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Abstract: The Markov Chain Monte Carlo (MCMC) is a method that is used to estimate parameters of interest under 

difficult conditions such as missing data or when underlying distributions do not fit the assumptions of Maximum Likelihood 

processes. The objective of this process is to find a probability distribution known as a posterior distribution in Bayesian 

analysis that can be used to estimate target parameters. In this paper, we consider a case where data are contaminated with 

missing values and therefore need to be adequately handled using missing data techniques before making inferences on them. 

A review of the mathematics involved in MCMC procedures in the presence of missing data is presented. Furthermore, we 

use real data to compare inferences made using multiple imputation based on the multivariate normal model (MVN) that uses 

the MCMC procedure, the case deletion (CD) missing data method that discards subjects with missing values from the 

analysis, and the fully conditional specification (FCS) multiple imputation method that uses a sequence of regression models 

to fill in missing values. Assuming that data are missing completely at random (MCAR) on continuous and normally dis-

tributed variables, the following findings are obtained: (1) The higher the proportion of missing data on a variable of interest, 

the more the relationship between that variable and the dependent variable is distorted when all missing data methods are 

applied. (2) Multiple imputation based methods produce similar estimates which are better than estimates from the case 

deletion method. (3) At some stage (when the proportion of missing data becomes high), none of the missing data techniques 

can help to maintain an initially existing relationship between the dependent variable and some of the covariates of interest in 

the dataset. 

Keywords: Markov Chain Monte Carlo (MCMC), Missing Data, Missing Completely At Random (MCAR), Multiple 
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1. Introduction 

Missing data are common and a major problem in dif-

ferent fields of research [6, 9, 16]. It is not given much at-

tention by some researchers especially those who are not 

methodologists or statistical experts. This is due mainly to 

the lack of familiarity with the existing statistical literature 

on missing values or the ignorance of the impact that miss-

ing data can have on statistical inferences [13]. A traditional 

way of dealing with missing data is to eliminate these ob-

servations from the analysis, a strategy that is referred to as 

the Case Deletion or Listwise Deletion (CD) method. Dis-

carding missing observations from analysis reduces the 

sample size, which leads to a sample that is not representa-

tive of the population. Consequently, the power of the sta-

tistical test is reduced and biased parameter estimates and 

large standard errors are obtained, especially when a large 

amount of data are missing [2, 11, 13]. To avoid some of 

these problems, researchers have come up with ways of 

rescuing missing data in order to make valid inferences [13, 

15, 16]. These include weighting (to reduce the effect of 

attributes with a large percentage of missing values), mod-

elling using methods such as the maximum likelihood (ML) 

estimation and available data to recover missing data, or 

imputing missing data using certain means of approxima-

tion based on observed data, for instance the mean imputa-

tion, hot-deck imputation, regression imputation, multiple 

imputation using the Markov Chain Monte Carlo method, 

etc. The primary goal of these methods is to obtain valid 

and efficient statistical inferences about the population of 

interest, but not to recover missing data or to find what 
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would have been obtained if we had complete data [14]. 

This paper focuses mainly on the data augmentation me-

thod based on a multivariate normal model (MVN) that 

uses the Markov Chain Monte Carlo procedure. It assumes 

a normal distribution for the variables in the imputation 

model [14]. 

A number of studies compared this method to the fully 

conditional specification (FCS) method which is also a 

multiple imputation-based method that uses a sequence of 

regression models to impute missing values, depending on 

the nature of the variables to be imputed; linear regression 

for continuous variables, logistic regression for binary va-

riables, multinomial regression for polytomous variables, 

etc. [10, 17, 19]. These studies concentrated on different 

aspects and applied the two methods to data with a mixture 

of variables (continuous, discrete and semi-continuous). 

Mixed results were obtained; some concluded that the 

MVN was better than the FCS [17, 19] and others found the 

opposite [1, 10]. Van Buuren [17] also highlighted that the 

two methods are identical when applied to continuous and 

normally distributed data. In this paper, we use different 

simulated data sets to also give our view of these two me-

thods in terms of their performance when data are missing 

completely at random (MCAR) on continuous and normal-

ly distributed variables. 

