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Abstract: Classification problems often suffers from small samples in conjunction with large number of features, which 

makes error estimation problematic. When a sample is small, there is insufficient data to split the sample and the same data are 

used for both classifier design and error estimation. Error estimation can suffer from high variance, bias or both. The problem 

of choosing a suitable error estimator is exacerbated by the fact that estimation performance depends on the rule used to design 

the classifier, the feature-label distribution to which the classifier is to be applied and the sample size. This paper is concerned 

with evaluation of error rate estimators in two group discriminant analysis with multivariate binary variables. Behaviour of 

eight most commonly used estimators are compared and contrasted by mean of Monte Carlo Simulation. The criterion used for 

comparing those error rate estimators is sum squared error rate (SSE). Four experimental factors are considered for the 

simulation namely: the number of variables, the sample size relative to number of variables, the prior probability and the 

correlation between the variables in the populations. From the analysis carried out the estimators can be ranked as follows: DS, 

O, OS, U, R, JK, P and D. 
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1. Introduction 

It is common to use the estimated error rate to evaluate the 

performance of a classifier. In the nonparametric framework 

the leave-one-out method (also referred to as cross-validation 

or the U method) proposed by [16] has been shown to have a 

much smaller bias than the resubstitution method [17], and 

has become a popular nonparametric error estimator in small 

sample size situations. However, [18] has shown that the 

leave-one-out method can have a much larger variance than 

competing estimators. In some cases, this variance is 

sufficiently large that competitors with slightly larger bias 

but smaller variance will outperform the leave-one-out 

estimator. Error estimation is critical to classification because 

the validity of the resulting classifier model, composed of the 

classifier and its error estimate, is based on the accuracy of 

the error estimation procedure [19, 20, 21, and 22]. Given a 

large set of sample data, the data can be split between 

training and test data, with a classifier being designed on the 

training data and its error being estimated on the test data. 

The downside in splitting the data is that there are less data 

available for design, thereby hurting the design process. This 

negative impact is negligible when there is an abundance of 

data but can be significant when samples are small [22, 23, 

24, and 25]. In this paper our focus is on using the same data 

for training and testing. Since it is impossible to know the 

accuracy of a particular error estimate for a specific sample, 

estimation quality is judged based on the properties of the 

estimation procedure. Performance can be judged in various 

ways. We consider error-estimation performance relative to 

accuracy, correlation with the true error, regression between 

the true and estimated errors, conditional bounds on the true 

error, the number of variables, the sample size relative to 

number of variables and the prior probability. 

In this paper, the problem of estimating the error rate in 

two group discriminant analysis is considered. Given the 

existence of two groups of individuals, one want to find a 

classification rule for allocating new individuals or 

observations into one of the existing two groups. 

Corresponding to each classification rule, there is a 

probability of misclassifications if that classification rule is 
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used to classify new individuals (observations) into one of 

the two groups. The best classification rule is the one that 

leads to the smallest probability of misclassifications, which 

also called error rates [23, 24 and 25]. The error rate 

considered in this paper is the conditional error rate. Here the 

word conditional refers to the conditioning of the training 

samples from which the classification rule is constructed. 

One may also think of this as the probability that the given 

classification rule would inaccurately classify a future 

observation. It should also be noted that the conditional error 

rate is the error rate that is important to an experimenter who 

has already determined the classification rule. This 

conditional error rate is also referred to as the actual error 

rate or the true error rate by many authors. Hence, in this 

paper we concentrate only on the actual error rate and its 

estimation. The rest of the paper is organized as follows; the 

classification rule which is used in this study is described in 

section 2, error rates of the discriminant rules in section 3, 

simulation study plan is given in section 4while results and 

conclusion is given in section 5. 

2. Classification Rule 

The classification rule considered in the current study is 

the maximum likelihood rule, which can be described as 

follows; 

Maximum Likelihood Rule (ML-Rule) 

The maximum likelihood discriminant rule for allocating 

an observation x to one of the populations; �� ,..�� , is to 

allocate x to the population which gives the largest likelihood 

to x. Classify in �� if  �(�� ∕ 	) >  �(�� ∕ 	) or to �� if  �(�� ∕ 	) < �(�� ∕ 	)                          (1) 

where  �(�� ∕ 	) is the posterior probability which can be 

found by the Bayes Rule. But this is the same as: classify to �� if 

�(�∕��)⋅�(��)�(�) > �(�∕��)⋅�(��)�(�)                       (2) 

where  �(	 ∕ ��) is the class conditional probability density 

function and  �(��) is the prior probability. By denoting the 

classes as ��,�� … �� , the maximum likelihood classifier is 

based on the assumed multivariate normal probability density 

function for each class given by 

�(	 ∕ ��) = �
(��)� �⁄ �∑�����  !��"(#$%&�)'(∑��$�((�!)&�))

