglandins, cyclooxygenase-2, reactive oxygen species, nitric oxide synthase, the reduced form of nicotinamide adenine dinucleotide phosphate, and mitochondrial dysfunction). In addition, thiamine has also been implicated in autism via its effects on basic myelin protein, glycogen synthetase kinase-3β, alpha-1 antitrypsin, and glyoxalase 1. Thiamine may play a role in children with autism. Additional investigation of thiamine in children with autism is needed.

Keywords: Thiamine, Autism, Vitamin B1, Transketolase

1. Introduction

Autism is a childhood-onset neuro-developmental disorder characterized by disturbances in social interactions, imaginative activities, communication, and speech. There is a relationship between thiamine status and autism. There is evidence from animal studies that the developing brain is influenced by a reduced thiamine intake. A correlation exists between the severity of this neuropsychiatric disorder and the degree of alcohol exposure in utero [1]. Alcohol consumption during pregnancy has long-lasting adverse effects that cause structural, behavioral and cognitive damage despite a radical improved in environmental factors [2]. Ethanol impairs the intestinal absorption of thiamine in humans [3-4] and causes thiamine deficiencies in alcoholics. In addition, a woman who consumed herbal remedies containing thiaminase, an enzyme causes thiamine deficiency, during pregnancy gave birth to a girl with autism spectrum disorder (ASD) [5]. It has been suggested that autistic children may relate to inadequate vitamin intake, especially thiamine. States with the highest women, infant, and children (WIC) program have significantly lower rates of autism than those without [6], suggesting that nutritional epidemiology and ecologic study link the possible cause of autism to nutrition. WIC program is known as the Special Supplement Nutrition Program for low-income families. There is also an association has been found between the increase in childhood autism rates and exclusive breast-feeding [6]. Infants who were breast-fed without supplementation had diets that contained less thiamine, riboflavin, and vitamin D than the minimal daily recommendations. Bell and Stewart [7] demonstrated that the developing brain is vulnerable to reduced thiamine intake and that the period of vulnerability may be different for activity and avoidance learning. These authors found that rat pups suckling from thiamine-deficient (TD) dams exhibited of memory deficits. In another study, 21% of children with ASD had a thiamine pyrophosphate (TPP) uptake effect in the TD range [8]. Erythrocyte transketolase stimulation test was abnormal in ASD patients [9-11]. An Israeli study demonstrated the impact of TD during early infancy on aspects of language at 5-7 years of age [12]. The children exposed to TD milk during their first year of life and developed in a high rate of problem with receptive and expressive language. In TD animal studies, rat pulps developed permanent learning and memory deficits as well as aggressive behavior [13-14]. Other studies have shown that TD during brain development provokes neuronal cell loss that persists into adulthood [15]. Thiamine may also have an influence at later stages. Harrell [16] demonstrated that orphan children received thiamine daily for a year were more intelligent, had better visual acuity, faster reaction
time and better memory than control groups. In addition, mice treated with thiamine tetrahydrofurfuryl disulfide (TTFD) showed decreased locomotor activity in solitary open-field testing. During social interaction, the TTFD-treated mice engaged in more passive cuddling-type behaviors than vigorous play-type behavior and showed a decreased startle response to loud noises [17]. Based on the Autism Treatment Evaluation Checklist (ATEC), Lansdale et al. [18] demonstrated that TTFD had a beneficial clinical effect on 8 of 10 children with autism in four areas: communication, sociability, sensory/cognitive awareness, and behavior. These findings suggested that there is a relationship between thiamine and autism. Therefore, we review the role of thiamine in autism in the present paper.

2. The role of Thiamine in Autism

2.1. Apoptotic Factors

The p53 gene and protein play critical roles in the regulation of the normal cell cycle, cell cycle arrest, and apoptotic response. p53 is a transcription factor that plays a major role in determining cell fates in response to DNA damage. The function of p53 is to serve as a critical regulator of neuronal apoptosis in the central nervous system (CNS) [119]. Deranged apoptotic regulation has been reported in children with autism. The size of Purkinje cell decreased by 24% in the brains of children of autism compared with controls [20], suggesting that the Purkinje cell atrophy in autism may have a significant neurohistological heterogeneity among individuals diagnosed with this disorder. p53 values increased by 130% over those in the postmortem parietal cortex blocks of patients with autism [21]. In another report, p53 levels increased by 67.5% and 38% in the superior frontal and cerebellar cortices of patients with autism, respectively [22]. Sheikh et al. [23] found an increased p53 expression in the Purkinje and granule cells of the cerebella in people with autism compared with age-matched controls. These findings suggest that deranged apoptotic mechanisms involved in the pathogenesis of patients with autism. In contrast, an increased number of thiamine transporters have been found in cells that over-express thiamine transport genes (mTHTR-1) and in those exposed to conditions that induce DNA damage or p53 activation [24]. Thiamine diphosphate (TDP) inhibits p53 binding, and thiamine inhibits intracellular p53 activity [25]. The expression of p53 decreases significantly in the cultured retinal neurons of diabetic rats treated with thiamine [26]. These observations suggested that the transcription factor p53 is activated in autism with increasing apoptotic response from cellular damage and thiamine ameliorated these effects on cells.

Bcl-2 is a membrane-bound protein that plays a neuroprotective role in the CNS. Bcl-2 inhibits apoptosis and enhances the survival of newborn neurons in the normal and ischemic hippocampus[27]. Bcl-2 mRNA and protein expression are developmentally regulated in both the human and murine brain [28-29]. Bcl-2 inhibits the death of a central neural cell line due to serum and growth-factor withdrawal, the calcium ionophore A23187, glucose withdrawal, membrane peroxidation, and, in some cases, free-radical-induced damage [30]. Bcl-2 has significant neurotropic functions that contribute to normal neuronal growth and the axodendritic branching of neurons. The total Purkinje cell counts were significantly lower in the cerebellar hemispheres and vermises of subject with autism compared control subjects [31]. Abnormalities in the neuronal apoptotic pathways may play a significant role in the pathogenesis of autism. Reduced in Bcl-2 has been reported in the cerebella of subjects with autism [22,32]. A quantification of Bcl-2 levels revealed a 34% to 51% reduction in the people with autism compared with controls [33]. Bcl-2 protein expression was also significantly decreased in the lymphoblasts of people with autism compared with controls [34]. In addition, the global methylation profiling of lymphoblastic cell lines reveals the decreased expression of Bcl-2 proteins in the brains of people with autism [35]. Therefore, the decreased Bcl-2 protein level suggests an increased apoptosis in people with autism. However, B vitamins pre-treatment (B1, B6, and B12) had a protective effect in experimentally induced epilepsy of the mouse brain with an early induction of Bcl-2 expression within 12 hours [36]. Thiamine deprivation increased cell death and reduced Bcl-2 expression during hybridoma cell culture [37]. Benfotiamine is a transketolase activator that directs glucose to the pentose phosphate pathway and improves the functional recovery of an infarcted heart with increases in Bcl-2 protein levels [38]. When human and bovine pericytes were intermittently exposed to high glucose, there was a 50-60% decrease in the Bcl-2 to Bax ratio for both expression and concentration; the addition of thiamine and benfotiamine completely reversed this damaging effect [39]. Taken together, thiamine may have a neuro-protective role in autism by increasing apoptotic inhibitor Bcl-2.