2. Markov Chain Monte Carlo Methods 

in the Presence of Missing Values in a 

Dataset 

When data are missing, the primary objective of a re-

searcher is to generate unbiased estimates in order to make 

good inferences. This is not generally easy when available 

data (observed data after discarding missing items) are used. 

With MCMC methods, the available data need to be aug-

mented with simulated values of the missing data in order 

to get good parameter estimates. The procedure is as fol-

lows. 

Let Y be multivariate data from a normal distribution, 

( ) ( )Σ= ,| βθ NYp , where θ denotes the unknown model 

parameters such as regression coefficients β and covariance 

matrix Σ . In the presence of missing values we have

( )misobs YYY ,= , where obsY and misY  represent the observed 

and missing parts respectively. Missing values in misY  are 

drawn from the distribution of missing data given the ob-

served data, ( )obsmis YYp | . However, this distribution is dif-

ficult to sample from directly because it depends on the 

posterior distribution of the unknown parameters θ ,

( )obsYp |θ . Initially, the data augmentation (DA) method 

was designed to approximate this distribution when data are 

incomplete [14]. The observed data need to be augmented 

with unobserved data misY  such that the conditional dis-

tribution ( )obsmis YYp |  becomes easier to sample from. To 

illustrate the above, consider the posterior distribution

( )obsYp |θ . When data are incomplete, this distribution can be 

written in terms of an integral as follows: 

( ) ( ) ( ) misobsmismisobsobs dYYYpYYpYp |,|| ∫= θθ   (1) 

To evaluate this density, the Monte Carlo method can be 

used. That is independent copies of 

Ymis(Ymis(1),Ymis(2), …, Ymis(n)) can be drawn from the 

conditional distribution p(Ymis | Yobs) and then the average 

( )( )∑ jYp
n

|
1 θ  can be computed and serve as an approxima-

tion of p(Yobs), where Y (j) denotes the augmented dataset 

(Yobs,Ymis,(j)) for j = 1, 2,..., n and Ymis(j) = (Ymis)1(j), 

(Ymis)2(j), …, (Ymis)n(j). 

In the Markov Chain Monte Carlo context, the above 

mentioned idea can be simply implemented using the Im-

putation-Parameter (IP) algorithm suggested by Schafer [14] 

which works as follows. Assuming a multivariate normally 

distributed data, at the tth iteration one needs to draw 
)1( +t

misY

from ),|( )( t

obsmis YYp θ , and then draw )1( +tθ from

),|( )1( +t

misobs YYp θ . The former step is referred to as the 

Imputation (I) step and the latter as the Parameter (P) step. 

The resulting sequence forms a Markov chain

{ } { } { })1()1()2()2()1()1( ,,...,,,, ++ tt

mismismis YYY θθθ which must con-

verge to the distribution ( )θ,| obsmis YYp  [3, 7, 8] and used 

in the Multiple Imputation to estimate parameters when data 

are missing. In words, in the I-step missing values misY are 

simulated for each observation independently by using the 

observed data Yobs and the estimates of the mean vector and 

covariance matrix represented by )(tθ . The P-step uses the 

complete data set (full data with generated missing values) 

from the I-step to generate new estimates of the mean vector 

and covariance matrix, which are to be used in the next 

I-step to simulate new values. The repetition of these two 

steps (I-step and P-step) creates a Markov chain (sequence 

of random variables in which the distribution of each ele-

ment is related to the values of the previous one). Their role 

is to generate a distribution of values from which random 

samples of simulated missing values are obtained and used 

in Multiple Imputation methods to estimate parameters 

when data are missing. The chain needs to be long enough 

for the distribution of the elements to stabilize to a common 

distribution referred to as the stationary distribution [14]. 