        (3) 

where *̂� is the estimated mean vector for class i  and ∑� � is 
the estimated variance covariance matrix for class �� and p is 

the number of characteristics measured (ie the length of each 

vector x into one of the classes, recall that the density 

function  �(	 ∕ ��) is evaluated for each of the k classes and 

the x is assigned to ��  if (assuming equal costs of 

misclassification and equal a prior probabilities) one has �(	 ∕ ��) > �(	 ∕ �,) for all 2 ≠ 4                (4) 

We assumed that the data can be modeled adequately by a 

multi-normal distribution. If the class-conditional probability 

density function  �(	 ∕ ��)  is estimated by using the 

frequency of occurrence of the measurement vectors in the 

training data, the resulting classifier is non-parametric. An 

important advantage of the non-parametric classifier is that 

any pattern, however irregular it may be, can be 

characterized exactly. This advantage is generally 

outweighed by two difficulties with the non-parametric 

approach. 

(i). It is difficult to obtain a large enough training sample 

to adequately characterize the probability distribution 

of a multi-band data set. 

(ii). Specification of a meaningful n-dimensional 

probability density function requires a massive amount 

of memory or very clever programming. 

In real situations it is reasonable to consider some 

important factors such as prior probabilities of observing 

individuals from the two populations and the cost due to 

misclassifications. However, in this paper, only the case with 

equal prior probabilities and equal cost due to 

misclassifications is considered. 

3. Type of Error Rate of the 

Discriminant Rules 

One of the objectives of evaluating a discriminant function 

is to determine its performance in the classification of future 

observations. There are several types of error rates associated 

with discriminant rules. 

3.1. The Optimum Error Rate 

This is the error rate that would hold if we know the 

parameter of the distribution. Let 5�(6), 4 = 1, 2 be defined 

as the probability that a random member of the ��  is 

misallocated when the rule : is used. 5�(:) = pr<l=(x) ≤ k/x ∈ π�D                 (5) 5�(:) = pr<l=(x) > E/	 ∈ π�D                (6) 

These are known as the optimum error rates, they are the 

error rates that would occur if F were known. Since π� and π�  are labeled arbitrary, it is necessary only to consider  5�(:) . To study  5�(:) , the labels of the populations are 

simply interchanged. Therefore, subsequently, any unknown 

observation, X is assumed to come from π�, the subscript on 5 is dropped and 5(:) = 5,(G) . The optimum error rate is 

now given by 5(:) = pr<l=(x) ≤ kD                      (7) 

3.2. The Conditional Actual Error Rate 

The conditional actual error rate is defined as the 

probability that a random observation from π�  is 

misallocated when the rule :H is used. 5(:H) = pr<l=�(x) ≤ kD                        (8) 
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Note that this error rate is conditional on the estimated 

parameters which in turn are determined by the training 

samples. 

3.3. Expected Actual Error Rate 

This is the probability that randomly chosen training 

samples yield a decision rule which misclassifies a randomly 

chosen member of π� . If the expected value operator is 

defined with respect to all possible training samples, then the 

expected actual error rate is written as IJ5(KH)L = IJpr<l=�(x) ≤ kDL = pr<l=�(x) ≤ kD      (9) 

Note the hierarchy associated with these error rates: the 

optimum error rate is a function only of the distributions of X 

for the two populations, the expected actual error rate is a 

function of the distributions of X and the training sample 

sizes, while the conditional actual error rate is a function of 

the distributions of X and particular training samples selected. 

In order to compare error rate estimators it is necessary to 

specify the error rate being estimated. Assuming θ  is 

unknown; estimates of the optimum error rate and the 

expected actual error rate are valuable for deciding whether 

or not a discriminant analysis should be performed, for 

comparing possible discriminant rules and for determining 

the advantages of increasing the size of the training samples. 

However, an experimenter is most likely to be concerned 

with the performance of his or her discriminant rule after the 

training samples have been selected. Although the 

performance of the rule can vary greatly with the choice of 

the training samples, the optimum error rate and the expected 

actual error rate are independent of that choice. Therefore, 

once a discriminant rule :H  has been determined, it is the 

conditional error rate, 5(:H), which is of interest. 