Caspases are cysteinyl aspartate-specific proteases that play a critical role in the regulatory and execution phases of apoptosis [40]. Neonatal exposure to sevoflurane, an anesthetic, significantly increased the number of apoptotic cells and increased cleaved caspase-3 in the brain; it also induced abnormal social behaviors and deficits in mouse fear conditioning [41]. Caspase-3 increased in the cerebella of participants with autism [42]. The expression of caspases also increased in the peripheral blood mononuclear cells of patients with ASD [43]. These results suggest that down-regulation of the anti-apoptotic signaling pathway in the autistic brain could be one of the underlying mechanisms responsible for the pathogenesis of autism. Thiamine transporter SLC19A3 gene-transfected breast cancer cells showed an increase in apoptosis when exposed to doxorubicin and radiation, and the caspase-3-dependent pathway partially mediated this effect [44]. The thiamine deficiency caused by thiamine antagonists leads to caspase-
3 apoptosis in the neuronal differentiated PC-12 cells of rats [45]. Benfotiamine accelerates ischemic diabetic limbs healing in mice via the potentiation of angiogenesis and prevention the induction of pro-apoptotic caspase-3 [46]. Sulbutiamine, a highly lipid-soluble synthetic analog of thiamine, attenuates trophic factor deprivation-induced cell death to transformed retinal ganglion cells (RGC-5) and decreases the expression of cleaved caspase-3 [47]. These findings suggest that thiamine may have a role in autism by inhibiting the apoptotic factor caspase-3 activity.

The role thiamine in anti-apoptosis in autism is summarized in Table 1.

Table 1: The role of thiamine in anti-apoptosis in Autism.

<table>
<thead>
<tr>
<th>p53 gene</th>
<th>Thiamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>*p53 values increased by 130% over control values in the postmornem parietal cortex blocks of patients with autism.</td>
<td>* Increased thiamine transporter activities have been found in cells that over-express the genes that code for thiamine transporters (mTHTR-1) and under conditions of DNA damage or p53 activation.</td>
</tr>
<tr>
<td>* A quantification of the Bcl-2 levels showed a 34% to 51% reduction in the cerebella of people with autism compared with controls.</td>
<td>* Benfotiamine improved the functional recovery of infarcted hearts with increased Bcl-2 protein levels.</td>
</tr>
<tr>
<td>*The global methylation profiling of lymphoblastoid cell lines revealed a decreased expression of Bcl-2 proteins in the brains of the people with autism.</td>
<td>* Vitamin B pre-treatment (B6, B12, and B2) had a protective effect on experimental epilepsy in the brains of mice with an early induction of Bcl-2 expression within 12 hours.</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>Thiamine</td>
</tr>
<tr>
<td>*Abnormalities in the neuronal apoptotic pathways may play a significant role in the pathogenesis of autism. Reduced Bcl-2 has been reported in the cerebella of participants with autism.</td>
<td>*Thiamine deprivation increased cell death and reduced Bcl-2 expression during a hybridoma cell culture.</td>
</tr>
<tr>
<td>*A quantification of the Bcl-2 levels showed a 34% to 51% reduction in the cerebella of people with autism compared with controls.</td>
<td>*Benfotiamine improved the functional recovery of infarcted hearts with increased Bcl-2 protein levels.</td>
</tr>
<tr>
<td>*Bcl-2 protein expression also decreased significantly in lymphoblasts of people with autism compared with controls.</td>
<td>*The Bcl-2 to Bax ratio decreased by 50%-60% (for both expression and concentration) in the human and bovine pericytes intermittently exposed to high glucose; the addition of thiamine and benfotiamine completely reversed this damaging effect.</td>
</tr>
<tr>
<td>*The global methylation profiling of lymphoblastoid cell lines revealed a decreased expression of Bcl-2 proteins in the brains of the people with autism.</td>
<td>*Thiamine-transporter SLC19A3 gene-transfected breast cancer cells showed an increase in apoptosis when exposed to doxorubicin and radiation. The caspase-3-dependent pathway partially this increases.</td>
</tr>
<tr>
<td>Caspases</td>
<td></td>
</tr>
<tr>
<td>*Neonatal exposure to sevoflurane, an anesthetic, significantly increased the number of apoptotic cells and increased cleaved caspase-3 in the brain. This exposure induced abnormal social behaviors and deficits in the fear conditioning of mice.</td>
<td>*The thiamine deficiency caused by thiamine antagonists leads to caspase-3 apoptosis in the neuronal differentiated PC-12 cells of rats.</td>
</tr>
<tr>
<td>*Caspase-3 increased in the cerebella of participants with autism.</td>
<td>*Benfotiamine accelerates the healing of ischemic diabetic limbs in mice via the potentiation of angiogenesis and prevention the induction of pro-apoptotic caspase-3.</td>
</tr>
<tr>
<td>*The expression of caspases also increased in the peripheral blood mononuclear cells of patients with autism spectrum disorder (ASD).</td>
<td>*Increased thiamine transporter activities have been found in cells that over-express the genes that code for thiamine transporters (mTHTR-1) and under conditions of DNA damage or p53 activation.</td>
</tr>
</tbody>
</table>

ASD, autism spectrum disorder; mTHTR-1, thiamine transport genes; TDP, thiamine diphosphate

