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Abstract: This paper provides the model, estimation and test procedures for the measures of association in the correlated
binary data associated with covariates in multivariate case. The generalized linear model (GLM) which satisfies the Markov
properties for serial dependence, and the alternative quadratic exponential form (AQEF) are employed for multivariate Bernoulli
outcome variables. The log-odds ratios as measures of association have been estimated, and the appropriate test procedures are
suggested. The over-dispersion measure is investigated for the multivariate correlated binary outcomes. The scaled deviance is
used as a goodness of fit of the model. For comparison, we have used the data on the respiratory disorder. In such situation, we
indicate that the vectorized generalized linear models (VGLM) and AQEF procedures have the same estimates of regression

parameters in the bivariate case.
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1. Introduction

The dependence between the responses and the explanatory
variables have been focused in the recent studies specially
with one and two correlated outcomes variables associated
with covariates. These studies make an attempt to focus on the
multivariate correlated binary outcomes. Lovison [10]
proposed a matrix-valued Bernoulli distribution, based on the
log-linear representation introduced by Cox [6], for the
multivariate ~ Bernoulli  distribution = with  correlated
components. The model is based on the integration of
conditional and marginal models. Teugels [12] used the
concept of the Kronecker product to give some relationships
between the correlated variables, namely, the correlation and
odds ratios as measures of association. Zhao and Prentice [16]
discussed the pseudo-maximum likelihood for analyzing
correlated binary responses. Their parametrization is based on
a simple pairwise model in which the association between
responses is modeled in terms of correlations. Also, Heagerty
[7], Heagerty and Zeger [8] presented the the conditional
log-odds interpretation, and developed a general parametric
class of the serial dependence models that permits the
likelihood based marginal regression analysis of binary
response data. Islam et al. [9] developed a new simple

procedure to take account of the bivariate binary model with
covariate dependence. Many of the vectorized generalized
additive model (VGAM) features come from generalized
linear model (GLM) and generalized additive model (GAM),
so that readers with these functions can be returned to
Chambers and Hastie [4]. Additionally, Yee and Wild [15] and
the VGAM user R-manual, [14], should be consulted for
general instructions about the software. General books dealt
with log-linear model are referred as well, especially
Christensen [5], Agresti [1] and McCullagh and Nelder [11].
Finally, El-Sayed et al. [3] introduced an alternative measure,
based on the quadratic exponential form in the bivariate case,
to make it more realistic, in terms of defining the underlying
pseudo likelihood function, by modifying the normalizing
term and developed Zhao and Prentice model [16] in the
bivariate case, and this work also is devoloped in the trivariate
case by El-Sayed [2].

In this paper, the major work is modeling the GLM with
serial dependence, and the AQEF procedures associated with
covariates. The estimations and tests of the association
parameters are specified with appropriate link functions for
the multivariate correlated binary case. Hence, the bivariate
and trivariate AQEF will be extended to the multivariate case
by modifying the the normalizing process. Also, to compare
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with the AQEF procedure for the log-odds ratios as measures
of association and the regression parameters, we will use the
GLM approach which demonstrates the serial dependence
with the first-order Markov model. Section (2) presents the
introduction to the multivariate Bernoulli distribution, namely,
the joint probabilities and the log-odds ratios as measures of
association explaining the relationship between the marginal,
conditional and joint probabilities. Sections (3) and (4) present
the modeling of the GLM and the AQEF procedures, in the
multivariate case, respectively. Section (5) present simple
introduction to VGLM procedure. Section (6) explained the

numerical examples using the respiratory disorder data.

2. Multivariate Bernoulli Distribution

In this section, we will present the joint probability and the
log-likelihood function for K correlated binary outcomes
variables each following the Bernoulli distribution.

Let Y=(Y,,1;,....Y,) be a K dimensional vector of

possibly correlated Bernoulli outcomes variables. The most
general form of the joint mass function for Y is

k k k
I_l =y n |_| 1=y I_lyj (1)
S 12 Ya0s Vi) = Pt X Drog o XX P
The corresponding log-likelihood function, for n observations, is
n__k k k
Uy;sp)= 21:( ! (1- yji)longOO...O Ty rj (1 _yji)logploo...o Tt rlyﬁ logplll...l)' 2
=1 j= J= J=

For special case, k=2, we have the joint mass function for the correlated Bernoulli outcomes variables, ¥, and Y, as

S 3,) = Py

and the log-likelihood function, for n observations, is
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The next sections explain the parameters estimation and appropriate test procedures for both the AQEF and GLM procedures

for the multivariate Bernoulli distribution as following:

3. Multivariate AQEF Procedure

In this section, we will extend the bivariate alternative quadratic exponential form which proposed by El-Sayed et al. [3] to the
multivariate case. So, the joint mass function for K correlated binary variables 1,,Y,,...,Y, is

k
S e ) =exp{D 0,0, + > W, v,y +
j=1

1< j<i<k

Z (//ﬂmij’zym

I<j<l<m<k
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tot W V1Y,V Y, —log c(ﬁ,lﬂ)},
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where, 6, =log

J

PEL=11Y,=1) _

P(Y, =1,Y, =1)P(Y, = 0,7, = 0)

, j=1,2,.,k, are natural parameters, and

1< j<I<k,

- =1lo =lo
v, gP(Y,=1|Y_/.=0) g

are associated parameters, and so on.

P(Y,=1,Y, = 0)P(Y,=0,Y,=1)’

To obtain the normalizing term, ¢(6,{), in the function (5), we can use this constraint
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In this case, the normalizing constant can be obtained as

k
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the summation over all 2" possible values of Y . Then, the normalizing constant is

(O =1+ Y exp(6)+ Y exp(6,+6,+¢,)

j=1 1< j<i<k

+ z exp(6’j +6,+0, Yty Y, L)

I<j<l<msk

+. +exp(2(9)+ z @, +6,+¢Y )+ +Y s )

1<J<[<k

For special case, k =2, the joint probability mass function for Y, and Y, is

F(3yy) = exp 10,7, + 6,9, + Y, 3,y, —log (1 +e” + % + 17272y

3.1. Natural Parameters Estimation

The log-likelihood function, for n observations, can be written as

n k
t(e.y) = 2{2‘9/% * z Guypvi* Z GimYiViYm ¥t
=1 =1

1< j<I<k 1< j<l<m<k

Wi kY0uYaie Vi ~ log c(@,[//)} )
where ¢(8,() is defined as shown in (8).

Taking the first derivatives for (10) with respect to ;40,5555  » and put it equal to zero, we have:
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Solving the equations (11), numerically, we can get the estimates 9/.,6;,.., j,,..,lﬁmmk , respectively.

3.2. Testing Hypothesis for Natural Parameters

We can test the null hypothesis H, :6?, =0 against the alternative hypothesis H, :6?, #0, j=1,2..,k . To test the
significance of association parameters, we can test the null hypothesis H,:¢/, =0 against the alternative hypothesis
Hy:¢,#0, 1< j<I<k. Also, we can test the null hypothesis H, : ¢/
done using the Likelihood ratio test (LRT).

=0, 1< j</<m<k,andsoon. All tests can be

Jjim

3.3. Modeling Multivariate AQEF Procedure

In this section, we will use the next link functions to generalize the model, with correlated dependent binary variables
associated with some covariates, x (not always binary variables). The marginal probabilities p,(j =1,2,..,k) is given by the

the regression model

AN =B'x =0 x x, ox), B'=(By By B o By (12)

g =1lo =
1=p, (%)

J

A regression model expresses the association between these responses, associated with some covariates, x , can be given by
— 1 — 1 — 1
Y,=a,'x, Y,,=0a,'x, Y, , =a,,'x. (13)

The covariates, x, which are selected show some significant association with the variables, Y,Y,,...,Y, , in multivariate

analysis.
Now, we will study the effect of covariates x on the log-likelihood function (10), using the equations (12) and (13).

3.4. Regression Parameters Estimation

The log-likelihood function can be expressed as follows:

n k
Wa,B) =B, v, + D @, v, vu+ D XY Vi et

i=1 =1 1< j<i<k 1< j<i<ms<k
J J J (14)

Ao "XV Yo Yy ~ log C(ﬁaa))a
where ¢(f,q) is defined as shown below

C(ﬁ,0)=1+Zk:eXp(ﬁ,-'X)+ Y, exp(B'x+B'x+a,'x)

1< j<I<k

+ > exp(B,'x+B'x+ B, x+a ) x+a, 'x+a,'x+a,, 'x)+.... (15)

1< j<I<ms<k

+exp (i(ﬁj'x) + Z (:Bj'x + B x+ a,;'x)t..+ta, ,'x).