3.4. Expression for N(:), N(:H) and OJN(:H)L Under 

Normality 

Throughout this work the costs of misclassification are 

assumed to be equal, this may be done without loss of 

generality since this assumption does not restrict the range of 

the constant k. Now consider the situation where π� and π� 

refer to r-variate normal parent distributions with unknown 

means, μ� and μ�, respectively, a common covariance matrix, 

Σ, which may be known or unknown, and let ∆� = (*� − *�)�
Σ

!�(*� − *�)                  (10) 

be the mahalanobis distance between the populations. Also 

assume equal prior probabilities and therefore, k =1. Now let ST� = 	U�, ST� = 	U�  and Σ� = S  be the minimum variance 

unbiased estimates of *�, *�  and Σ  based on the training 

samples [1]. 

Note that Σ�  refers to a random variable and S to a 

realization of that random variable. In this situation, the 

linear discriminant function or Anderson’s W statistic is 

defined as 

W(X) = Y JX − �� (xT� + xT�)L�
Σ

!�(xT� − xT�) if Σ is knownX − �� (xT� + xT�)L�
Σ�!�(xT� − xT�) if Σ is unknown  (11) 

and the decision rule :H reduces to 

IfW(x) = `> 0 bcc4de 	 fg π�≤ 0 assign x to π�                (12) 

The optimum error rate is simply  5(:) = ϕ(−∆/2)                        (13) 

Where 

ϕ(t) = k (2π)!��e!m�/�n!o dx[5]                (14) 

Conditional on the training samples (and therefore on xT�, xT� and S), W(X) has a univariate normal distribution: 

W(X)~ r NtJμ� − ��(xT� + xT�)L�
Σ

!�(xT� − xT�), (xT� − xT�)L�
Σ

!�(xT� − xT�)u if Σ is knownNtJμ� − ��(xT� + xT�)L�S!�(xT� − xT�), (xT� − xT�)�S!�(xT� − xT�)u if Σ is unknown                     (15)

The conditional actual error rate is the probability that W(X) is less than or equal to zero and hence can be given as 

5(:H) = v ϕ w− Jμ�!��(mT�xmT�)L�
Σ

$�(mT�!mT�)J(mT�!mT�)�Σ$�(mT�!mT�)L� �⁄ y  if Σ is known
ϕ w− Jμ�!��(mT�xmT�)L�z$�(mT�!mT�)J(mT�!mT�)�z$�(mT�!mT�)L� �⁄ y if Σ is unknown[8]   (16) 

The expected actual error rate is more complicated. For Σ 

unknown, an asymptotic distribution of IJ5(:H)L was given 

by [8], [9] and [14] used numerical integration to tabulate 

values of EJ5(:H)L  for r=1…4 and  n� = n� = 25, 50, 100 . 

These results were compared and were found to be in close 

agreement. 

In the Univariate case, r =1, the situation simplifies 

considerably. Equation (13) involves only  ∆� = (*� −*�)�/}�. Equation (16) reduces to 

5(:H) = r ϕt−Jμ� − ��(xT� + xT�)L/σu if xT� > xT�1 − ϕt−Jμ� − ��(xT� + xT�)L/σu if xT� ≤ xT�     (17) 

3.5. Criteria for Comparing Error Rate Estimators 

Let 5H represent an arbitrary estimate of the conditional 

actual error rate, 5(:H), based on the training samples. The 

most reasonable criteria for comparing estimators is felt to be IJ5H − 5(:H)L�                              (18) 

called the Unconditional mean square error (UMSE) by [15]. 

Two other possible criteria are the conditional mean square 

error I�<5H − 5(:H)D��F��                        (19) 

and the mean absolute error I|5H − 5(:H)|                                (20) 

The results obtained using the criterion of conditional 

mean square are functions of F�, this criterion could be used if 
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it were desirable to have the choice of the error rate estimator 

depend on the training sample. However, the goal of this 

study is to compare estimators chosen independently of the 

training samples. Therefore, UMSE, which is the expected 

value of the conditional mean square error over the 

distribution of F� , is the preferred criterion. The mean 

absolute error is also felt to be a reasonable criterion, but it is 

not considered further because it is not as sensitive to the 

variability of the error as the unconditional mean square error. 

4. Error Rate Estimators 

In this paper, we considered nine major error rate 

estimators namely; Plug-in estimator (D-method), 

Resubstitution estimator or Apparent error rate (R-method) 

and the leave-one-out estimator, (U-method). 