2.2. Neurotransmitter System

Serotonin (5-HT) is an indoleamine derived from the amino acid tryptophan and is involved in a range of behaviors and psychological processes, including mood, anxiety, obsessive-compulsive symptoms, and social interaction. 5-HT plays a role in the expression of autism. Acute tryptophan depletion worsens autistic symptoms [48] and some patients with autism respond positively to selective 5-HT re-uptake inhibitors (SSRIs), especially with regard to obsessive-compulsive symptoms [49]. Positron emission tomography (PET) revealed the altered serotonin synthesis in the dentato-thalamo-cortical pathways in boys with autism [50]. Children with autism had high 5-HT levels in their platelets and bloods [51-52]. The number of 5-HT axons increased in both the pathways and terminal regions of the postmortem cortices of young donors who had autism [53]. An animal study suggested that hyper-serotonemia reduces the drive for social attachment by inhibiting separation distress [54]. Another study failed to show the inverse relationship between blood 5-HT and expressive verbal ability [55]. However, McBride et al. [56] examined the effects of autism, race, and puberty with regard to the platelet 5-HT levels of children with autism and mental retardation. These authors suggested that hyper-serotonemia is more prevalent in children with autism than those without. The SLC6A4 gene encoded by the 5-HT transporter (SERT) and plays a prominent role in 5-HT homeostasis. An increased density in the platelet 5-HT transporter was also found in patients with autism [57]. Several gene variants that may change the structure or function of the transporter protein are associated with autism. Variation within genes on the serotonin pathway, particularly HTR3A located on chromosome 11, were demonstrated modest effects on autism risk [58]. People with autism in France, Germany, Israel, Portugal, and the
United States exhibited a preferential inheritance of SERT length polymorphism L variants [59]. Although the S allele is more frequent in Japanese and Irish people with autism [60-61] the S/S genotype is significantly associated with all South African ethnic populations with autism [59]. However, SERT polymorphisms are not associated with autism in Brazil or China [62-63]. Recently, transgenic mice have been found to express the SERT variant that causes hyper-serotoninnemia, 5-HT receptor hypersensitivity, social impairment and repetitive behavior [64]. In addition, serotonergic systems dysfunction occurs in TD diet fed mice; specifically, a marked loss of [3H]5-HT, which labels the indolaminergic fiber systems of the cerebellum, medulla, mid-brain and diencephalon, was found [65]. The SSRI fluvoxamine significantly inhibited depressive behavior in TD mice as measured by an increase of immobility time in a forced swimming test [66]. Patients with low cerebrospinal fluid thiamine concentrations exhibited low 5-hydroxyindoleacetic acid (5-HIAA) values; however, thiamine treatment increased 5-HIAA markedly [67]. There was a significant decrease in the 5-HT uptake in the synaptosomal preparations of TD rat cerebella; the administration of thiamine in vivo resulted in a significant reverse of the inhibition of 5-HT uptake, which coincide with a dramatic clinical improvement [68]. A pyriothiamine-induced TD-rats increase in the endogenous 5-HIAA of the medulla-pons region occurred simultaneously with the onset of neurological signs; thiamine administration reversed both trends [69]. In addition, thiamine (1-3000 µM) reduced 3H-5-HT uptake to 83% of the controls in human placental chorionicarcinoma cells. These cells are the only cell line of human origin expressed in the 5-HT transporter [70]. Lurcher mutant mice are characterized by considerable atrophy in the cerebellum, which is secondary to a massive loss of cerebellar Purkinje cells, granule cells, and neurons from the inferior olivary nucleus; a therapeutic combination of amantadine, thiamine, and L-tryptophan increased SERT densities to 98% in Lurcher mutant mice, which is higher than those of wild-type mice [71].

Regions throughout the neo-cortex receive cholinergic inputs from the basal forebrain. The cholinergic system plays a role in the development and function of cognitive abilities. A disruption in this process may be linked to the cognitive deficits that often accompany autism. Neuronal nicotinic receptors decreased in cerebellar and cerebellar cortices of patients with autism, with 65%-73% receptors in the autistic group than in the normal subjects [72]. The nicotinic receptor binding was significantly reduced by 40%-50% in the granule cells, Purkinje cells and molecular layers in the autistic group compared with the normal group [73]. Reduced gene expression of the α4β2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism [74]. Cholinesterase inhibitors decreased irritability and hyperactivity [75], and improved expressive speech and overall behavior over baseline in people with autism [76]. These findings suggest that neuropathologic and neurochemical abnormalities of the cholinergic pathways were implicated in pathogenesis of autism. In addition, TD encephalopathy might involve impairment in cholinergic neurotransmitter function. Thiamine is a coenzyme required to synthesize acetylcholine (ACh). The synthesis of ACh is impaired in the brains of TD rats [77], which leads to a significant reduction in neuronal ACh levels [78]. Animal studies also suggest that thiamine is involved in the presynaptic release of ACh; thiamine binds to nicotinic receptors and exhibits anticholinesterase activity [79]. In addition, thiamine deficiency induces an early central muscarinic cholinergic lesion [80]. Taken together, thiamine may have a role in autism by involving in the cholinergic system.

Glutamate is synthesized from glucose and glutamine in the presynaptic neuronal terminals and serves as a major excitatory neurotransmitter in the CNS. The capacity for cognition and memory is derived from the various input and output pathways between the hippocampus and neocortex that rely on glutamatergic signaling [81]. Some studies have found cellular development abnormalities in the limbic system and the postmortem cerebella of people with autism [82-83]. These areas are normally enriched with glutaemate receptors. Glutamic acid decarboxylase (GAD) was reduced by 48%-61% in the parietal and cerebellar areas of the brains of people with autism compared with controls [84]. Increased glutamate concentration was demonstrated in the auditory cortex of persons with autism and first-degree relatives [85]. Proton magnetic resonance spectroscopy revealed lower N-acetylaspartate/creatine (NAA/Cr), γ-aminobutyric acid/creatine (GABA/Cr) and glutamate/creatine (Glx/Cr) in the frontal lobes of an autistic group compared with normal controls [86]. Glutamate-1 receptor knockout mice (Glut1 KO) were hyperactive and manifested fewer anxiety and depression-like behaviors in a forced swim test as well as robust aggression in the resident-intruder test [87]. Antibodies against glutamic acid decarboxylase 65 (GAD65) have been detected in the serum of patients with autism or ASD [88]. Mitochondrial aspartate/glutamate carrier SLC25A12 polymorphisms are strongly associated with autism [89-90], and thiamine deficiency results in the down-regulation of gluteamate transporters in cultured astrocytes [91]. TD diminishes thamine-dependent enzymes throughout the brain, but produces a time-dependent selective neuronal loss, glial activation, inflammation, abnormalities in oxidative metabolism and clusters of degenerating neurites in only specific thalamic regions. Furthermore, levels of EAAT-1 and EAAT-2 are diminished by 62% and 71%, respectively, in participant with TD encephalopathy [92]. An N-acetyllysentine treatment prevented the down-regulation of EAAT-2 in the medial thalamus and ameliorated the loss of several other astrocytic proteins. In addition, treatment with pyriothamine, a central thiamine antagonist, decreased the protein levels of astrocytic glutamate transporters in the medial thalamus [93]. Taken together, thiamine may involve in the autism by modulating neurotransmitters in the brain.
The role thiamine in neurotransmitter system in autism is summarized in Table 2.