3. Methodology 

3.1. Description of the Original Data Set 

Data from the Demographic and Health Surveys (DHSs) 

conducted in the Democratic Republic of Congo (DRC) in 

2007 was used for the analysis. It consists of a household 

and women's questionnaire where a nationally representa-

tive sample of women between 15 and 49 years of age were 

interviewed regardless of marital status in each sampled 

household.  Information was collected on fertility and 

family planning in addition to socio-demographic and eco-
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nomic data. The sample of women in the analysis includes 

women of reproductive age who were not pregnant at the 

time of interview and who were sexually active. Respon-

dents were asked about their knowledge and use of contra-

ception methods, etc. Information on whether they have 

ever used contraception was first obtained and then the 

types of contraception methods used were asked. Contra-

ception methods used included the modern (i.e. pill, injec-

tions and other), traditional (i.e. abstinence and other) and 

folkloric (i.e. herbal plant and other) methods. The depen-

dent variable considered for the analysis was the women's 

contraceptive use status measured as any contraceptive 

method use by including all women who reported using 

modern, traditional and folkloric methods coded as 1 and 0 

to represent women who have never used any contraceptive 

method. The purpose was to determine whether and to what 

extent certain covariates such as the age and education in 

years of a woman, her marital status, etc., are associated 

with the woman's use of contraception. Thus, slopes, stan-

dard errors and results of hypothesis tests were considered 

as outcomes of interest to be analyzed. 

3.2. Simulation of Data Sets with Missing Values 

In order to assess the performance of the Multiple Impu-

tation using the Markov Chain Monte Carlo method or 

MVN and other methods (case deletion and fully condi-

tional specification), datasets were created with some of 

their values missing completely at random (MCAR) on 

variables age and education that were statistically signifi-

cant in the regression model. This assumption means that 

missingness probabilities are not related at all to any other 

variables in the data set. 

As an application, eight data sets were created with dif-

ferent rates of missingness; 5%, 10%, 15%, 20%, 25%, 30%, 

35% and 40% on variables age and education. Based on the 

variables of interest (age and education) with no missing 

data, a 0 - 1 random generator if the observation was missing 

(1) or not (0) was constructed. This means that missing data 

are random draws from the Bernouilli distribution with the 

parameter p that represents the percentage of missing values 

of interest (percentages of missingness in this case). Tech-

nically, this can be represented as follows. Let Yi be a com-

plete data vector for respondent i. Then Yi can be partitioned 

into Yi,obs and Yi,mis, the observed and missing parts respec-

tively. That is, Yi = (Yi,obs,Yi,mis). Let also Ri = (rij) be the 

missing data indicator, where rij = 1 if a value is missing and 

rij = 0 otherwise. Given some parameterθ , the MCAR as-

sumption states that 

( ) ( )
iijimisiobsirj rpYYrp θθ ,,,| ,, =      (2) 

This means that the distribution of missingness does not 

depend on the data at all and can be seen as a Bernouilli 

distribution with the probability density function 

( ) ( ) rjrj

i

rj

j

rj

jrjrj qprp −− =−=∏ 11
1| θθθ       (3) 

for 
rj

ipq −= 1  and ( )1.0∈rj . 

The R and STATA 12 statistical software packages were 

utilized for the analysis. The former was used to simulate 

datasets with missing values and the latter was employed to 

fit different regression models. 

3.3. Analysis Method 

For each simulated data set with missing values on the 

variables of interest (age and education in years), the mul-

tiple imputation method which assumes the multivariate 

normal model (MVN) and the fully conditional specifica-

tion (FCS) that use a sequence of regression models to im-

pute missing values, were applied. Then regression models 

were estimated on the data set with no missing values 

(original data), data sets with missing values (incomplete 

data), as well as on the imputed data sets. The results were 

compared in terms of slopes, standard errors and p-values. 

The MVN method was performed using Stata implementa-

tion of Schafer's NORM program [4] whereas the FCS was 

carried out using the mice command in Stata [18]. 