4.1. Plug-in Estimator 

This is the earliest error rate estimator proposed by [3] 

Let D� = r (xT� − xT�)�
Σ

!�(xT� − xT�) if Σ is known (xT� − xT�)�
Σ�!�(xT� − xT�) if Σ is unknown    (21) 

The plug-in estimate is defined by α&∆ = ϕ(−∆/2) 

The probability of misclassification P is given by 

P� = P �n�!μ���$�(mT�!mT�)x��(mT�xmT�)��$�(mT�!mT�)
�(mT�!mT�)��$�Σ$��$�(mT�!mT�) �        (22) 

where T is a standard normal deviate. If we replace μ� and Σ 

by xT� and s we have that for normally distributed variables, 

the estimate of P� is 

P� = P wn�!mT��$�(mT�!mT�)x��(mT�xmT�)��$�(mT�!mT�)�(mT�!mT�)�$���$�(mT�!mT�) y         (23) 

= P wn�!�$�(mT�!mT�)x��(mT�xmT�)��$�(mT�!mT�)�(mT�!mT�)�$���$�(mT�!mT�) y            (24) 

= P wn�!��(mT�!mT�)�(mT�!mT�)�(mT�!mT�)��$�(mT�!mT�)y                                  (25) 

= ϕ �!�� �⁄� � = ϕ �!�� �                                       (26) 

Also if we replace μ� and Σ by xT� and s in the case of P� 

then the estimate of P� is 

P� = ϕ �!�� �                               (27) 

Where D� = (xT� − xT�)�s!�(xT� − xT�)  is the Mahalanobis’ 

sample distance. These estimates are good if the degrees of 

freedom are large since D� is consistent for  δ�. If the degrees 

of freedom are not large, this may be badly biased and give 

much too favourable an impression of the probability of error. 

Another way to derive this estimate is that since P� =ϕ�δ 2� � when the parameters are known, by estimating the 

parameters μ�, μ�  and Σ by xT�, xT�  and s  we should arrive at 

reasonable results. 

4.2. Resubstitution Estimator 

The other commonly used error rate estimator is called the 

Resubstitution estimator, apparent error rate or the R-method. 

This is the proportion of the observations in the training 

sample fromπ�  which is misclassified by the discriminant 

rule. In this method, the sample used to compute the 

discriminant function is reused to estimate the error rate. This 

means that if n� and n� are samples from population π� and π�  respectively, then we use n�  and n�  to compute the 

discriminant function. If the number of misclassification on π� and π� are m�and m�, then the estimates of the error rate P�  and P�  are
����  and 

����  respectively. Hence the 

Resubstitution error rate estimator of the Apparent error rate 

estimator (APER) is given by 

APER = ��x����x��                              (28) 

4.3. Leave-One-Out Estimator 

In the leave-one-out estimator or procedure, all but one 

observation is used to complete the classification rule, and this 

rule is then used to classify the omitted observation. We repeat 

this procedure for each observation, so that in a sample of size N = Σin�, each observation is classified by a function based 

on the N-1 observations. When g = 2, that is, two-fold cross-

validation, this is the rotation method. When g = n, that is the 

n-fold cross-validation error estimator, R(cv), attributed to [6], 

where in the case of two populations R(cv) = Σ����
Σ���� n�� ∕ n�. 

This method is also known as the “leave-one-out” or U 

estimate. Studies undertaken by numerous authors including [2] 

have shown that n-fold cross-validation has large variance. 

Thus, although R(cv) may be an Unbiased estimate, the 

confidence with which the user can expect R(cv) for his/her 

sample to approach. R(T) is not great. The main advantage of 

this method is felt to be that it obtains an unbiased estimate of 

the expected actual error rate for a discrimination problem with 

training samples of size n� − 1 and n�[6]. However, this does 

not mean that the leave-one-out estimator has small bias with 

respect to the conditional actual error rate, which is the error 

rate of interest here. One disadvantage of this estimator is that 

it requires more computation then the resubstitution estimator. 

However, ways have been found to reduce this problem. 