2.3. Oxidative Stress

Prostaglandins (PGs) play a role in inflammatory processes. Cyclooxygenase (COX) participates in the conversion of arachidonic acid into PGs. These released prostanoids play an important role in normal neural function, including spatial learning, synaptic plasticity and long-term potentiation [94]. The PGE\textsubscript{2} signaling pathway may have an important role in early development; the expression of four EP (E-prostanoid) receptor* transcripts (EP\textsubscript{1}, EP\textsubscript{2}, EP\textsubscript{3}, and EP\textsubscript{4}) significantly increases in mouse embryos from day 11-15 [95]. The normal laminar pattern of COX-2 in the human cortex is altered in patients with Rett syndrome, a type of ASD [96]. There is an association between the PTGS2 polymorphism (the gene that encodes COX-2 enzyme) and Korean trios with ASD [97]. These findings suggest that PG pathway may participate in the pathogenesis of autism. In addition, the expressions of COX-2 mRNA and PGE\textsubscript{2} selectively increased in vulnerable regions during the symptomatic stages of TD encephalopathy animal models. Administration of nimesulide, a highly specific COX-2 inhibitor, significantly reduced PGE\textsubscript{2} levels in vulnerable regions [98]. Similarly, benfotiamine inhibits the expression of COX-2 in endotoxin-induced uveitis rats [99]. Benfotiamine also blocked the expression of COX-2 and its product PGE\textsubscript{2} in murine macrophages via LPS-induced cytotoxicity [100]. These findings suggested that thiamine may play a role in modulating the inflammatory process in autism.

Reactive oxygen species (ROS) play a major role in various cell-signaling pathways. ROS activates various transcription factors and increases in the expression of proteins that control cellular transformation, tumor cell survival, tumor cell proliferation and invasion, angiogenesis, and metastasis. Lipid peroxidation is a chain reaction between polyunsaturated fatty acids and ROS, and it produces both lipid peroxides and hydrocarbon polymers, which are highly toxic to the cell. Malondialdehyde (MDA) is an end product of the peroxidation of polyunsaturated fatty acids. Lipid peroxidation elevated in people with autism. The plasma MDA is significantly higher in those with autism than in their siblings without autism [101]. Higher serum MDA and 8-hydroxy-2-deoxyguanosine (8OHdG) levels were found in children with autism compared with controls [102]. 8OHdG levels were also increased in the cerebellum of patients with autism [103-104]. The F\textsubscript{2}-isoprostane 8-iso-prostaglandin F\textsubscript{2}α is enhanced in children with autism [105]. This isoprostane is a product of nonenzymatic oxidation of arachidonic acid and suggested as a marker of lipid peroxidation. Compared with controls, children with autism had significantly higher urinary levels of isoprostane F\textsubscript{2}α-VI (2,3-dinor-thromboxane B\textsubscript{2}, a marker of lipid peroxidation) and 6-keto-prostaglandin F\textsubscript{1}α [106]. Children with autism had higher mitochondrial rates of hydrogen peroxide production compared with controls [107]. The erythrocyte superoxide dismutase (SOD) activity in children with autism was significantly lower than that in normal controls [108]. The glutathione (GSH) plays an important role in a several cellular process including cell differentiation, proliferation, and apoptosis. GSH content was significantly lower in patients with autism compared with the control group [109-111]. In addition, GSH pathway gene variations are associated with ASD [112-114]. In the systematic review and meta-analyses, the ASD patients showed decreased blood levels of reduced GSH (27%), GSH peroxidase (GSH-Px) (18%), and increased concentrations of oxidized GSH (45%) relative to controls, whereas SOD, homocysteine, and cystathionine showed no association with ASDs [115]. These findings suggested that oxidative stress participated in the pathogenesis of autism. Similarly, oxidative stress is associated with region-specific neuronal death, and lipid peroxidation product accumulates in the remaining thalamic neurons after 11 days in TD animal models [116]. In vitro, thiamine inhibits lipid peroxidation and the free radical oxidation of oleic acid in rat liver microsomes [117]. Male Wistar rats were intoxicated with an ethanol dose; the MDA, reduction GSH and vitamin E values were used as parameters of the liver’s antioxidant system and showed improvement for the thiamine-treated group [118]. Thiamine improved the reduced GSH level in acutely alcoholized rats [118]. Taken together, these findings suggested that thiamine modulates oxidative stress in autism.

Nitric oxide synthase (NOS) is an enzyme involved in the synthesis of nitric oxide (NO) and regulates a variety of important physiological responses including cell migration, immune response, and apoptosis. NO affects the development and function of the CNS. NO enhances the release of dopamine in the striatum in animal models [119]. Extracellular dopamine increased following the intrastriatral infusion of NOS substrate [120]. Increased RBC NO levels and plasma GSH-Px were detected in people with autism [121]. A significant elevation level of NO was observed in the plasma of Omani autistic children as compared to their age-matched controls [111]. Decreased levels of enzymatic and non-enzymatic antioxidants and increased concentration of thiobarbituric acid reactive substances (TBARS) and NO were also observed in the blood of autistic children [122]. Lower protein content and higher percentage of nitrination in hair and nail of autistic children correlated with their degrees of severity [122]. In a family-based association study, there was a significant but weak evidence for an association between NOS-I/A polymorphism and ASD in the Korean population [123]. These findings indicate a possible role of increased oxidative stress and altered enzymatic antioxidants may be relevant to the pathophysiology of autism. Benfotiamine inhibits the expression of iNOS in endotoxin-induced uveitis in rats [101]. Benfotiamine also blocks the expression of iNOS via LPS-induced cytotoxicity in murine macrophages [99]. These findings suggested thiamine may
module reactive nitrogen intermediates in the autism.