4. Results 

Table 1 presents the results of the parameters' estimation, 

standard errors and p-values of the two slopes from the 

binary regression of women's contraceptive use status (de-

pendent variable) on their age and education in years (in-

dependent variables). The datasets considered in the analy-

sis were first the original data with age and education 

without missing values. Secondly, 8 datasets were em-

ployed with 5%, 10%, 15%, 20%, 25%, 30%, 35% and 40% 

of the information missing completely at random on these 

two variables. The results indicated that multiple imputa-

tion-based methods (MVN and FCS) produce less biased 

estimates than the case deletion method. It was also shown 

that the MVN and FCS yield similar parameter estimates 

(see Table 1, Figure 1 and Figure 2) when applied to conti-

nuous and normally distributed variables. Furthermore, we 

also found that all the missing data methods considered in 

the analysis overestimate the standard errors of the models 

(Figure 3 and Figure 4). In Figure 3 and 4, we observe that 

the CD biases standard errors more than the MVN and the 

FCS, and the larger the percentage of missing data, the 

more inflated standard errors are obtained. In Figure 5 we 

see that at lower percentages of missing values (at most 

15%), the three missing data methods produce similar and 

unbiased p-values, otherwise the CD yields higher p-values. 

In addition, the findings indicated that the higher the per 

centage of missing data, the more the relationship between 

the dependent and the independent variables (which were 

all statistically significant in the model with no missing 

data) is distorted when missing observations are excluded 

from the analysis. Indeed, the results showed that when at 

least 20% of observations are missing on independent va-

riables, some of them lose their statistically significant rela-

tionship with the dependent variable. We also observed that 
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in general, the data augmentation method using the MCMC 

procedure produces estimates that are close to the estimates 

of the fitted model with no missing data as compared to the 

estimates of the model fitted after discarding missing val-

ues. Finally, it was observed that at some stage (when at 

least 25% of the data are missing), neither the imputation 

nor the Case Deletion can help to maintain the relationship 

that exists between the dependent and independent va-

riables when the analysis is done using the dataset with no 

missing values (see Table 1). 

Table 1. Parameter estimates of a set of logistic regression models for predicting the contraceptive methods use status by women of reproductive age in 

Democratic Republic of Congo (DRC), using age (1st covariate) and education (2nd covariate) in years as explanatory variables. 