Another disadvantage of the leave-one-out estimate is its large 

variance. The main consideration of most investigators when 

comparing estimators has been the bias, but the variance is also 

important factor. [4] Performed a sampling experiment in 

order to demonstrate the importance of the variance. In the 

Univariate normal case, he found that the bias with respect to EJα(�H)L is very small for the leave-one-out estimator, larger 

for the plug in estimator and largest for the resubstitution 

estimator, as expected. However, he also compared the 

variance of the estimators and found that the leave-one-out 

estimator had a much larger variance than the resubstitution 

estimator, which in turn had a larger variance than the plug-in-

estimator. Unfortunately, Glick did not consider the mean 

square error and hence, left Unanswered whether the 

resubstitution estimator over performs better than leave-one-

out. 
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4.4. Jackknife Error Rate Estimator 

This method was due to [13]. The method involves 

omitting each observation in turn from the learning sample 

and to obtain the apparent error rate for the learning sample 

with the jth observation omitted, R�∗(A), so that 

R�∗(A) = �� ∑ R�∗(A)���� .                          (29) 

So that w& � , the Jacknife estimate of the bias of R(A)  is w& � = (n − 1)�R�∗(A) − R(A)�  leading to the Jacknife 

estimate of the error rate 

R(J) = nR(A) − (n − 1)R�∗(A).             (30) 

4.5. The DS Method Estimator 

This estimator DS method is based on the plug-in 

estimator which assumes multivariate normality and contains 

a bias correction. When Σ  is unknown, D�  is a biased 

estimator of  ∆� . [7] described a consistent estimator of ∆� 

which has less bias than D�. This estimator of ∆� is 

D� = (n� + n� − r − 3)D� ∕ (n� + n� − 2)        (31) 

and hence the estimator of α(�H), called the DS method is 

α�z = ϕ Y−(DS) �� 2� ¢                        (32) 

4.6. The O and OS Estimators 

The distribution of Anderson’s W statistic is very 

complicated and is not known exactly. [11] Provided an 

asymptotic expansion for Pr £W(x) < �� ∆� + a∆¤ where a is 

a real constant. Since α(�H) =  Pr<W(x) < 0D , one could 

substitute an estimate of ∆�  into Okamoto’s expansion in 

order to estimate α(�H). [7] Suggested two such estimators: 

the O method is obtained by replacing ∆� with  D�, and the 

OS method is obtained by replacing D�  with DS. These 

estimators were explicitly obtained in the Univariate case 

with δ� known by [15]: 

α& ¥ = ϕ<−|xT� − xT�|2δD + �¦ (n�!� + n�!�)ϕ�<|xT� − xT�| ∕ 2δD (33) 

α& ¥z = ϕ r|mT�!mT�|(��x��!§)��
�¨(��x��!§)�� © + �¦ (n�!� + n�!�) ϕ� r|mT�!mT�|(��x��!§)��

�¨(��x��!§)�� −©    (34) 

Where 

 ϕ�(t) = −t(2π)!�� exp �− t� 2� �                (35) 

4.7. Posterior Probability Estimator 

This estimator was described by [10]. Assuming equal 

prior probabilities, if θ is known and the discriminant rule is �, the posterior probability of misclassification is 

Jmin<f(x, θ�), f(x, θ�)DL ∕ Jf(x, θ�) + f(x, θ�)L        (36) 

when θ  is estimated, the posterior probability of 

misclassification by the rule �H, given x� is estimated by 

�mintf"x�, θ��', f"x�, θ��'u� �f"x�, θ��' + f"x�, θ��'��     (37) 

This function is evaluated for each of the  x� and the mean 

is the estimator of α(�H). 

5. The Simulation Experiments and 

Results 

In this comparative study, some existing estimators are 

compared using Monte Carlo Simulations. The usefulness of 

a Monte Carlo assessment is that the population parameters 

and the true distribution from which the training data are 

obtained are known. Thus, the true error rates can always be 

computed. Hence, the estimated error rates can be compared 

with the true error rate for choosing the best estimator. 

The eight estimators’ procedures are evaluated at each of 

the 118 configurations of n, r and d. The 118 configurations 

of n, r and d are all possible combinations of n=40, 60, 80, 

100, 200, 300, 400, 600, 700, 800, 900, 1000, r=3, 4, 5 and d 

= 0.1, 0.2, 0.3, and 0.4. A simulation experiment which 

generates the data and evaluates the procedures is now 

described. 

(i). A training data set of size n is generated via R-

program where n� = n 2�  observations are sampled 

from π�  which has multivariateb Bernoulli 

distribution with input parameter p�  and p�  and n� = n 2�  observations sampled from π� , which is 

multivariate Bernoulli with input parameter  p�, j =1 … r. These samples are used to construct the various 

estimators. 