The mitochondrial dysfunction and altered energy may influence the social and cognitive deficits in autism [124-125]. Giulivi et al. [108] reported a low pyruvate dehydrogenase (PDH) activity in children with autism. Genetic defects in pyruvate dehydrogenase complex (PDHC) are known to cause lactic acidosis, neurological deficits, and premature death [26]. Patients with these defects show reduced activity of PDHC and PDH E1α subunit and decreased affinity of PDHC for TPP [127-128]. Thiamine treatment is very effective in some PDHC-deficient patients [128-129]. Thiamine regulates the expression of enzymes that require thiamine as a cofactor and thiamine deficiency has been shown to reduce the mRNA levels of transketolase and PDH [130]. In the neuronal metabolism of glucose, TDP is an essential coenzyme for mitochondrial PDH, α-ketoglutarate dehydrogenases complexes, and cytosolic transketolase [131-132]. In thiamine deficiency, the levels of thiamine-dependent and non-thiamine-dependent enzymes (succinate and malate dehydrogenase) in the tricarboxylic cycle are reduced in the mouse brain [133].

The reduced form of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) enzyme complex mediates critical physiological and pathological processes including cell signaling, inflammation and mitogenesis, by generating reactive oxygen species (ROS) from molecular oxygen. Mitochondrial dysfunction and altered energy metabolism might influence the social and cognitive deficits present in people with autism. The NOX activity in the lymphocytic mitochondria of children with autism was significantly lower than in controls [107]. Lower levels of plasma ATP and red blood cell NADH were reported in children with autism than in controls. Vitamin and minerals supplements were associated with greater significant improvement in ATP and NADH levels as well as subscores on the hyperactivity, tantrum, and receptive language in the autism group compared with the placebo group [134-135]. In addition, gene variants of the NADH-ubiquinone oxidooreductase 1α subcomplex 5 (NDUFA5), an enzyme complex in the mitochondrial electron transport chain, are associated with autism [136]. These findings suggest that NOX has a role in autism pathology. Thiamin is an essential coenzyme for transketolase, which is part of the pentose phosphate pathway that helps maintain cellular NADPH levels. In a study of hepatocytes with glyxolx toxicity, thiamin was cytoprotective and restored NADPH levels, glyxolx detoxification and mitochondrial membrane potential [137]. NADPH cytochrome c-reductase levels were increased in TD animals [138]. Benfotiamine treatments under both normo- and hyper-glycemic conditions significantly down-regulated Nox4 expression [139]. In addition, animals fed a high-thiamine diet had approximately 57% of the NADPH-cytochrome c reductase activity of those fed a TD diet [140]. Taken together, thiamine may involve in protecting autism by regulating NADPH-cytochrome c activity.

The role thiamine in oxidative stress in autism is summarized in Table 3.

Table 3: Role of thiamine in oxidative stress in autism.

<table>
<thead>
<tr>
<th>Prostaglandins (PGs)</th>
<th>Thiamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>The normal laminar pattern of cyclooxygenase-2 (COX-2) in the human cortex is altered in patients with Rett syndrome, a type of ASD.</td>
<td>The expression of COX-2 and PGE2 selectively increased in vulnerable regions of TD encephalopathy animal models.</td>
</tr>
<tr>
<td>PTGS2, gene encoded for COX-2, polymorphism is associated with Korean trios with ASD.</td>
<td>Benfotiamine inhibits the COX-2 expression and it product PGE2 in murine macrophages.</td>
</tr>
<tr>
<td>Reactive oxygen Species (ROS)</td>
<td>Lipid peroxidation product is accumulated in the remaining thalamic neurons in TH animal models.</td>
</tr>
<tr>
<td>Lipid peroxidation elevated in people with autism.</td>
<td>Thiamine inhibits lipid peroxidation and free radical oxidation of oleic acid in rat liver microsomes.</td>
</tr>
<tr>
<td>Plasma malondialdehyde (MDA) is significantly high in patients with autism.</td>
<td></td>
</tr>
<tr>
<td>The F2-isoprostane 8-iso-prostaglandin F2α is enhanced in children with autism.</td>
<td></td>
</tr>
<tr>
<td>The erythrocyte superoxide dismutase (SOD) activity decreases in children with autism.</td>
<td></td>
</tr>
<tr>
<td>Nitric oxide synthetase (NOS)</td>
<td>Benfotiamine inhibits iNOS expression in endotoxin-induced uveitis in rats.</td>
</tr>
<tr>
<td>Increased erythrocyte nitric oxide (NO) levels and plasma glutathione peroxidase (GSH-Px) were detected in people with autism.</td>
<td>Thiamine improved the reduced GSH level in acutely alcoholized rats.</td>
</tr>
<tr>
<td>GSH plasma levels were decreased in children with autism.</td>
<td></td>
</tr>
<tr>
<td>GSH pathway gene variants are associated with ASD.</td>
<td></td>
</tr>
<tr>
<td>NADPH</td>
<td>Thiamin is an essential coenzyme for transketolase, which is a part of the pentose phosphate pathway that helps maintain cellular NADPH levels. In a study of hepatocytes with glyxolx toxicity, thiamin was cytoprotective and restored NADPH levels, glyxolx detoxification and mitochondrial membrane potential.</td>
</tr>
<tr>
<td>The NOX activity in the lymphocytic mitochondria of children with autism was significantly reduced compared with controls.</td>
<td>NADPH cytochrome c-reductase levels increased in thiamine-deficient (TD) animals.</td>
</tr>
<tr>
<td>Lower levels of plasma ATP and red blood cell NADH were reported in children with autism than in controls.</td>
<td>Benfotiamine treatment significantly down-regulated Nox4 expression under both normo- and hyper-glycemic conditions.</td>
</tr>
</tbody>
</table>
| *Vitamin and minerals supplements led to significantly improvement in ATP and NADH as well as on the hyperactivity, tantrum, and receptive language subscores in the autism group compared with placebo group.* | *Animals fed a high-thiamine diet had approximately 57% of the
Immune comorbidities often are reported in subsets of patients with neuro-developmental disorders, including ASD and attention-deficit hyperactivity disorder. A common immunopathology is an increase in serum autoantibodies against neuron-axon filament protein (anti-NAFP), glial fibrillary acidic protein (anti-GFAP) and myelin basic protein (MBP) relative to control patients. Increases in autoantibodies suggest possible deficits in self-tolerance that may contribute to the formation of brain-specific autoantibodies and subsequent effects on the CNS [141-142]. In midline structures including the region of the absent corpus callosum of BTBR mouse model of autistic-like behavior revealed selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis; the myelin markers 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and MBP were reduced [143]. A magnetization transfer imaging study of corpus callosum myelination was significantly higher in children with autism than in typically developing children [144], suggesting abnormal myelination of the corpus callosum in autism. Autistic children had significantly higher serum levels of serotonin and anti-MBP auto-antibodies [145], with the exception of MBP, which was significantly lower in autistic children [146].