Proportion of missing data Bi**   SE***   PV****   

 CD MVN FCS CD MVN FCS CD MVN FCS 

0.00 
0.0261 

0.0067 

NA 

NA 

NA 

NA 

0.0029 

0.0026 

NA 

NA 

NA 

NA 

0.000* 

0.011* 

NA 

NA 

NA 

NA 

0.05 
0.0272 

0.0067 

0.0267 

0.0069 

0.0272 

0.0073 

0.0032 

0.0028 

0.0030 

0.0027 

0.0030 

0.0027 

0.000* 

0.017* 

0.000* 

0.010* 

0.000* 

0.007* 

0.10 
0.0251 

0.0065 

0.0269 

0.0067 

0.0271 

0.0071 

0.0033 

0.0029 

0.0032 

0.0027 

0.0031 

0.0028 

0.000* 

0.028* 

0.000* 

0.014* 

0.000* 

0.011* 

0.15 
0.0302 

0.0065 

0.0296 

0.0078 

0.0284 

0.0076 

0.0037 

0.0031 

0.0034 

0.0031 

0.0034 

0.0028 

0.000* 

0.021* 

0.000* 

0.006* 

0.000* 

0.006* 

0.20 
0.0293 

0.0045 

0.0290 

0.0059 

0.0279 

0.0052 

0.0041 

0.0033 

0.0037 

0.0030 

0.0035 

0.0028 

0.000* 

0.172 

0.000* 

0.045* 

0.000* 

0.066 

0.25 
0.0275 

0.0027 

0.0268 

0.0045 

0.0279 

0.0038 

0.0041 

0.0035 

0.0033 

0.0028 

0.0036 

0.0031 

0.000* 

0.451 

0.000* 

0.105 

0.000* 

0.075 

0.30 
0.0252 

0.0029 

0.0263 

0.0043 

0.0262 

0.0038 

0.0041 

0.0037 

0.0038 

0.0031 

0.0037 

0.0032 

0.000* 

0.433 

0.000* 

0.169 

0.000* 

0.228 

0.35 
0.0262 

0.0023 

0.0264 

0.0043 

0.0265 

0.0041 

0.0047 

0.0040 

0.0034 

0.0032 

0.0038 

0.0032 

0.000* 

0.564 

0.000* 

0.177 

0.000* 

0.211 

0.40 
0.0262 

0.0008 

0.0248 

0.0047 

0.0250 

0.0043 

0.0050 

0.0044 

0.0041 

0.0033 

0.0039 

0.0037 

0.000* 

0.855 

0.000* 

0.155 

0.000* 

0.249 

*: Significant at 5% level, **:  Slopes, ***:  Standard errors, ****: P-values. 

 

Figure 1. Estimates of slopes for age when the case deletion (CD), multivariate normal imputation (MVN) and fully conditional specification (FCS) methods 

are used at different rates of missingness. 
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Figure 2. Estimates of slopes for education when the case deletion (CD), multivariate normal imputation (MVN) and fully conditional specification (FCS) 

methods are used at different rates of missingness. 

 

Figure 3. Estimates of standard errors for age when the case deletion (CD), multivariate normal imputation (MVN) and fully conditional specification (FCS) 

methods are used at different rates of missingness. 

 

Figure 4. Estimates of standard errors for education when the case deletion (CD), multivariate normal imputation (MVN) and fully conditional specification 

(FCS) methods are used at different rates of missingness. 

 

Figure 5. P-values for education when the case deletion (CD), multivariate normal imputation (MVN) and fully conditional specification (FCS) methods are 

used at different rates of missingness. 

Note that these results did not consider other missingness 

mechanisms namely the missing at random (MAR) and 

missing not at random (MNAR) mechanisms. The former 

states that missingness is related to at least one variable in 

the data set and the latter means that a value of an unob-

served variable itself predicts missingness. Secondly, only 

independent and normally distributed continuous variables 

were considered in the analysis. Since survey data contains a 
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mixture of continuous and categorical variables, a study that 

looks at the performance of these approaches on categorical 

independent variables that do not assume normality is also 

needed. 

5. Conclusion and Limitations 

The MCMC is an iterative procedure used to estimate 

parameters of interest under difficult conditions such as 

missing data or when underlying distributions do not fit the 

assumptions of the maximum likelihood. Its role is to find a 

probability distribution that can be used to estimate para-

meters of interest. This paper discussed the mathematics 

involved in the data augmentation method based on the 

multivariate normal model (MVN) that uses the MCMC 

process. A real dataset (the 2007 DRC DHS) was used to 

compare inferences made using this method (MVN), the 

case deletion (CD) missing data technique that discards 

subjects with missing values from the analysis and the fully 

conditional specification (FCS) multiple imputation method 

that uses a sequence of regression models to fill in missing 

values. The performance of these methods under the as-

sumption that data are missing completely at random 

(MCAR) was highlighted. The results indicated that the 

higher the proportion of missing data, the more the rela-

tionship between variables is distorted when missing data 

techniques (CD, MVN and FCS) are used. As expected, it 

was also shown that model-based imputation methods 

(MVN and FCS) yield less biased estimates than the CD 

method. Furthermore, the findings indicated that the MVN 

and the FCS produce similar parameter estimates (van 

Buuren, 2007) but the MVN is better in terms of preserving 

an existing relationship between variables at higher rates of 

missing values. Finally, it was highlighted that at some 

stage (when the proportion of missing data becomes high, 

neither the imputation methods nor the case deletion can 

help to maintain the existing relationship between variables 

when the analysis is done on the data set with no missing 

values. 
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