(ii). The likelihood ratios are used to define classification 

rule. The estimators of error rates are determined for 

each of the methods. 

(iii). Step (i) and (ii) are repeated 1000 times and the mean 

error rate and variances for the 1000 trials are 

recorded. 

The following table contains a display of one of the results 

obtained. 

Table 1. Mean error rates for estimators under different parameter values, sample sizes and Replications. 

P1 = (.5,.5,.5,.5,.5) P2 = (.6,.6,.6,.6,.6) 

Sample sizes DS R U P JK D O OS 

40 0.365212 0.237006 0.254587 0.252975 0.251887 0.494812 0.382087 0.362220 

60 0.376908 0.278807 0.287591 0.286358 0.287816 0.500316 0.393791 0.375385 

100 0.389975 0.316222 0.323300 0.324600 0.323815 0.500990 0.401335 0.384240 
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Sample sizes DS R U P JK D O OS 

140 0.393925 0.336808 0.342721 0.343307 0.343153 0.501775 0.406560 0.396101 

200 0.4007250 0.355295 0.359190 0.359465 0.359842 0.499727 0.411195 0.398143 

300 0.402866 0.370199 0.373166 0.373318 0.373128 0.499428 0.412693 0.402204 

400 0.404201 0.379041 0.382187 0.381760 0.381406 0.500437 0.414523 0.402156 

600 0.405495 0.386957 0.389576 0.389626 0.389663 0.500395 0.415382 0.403902 

700 0.406001 0.390346 0.392677 0.392478 0.391590 0.499647 0.416030 0.403770 

800 0.406843 0.392932 0.394805 0.394511 0.394905 0.500325 0.416420 0.405535 

900 0.406832 0.394140 0.395937 0.396352 0.396006 0.500902 0.416912 0.404521 

1000 0.407625 0.395220 0.397488 0.396858 0.397428 0.499799 0.417174 0.405044 

p (mc) = 0.16308 

Table 2. Standard error for the estimator rules under different parameter values, sample sizes and replications. 

P1 = (.5,.5,.5,.5,.5) P2 = (.6,.6,.6,.6,.6)|«(¬G) − «̂(¬G)| 
Sample sizes DS R U P JK D O OS 

40 0.047146 0.069485 0.046432 0.047218 0.045033 0.059599 0.0451534 0.074752 

60 0.040174 0.059342 0.040172 0.041581 0.040481 0.047988 0.0392 0.060813 

100 0.031479 0.049585 0.034399 0.033562 0.033471 0.039786 0.030936 0.047585 

140 0.026298 0.042871 0.028142 0.029753 0.028542 0.037205 0.026595 0.040519 

200 0.023616 0.038008 0.026386 0.027106 0.025865 0.031779 0.023459 0.03599 

300 0.019186 0.031847 0.022209 0.022355 0.022309 0.029105 0.019309 0.028217 

400 0.016343 0.029209 0.019176 0.019488 0.018798 0.026048 0.01636 0.023954 

600 0.013147 0.023879 0.016622 0.01523 0.015892 0.02399 0.013488 0.019303 

700 0.012653 0.02271 0.015258 0.015375 0.015703 0.02423 0.012725 0.019036 

800 0.012157 0.021352 0.014518 0.014808 0.0145799 0.023763 0.012257 0.01706 

900 0.010951 0.021304 0.014157 0.014231 0.013759 0.023136 0.011209 0.016578 

1000 0.010528 0.019691 0.013182 0.012785 0.013094 0.023139 0.010844 0.015555 

 

Tables 1 and 2 present the mean error rates and sum of 

square error rates for estimators under different parameter 

values. The mean error rates increases with the increase in 

sample sizes and sum of square error decreases with the 

increase in sample sizes. From the analysis, DS is ranked first, 

followed by O, OS, U, R, JK, P, and D came last. 

Estimators Position 

DS 1 

O 2 

OS 3 

U 4 

R 5 

JK 6 

P 7 

D 8 

6. Conclusion 

We obtained two major results from this study. Firstly, 

using the simulation experiments we ranked the estimators as 

follows: DS, O, OS, U, R, JK, P and D. The best method was 

the DS estimator. Secondly, we concluded that it is better to 

increase the number of variables because accuracy increases 

with increasing number of variables. Also, the general trend 

for the estimators was an increase in error rate as sample size 

decreases while decreasing the distance between populations 

generally increase the error rate. DS estimator was the most 

consistent and thus reliable over all combinations of 

probability pattern and sample sizes. 
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