2.4. Other Role

<table>
<thead>
<tr>
<th>Autism</th>
<th>Thiamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serotonin (5-HT)</td>
<td>Thiamine</td>
</tr>
<tr>
<td>Acute tryptophan depletion worsens autistic symptoms and patients with autism may respond to selective 5-HT re-uptake inhibitors (SSRIs).</td>
<td>Serotonergic system dysfunction occurs in thiamine-deficient mice (TD).</td>
</tr>
<tr>
<td>PET revealed the altered serotonin synthesis in the dento-thalamo-cortical pathways in boys with autism.</td>
<td>SSRT significantly inhibited depressive behavior in TD mice.</td>
</tr>
<tr>
<td>The 5-HT axons increased postmortem cortices of young donors with autism.</td>
<td>A significantly decreased in the 5-HT uptake in the synaptosomal preparations of TD rats cerebella. Thiamine administration resulted in a significantly reverse of the inhibition of 5-HT uptake.</td>
</tr>
<tr>
<td>High platelet and blood 5-HT levels are reported in children with autism.</td>
<td>Acute tryptophan depletion worsens autistic symptoms and patients with autism.</td>
</tr>
<tr>
<td>An increased density in the platelet 5-HT transporter found in patients with autism.</td>
<td>High platelet and blood 5-HT levels are reported in children with autism.</td>
</tr>
<tr>
<td>Gene encoded by the 5-HT transporter variants are reported in Autism.</td>
<td>The 5-HT axons increased postmortem cortices of young donors with autism.</td>
</tr>
<tr>
<td>Acetylcholine</td>
<td>Serotonin axons increased in the cerebellar areas of autistic brains.</td>
</tr>
<tr>
<td>A neuronal nicotinic receptors decreased in cerebral and cerebellar cortices of patients with autism.</td>
<td>Proton magnetic resonance spectroscopy revealed a decreased glutamate/creatinine in the frontal lobes of autistic group.</td>
</tr>
<tr>
<td>The nicotinic receptor binding was significantly reduced by 40%-50% in the granule cells, Purkinje cells and molecular layers in the autistic group.</td>
<td>Thiamine deficiency results in the down-regulation of glutamate transporters. In cultured astrocytes.</td>
</tr>
<tr>
<td>Reduced gene expression of the α4β2 nicotinic receptor in the cerebral cortex of autism.</td>
<td>Levels of EAAT-1 and EAAT-2 are diminished by 62% and 71%, respectively, in participants with TD encephalopathy.</td>
</tr>
<tr>
<td>Glutamate</td>
<td>A central thiamine antagonist, pyrithiamine, decreased the protein levels respectively, in participants with TD encephalopathy.</td>
</tr>
<tr>
<td>Glutamic acid decarboxylase (GAD) was reduced by 48-61% in the parietal and cerebellar areas of autistic brains.</td>
<td>A central thiamine antagonist, pyrithiamine, decreased the protein levels respectively, in participants with TD encephalopathy.</td>
</tr>
<tr>
<td>Proton magnetic resonance spectroscopy revealed a decreased glutamate/creatinine in the frontal lobes of autistic group.</td>
<td>A central thiamine antagonist, pyrithiamine, decreased the protein levels respectively, in participants with TD encephalopathy.</td>
</tr>
<tr>
<td>Mitochondrial aspartate/glutamate carrier SLC25A12 polymorphisms are strongly associated with autism.</td>
<td>Thiamine treatment is very effective in some PDHC-deficient patients.</td>
</tr>
<tr>
<td>Pyruvate dehydrogenase (PDH)</td>
<td>Thiamine is a coenzyme required to synthesize acetylcholine, which is impaired in the brains of TD rats.</td>
</tr>
<tr>
<td>A low pyruvate dehydrogenase (PDH) activity was reported in children with autism.</td>
<td>Thiamine binds to nicotinic receptors and exhibits anticholinesterase activity.</td>
</tr>
<tr>
<td>Genetic defects in in pyruvate dehydrogenase complex (PDHC) are known to cause lactic acidosis, neurological deficits, and premature death.</td>
<td>Thiamine deficiency induces an early central muscarinic cholinergic lesion.</td>
</tr>
</tbody>
</table>

Table 2: The role of thiamine in neurotransmitter system in autism.
healthy children. However, serum serotonin levels had no significant correlations with serum levels of anti-MBP auto-antibodies in autistic patients [145]. Markham et al. [146] demonstrated that the sensitivity of myelination to experience is reduced in adulthood relative to development in both sexes. High serum anti-NBP antibodies were reported in Egyptian autistic children [147]. Antibodies MBP against fetal brain were revealed in sera of mothers with autistic children [148]. Transmission disequilibrium study suggested that an oligodendrocyte and myelin glycoprotein gene allele was associated with families with an autistic proband [149]. Similarly, thiamine deficiency is reported in demyelinated disease. Thiaminepyrophosphatase (TPPase) activity was demonstrated by means of cytochemistry and electron microscopy in association with myelinated fibers in the central and peripheral nervous system of the rat [150]. These findings suggest that that TPPase might play in myelinated fibers, including roles in the conduction of nerve impulses or roles in the maintenance of structural configuration of myelin sheaths. Acute axonal polyneuropathy and Wernicke-Korsakoff encephalopathy developed simultaneously in three patients. Their symptoms of neuropathy lessened within two weeks after an intravenous thiamine infusion [151]. These findings suggest that impaired physiological nerve conduction due to thiamine deficiency. In Wernicke's encephalopathy in nonalcoholic patients, neuronal losses were found only in the medial nucleus of the thalamus and inferior olivary, myelin staining demonstrated demyelination and gliosis in those areas [152]. Taken together, thiamine may have a role in the pathogenesis of autism by participating in the development of myelin formation.

Glycogen synthetase kinase-3β (GSK3β) is a protein kinase that is involved in many physiological processes (e.g., metabolism, gene expression and apoptosis). GSK3β is pivotal in controlling neuronal polarity within primary embryonic hippocampal neurons [153]. Mice with a fragile X retardation 1 (Fmr1) gene deletion are used to model autistic behaviors. The inhibitory serine phosphorylation of GSK3β is lower in the brain regions of Fmr1 knockout mice than those of wild-type mice [154]. The impaired inhibition regulation of GSK3β in Fmr1 knockout mice might contribute to some socialization deficits, and lithium treatment can ameliorate certain socialization impairments [154-156]. The expression of mutant Tph2 in mice results in a marked reduction (~80%) of brain 5-HT production and leads to behavior abnormalities in emotional states. GSK3β activation accompanies this reduction in brain 5-HT levels. The inactivation of GSK3β in Tph2-knock-out mice, either using pharmacological or genetic approaches, alleviates the aberrant behaviors produced by a 5-HT deficiency [157]. These findings raise the possibility that GSK3 is a fundamental and central component of Fragile X syndrome pathology. Furthermore, the Wnt/β-catenin pathway plays a critical role in the proliferation, differentiation, apoptosis, and cell outgrowth processes of the CNS during embryonic development [158]. The dysregulation of the Wnt pathway may contribute to the pathogenesis of neurodevelopmental disorders such as autism. Sundilac, an inhibitor of the Wnt/β-catenin pathway, decreased activated GSK3β levels and ameliorated repetitive/stereotypic activity as well as the learning, memory, and behavioral abnormalities of rat autism models [159]. Exposure to pyrithiamine, an anti-thiamine compound, also increases β-amyloid protein accumulation and GSK3 activity in the brain [160]. In an animal Alzheimer’s disease model, benfotiamine improved cognitive function, reduced amyloid deposition, and suppressed GSK3 activity [161]. These findings suggest that thiamine may have a role in autism by suppressing GSK3 activity.

Alpha-1 antitrypsin (ATT) is the most abundant circulating serine protease inhibitor. ATT deficiency is a genetic condition that increases the risk of developing a variety of diseases. A low serum ATT level occurs in some children with autism [162]. Significantly more family members of people with had lower ATT serum levels than controls; in addition, children with regressive-onset autism had significantly lower ATT levels than controls. These individuals carried the PiMZ genotype and had correspondingly low levels of serum ATT [163]. These findings suggest that ATT has a role in autism pathology. In addition, the toxicological properties of furazolidone suggest that there is a relationship among thiamine, autism, and ATT [164]. Furazolidone increases the amount of brain 5-HT, which is high in people with autism, and potentiated the vasopressor action of tyramine in the chicken [165]. Furazolidone also interfered with thiamine activity and potentiated the ATT deficiency in turkeys [165-166]. In Nubian goats, the signs of furazolidone intoxication resembled those of cerebro-cortical necrosis (thiamine deficiency in ruminants), which was ameliorated by the thiamine administration [167]. In addition, furazolidone might induce cardiomyopathy in the turkey and is indistinguishable from spontaneous round heart disease (RHD) [168]. Turkeys with RHD often have a deficiency in ATT and their liver cells are remarkable similar to those of persons with inherited ATT deficiency [169]. It would be useful as a human ATT deficiency model [166]. Moreover, the ATT polymorphism with a non-MM genotype significantly increased the incidence of thiamine deficiency. PiMZ genotype had significantly increased proportion (46%) of brain MRI T2 white matter abnormalities [170].

Glyoxalase 1 (Glyo-1) catalyzes the first and rate-limiting step of methylglyoxal (MG) removal, which is the major precursor of advanced glycation end product (AGE) formation. Carriers of the Glyo-1 gene are susceptible to autism, and Glyo-1 variants are associated with autism [171-172]. These studies also found elevated levels of AGE receptors (RAGEs) and an accumulation of AGE the brains of people with autism. Another study revealed reduced endogenous secretory RAGE plasma levels and elevated concentrations of the pro-inflammatory ligand S100 in
patients with ASD compared with controls [173], which indicates a dysfunction of the AGE-RAGE axis in people with autism. AGE is a heterogeneous group of macromolecules formed by the non-enzymatic glycation of proteins, lipids and nucleic acids. RAGEs are multi-ligand receptors; their ligands are also likely to recognize several receptors in mediating their biological effects [174]. Thiamine and a benfotiamine supplement prevented tissue accumulation and increased the urinary excretion of protein glycation, oxidation and nitration adducts associated with experimental diabetes [175]. Karachalias et al. [176] reported that the hydroimidazolone of AGE residues derived from glyoxal and methylglyoxal (G-H1 and MG-H1, respectively) increased by 115% and 68%, respectively, in streptozotocin-induced diabetic rats, and thiamine and benfotiamine normalized these residues. However, N-carboxymethyl-lysine (CML) and N-carboxyethyl-lysine (CEL) residues increased by 74% and 118%, respectively, in diabetic-induced rats, and only thiamine normalized these residues. Serum markers of endothelial dysfunction, oxidative stress, and AGE increased after a meal high in AGE content. Benfotiamine significantly reduced these effects [177]. The addition of benfotiamine enhanced transketolase activity and decreased the expression of AGE and RAGE in a peritoneal dialysis model of uremic rats [178]. The combined administration of thiamine and vitamin B6 to patients with diabetic nephropathy decreased DNA glycation in leukocytes; however, vitamin B6 alone did not have such an effect [179]. Taken together, thiamine may have a role in autism by modulating on ACE formation.

Other role thiamine in in autism is summarized in Table 4.

Table 4: Other role of thiamine in autism.

<table>
<thead>
<tr>
<th>Autism</th>
<th>Thiamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myelin Basic Protein (MBP) Increased autoantibodies to MBP in Autism.</td>
<td>TD3 is reported in demyelinated disease.</td>
</tr>
<tr>
<td>Glycogen synthetase kinase-3β (GSK3β) Mice with the fragile X retardation 1 (Fmr1) gene deletion are used to model autistic behaviors. The inhibitory serine phosphorylation of GSK3β is lower in the brain regions of Fmr1 knockout mice compared with wild-type mice.</td>
<td>Thiamine pyrophosphatase activity was associated with myelinated fibers in the nerves.</td>
</tr>
<tr>
<td>The impaired inhibition regulation of GSK3β in Fmr1 knockout mice may contribute to some socialization deficits, and lithium treatment can ameliorate certain socialization impairments.</td>
<td>Exposure to pyrithiamine, an anti-thiamine compound, also increases β-amyloid protein accumulation and GSK3 activity in the brain.</td>
</tr>
<tr>
<td>The expression of mutant Tph2 results in the marked reduction (~80%) of brain serotonin (5-HT) production in mice and leads to behavioral and emotional abnormalities. GSK3β activation accompanies this brain 5-HT levels reduction.</td>
<td>In an animal Alzheimer’s disease model, benfotiamine improved the cognitive function, reduced amyloid deposition, and suppressed GSK3 activity.</td>
</tr>
<tr>
<td>The inactivation of GSK3β in Tph2 knock-out mice, using either pharmacological or genetic approaches, alleviates the aberrant behaviors produced by a 5-HT deficiency.</td>
<td>The toxicological properties of furazolidone suggested a relationship among thiamine, autism, and ATT.</td>
</tr>
<tr>
<td>Sundilac, an inhibitor of the Wnt/β-catenin pathway, decreased activated GSK3β levels and ameliorated repetitive/stereotypic activities, learning, memory, and behavioral in autistic models of rats.</td>
<td>Furazolidone increased the amount of brain 5-HT, which is high in people of autism and potentiated the vasopressor action of tyramine in the chicken.</td>
</tr>
<tr>
<td>Alpha-1 antitrypsin (ATT) A low serum ATT level was found in some children with autism.</td>
<td>Furazolidone also interfered with the thiamine use in turkey.</td>
</tr>
<tr>
<td>Significantly more family members of children with autism had lower ATT serum levels than controls; in addition, children with regressive-onset autism had significantly lower ATT levels than controls. These individuals carried the Pi MZ genotype and exhibited correspondingly low levels of serum ATT.</td>
<td>In addition, furazolidone may induce cardiomyopathy in a turkey model of human for ATT deficiency.</td>
</tr>
<tr>
<td>Glyoxalase 1 (Glyo-1) Carriers of the Glyo-1 gene are susceptible to autism.</td>
<td>Moreover, the ATT polymorphism with a non-MM genotype significantly increased the incidence of thiamine deficiency.</td>
</tr>
<tr>
<td>Glyo-1 variants are associated with Autism. Studies revealed elevated levels AGE receptors (RAGEs) and an accumulation of AGE in the brains of people with autism.</td>
<td>Thiamine and benfotiamine supplementation prevented tissue accumulation and increased the urinary excretion of protein glycation, oxidation and nitration adducts in experimental diabetes.</td>
</tr>
<tr>
<td>Study revealed reduced endogenous secretory RAGE plasma levels and elevated concentrations of its pro-inflammatory ligand S100 in patients with ASD compared with controls, which indicates the dysfunction of the AGE-RAGE axis in people with autism.</td>
<td>The AGE hydroimidazolone residues derived from glyoxal and methylglyoxal (G-H1 and MG-H1) increased by 115% and 68%, respectively, in streptozotocin-induced (STZ) diabetic rats; thiamine and benfotiamine normalized these residues. However, N-carboxymethyl-lysine (CML) and N-carboxyethyl-lysine (CEL) residues increased by 74% and 118%, respectively, in diabetic-induced rats and were normalized by thiamine only.</td>
</tr>
<tr>
<td>Thiamine</td>
<td>Serum markers of endothelial dysfunction, oxidative stress, and AGE increased after a meal high in AGE content. Benfotiamine significantly reduced these effects.</td>
</tr>
</tbody>
</table>
The relationship between thiamine and autism is reviewed in the present paper. Thiamine may involve in autism via apoptotic factors, neurotransmitter systems, and oxidative stress. In addition, thiamine has also been implicated in autism via its effects on basic myelin protein, glycogen synthetase kinase-3β, alpha-1 antitrypsin, and glyoxalase 1. Supplements demonstrated the beneficial role of thiamine in people with autism. Therefore, further investigations of thiamine in people with autism are needed, and a cautious approach is advisable before recommending the widespread use of thiamine for patients with autism.

Abbreviations

- 5-HIAA, 5-hydroxyindoleacetic acid
- 5-HT, serotonin
- 8OHdG, 8-hydroxy-2-deoxyguanosine
- Ach, acetylcholine
- AG, advanced glycation end product
- ALS, amyotrophic lateral sclerosis
- ALT, alanine aminotransferase
- AM, age of maturity
- ANOVA, analysis of variance
- ASD, autism spectrum disorder
- AT, alpha-1 antitrypsin
- CNS, central nervous system
- COX, cyclooxygenase
- D2R, dopamine receptor 2
- DMT, dopamine metabolite
- DS, Down syndrome
- DTPA, diethylenetriaminepentaacetic acid
- EPM, elevated plus maze
- GAD, glutamic acid decarboxylase
- GFAP, glial fibrillary acidic protein
- GSH, glutathione
- GSH-Px, GSH peroxidase
- HbA1c, glycated hemoglobin
- AGEs, advanced glycation end product
- AT, alpha-1 antitrypsin
- CNS, central nervous system
- COX, cyclooxygenase
- GAD, glutamic acid decarboxylase
- Glyo-1, Glyoxalase 1
- GSH, glutathione
- GSH-Px, GSH peroxidase
- GSK3β, glycogen synthetase kinase-3β
- MBP, myelin basic protein
- MDA, malonyldialdehyde
- MMPI, Minnesota Multiphasic Personality Inventory
- NAA/Cr, N-acetylaspartate/creatine
- NADPH, nicotinamide adenine dinucleotide phosphate
- NOX, NADPH oxidase
- NOS, nitric oxide synthase
- PDH, pyruvate dehydrogenase
- PGs, prostaglandins
- RAGEs, AGE receptors
- RAGE, receptor for advanced glycation end products
- RAGEs, AGE receptors
- RDA, recommended dietary allowance
- RSD, reactive oxygen species
- SOD, superoxide dismutase
- sSSRIs, selective 5-HT re-uptake inhibitors
- TBP, thiamine pyrophosphate
- TDPase, thiamine pyrophosphatase
- TTPase, thiamine pyrophosphatase
- WIC, women, infant, and children program

References

[100] Yadav UC, Kalariya NM, Srivastava SK, Ramana KV: Protective role of benfotiamine, a fat-soluble vitamin B1

[155] Min WW, Yuskaitis CJ, Yan Q, Sikorski C, Chen S, Jope RS,