1< j<i<k

Taking the first derivatives for (14) with respect to [3;5.s@ 5+, 0}y5  » and put it equal to zero, we have:
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Solving the equations (16), numerically, we can get the estimates ,3,- 90y d j19°° d123...k , respectively.
3.5. Testing Hypothesis for Regression Parameters
We can test the null hypothesis, H, :,G, =0(j=1,2,..,k), using
LRT ==2[((B,=0,0)=U(B,,&)] ~ X; (17
Finally, we can test the null hypothesis, H,:a=0 (a=a, or a,, or..or a, ,),using
LRT = 22[(B;,a=0)-U(B,,d)] ~ X (18)

The estimated dispersion parameter @ can be used as a measure for the over-dispersion. So, let us define

Y, 3 Var(Y) ~ Cow(¥.Y,) - Cov(Y;.Y,)

Y, b, Cow(Y,.Y,) Var(Y,) - Cow(Y,.Y,)
Y=|:11| p=| | Z= : : . ,

Y, b Cov(Y,.Y,) Cow(Y..Y,) - Var(Y,)

The quantity (¥ — f))’i_l (Y = p) follows the non-central x* distribution. Under independence, the estimator of dispersion
parameter @ can be defined as

n

k 2
Z y]l ) (19)
i=1 j=1 a’”(P )

the value of @ should be closed to one for a Bernoulli data. To evaluate @, we must obtain the estimate of marginals, p,, using

the equation (12), as

p,(B)= i e J =12k (20)
l1+e’/

Also, to specify the goodness of fit model, we can use the scaled deviance function

D(y;,f3,,4) _

S-D(yiaﬁjaé'): 2[£(yi’yi)_£(yi’Bj7d)] ~ Xj—p’ (21)
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where p is the number of estimated parameters, and @ is the dispersion parameter estimate as defined in (19). Since, the
deviance function is

D(y,,[,,8)=8.D(y,,3,,0)% . (22)

4. Multivariate GLM Procedure

The Markov structures of dependence often adequately describe serial stochastic dependence in specified data. This pattern of
dependence has been studied and so only a few remarks will be made here. Markov dependence of first order implies

k
PriY,=y.Y,=y,,..Y, =y)=Pr(Y, = y1)|_!Pr(Y, 1Y) (23)
j=

Using the conditional logg-odds interpretation, Heagerty [7], and Heagerty and Zeger [8], and the Markov property, the joint
mass function for the variables Y can be defined as

k k 9. k
Gy ) =expd 0y, =Y log(l+e )+ YW, v,.v,
JA JA J=2
k (24)
O+ i 8.
=y (ogll+e” ™ ~log[1+ e 1)},

Jj=2

For special case, k =2, the joint probability mass function for ¥, and Y, is

F(3nsy:)=expiBy, + 6,3, + W,y y, —log(1+eh) —log(1+e?) =y, (log[1+e> ™12 ] ~log[1+e” ) }. (25

4.1. Natural Parameters Estimation

In this section, we present the estimation of parameters of the multivariate Bernoulli distribution. For n observations, we can
get the log-likelihood function as

n k k k
We.yp)= Z{Zejyji - Z log (1 + egj) + Zl/lj—l,jyj—l,iyji
=1 j=1 J=1 J=2

k o.+y. . . 6. (26)
=Yy, (og[1+e” ™™ [~ log[1 + e/ ]) }.
J=2
Taking the first derivatives for (26) with respect to Hj and ¢,_, ;, and put it equal to zero, we have

6£(9 ) e

2( vim——)=0, j=1,

i= e

e Wi 6.

6£(9 W) e’ .

Z( 11 j- 11 —lj - g.)zoa ,]:25"ak5 (27)

= 1+e’

.+ ._

ag(gjw) n e’ 1.j
=20y Vi) =0.
aw‘j_l’j ; JoLi2 J1L 1+e€j Wi

Solving the equations (27), numerically, we have the estimates 9].( J=1,2.,k) and &, (j =2,3,..,k).
4.2. Testing Hypothesis for Natural Parameters

We can test the null hypothesis H, :6?, =0 against the alternative hypothesis H, :6?, #0, j=1,2..,k . To test the
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association parameters, we can test the null hypothesis H, :({/,_, . =0 against the alternative hypothesis H,:¢/,_ . #0,

J=Lj J=1,j

j=2,3,.,k . All tests can be done using the Likelihood ratio test (LRT).

4.3. Modeling Multivariate GLM Procedure

In this section, we will use the same link functions similar to the AQEF to determine the regression model. A regression model
which expresses the link functions and the association between the correlated binary responses, Y, associated with covariates,
x , can be given by the equations (12) and (13).

4.4. Regression Parameters Estimation

Now, we study the effect of covariates on the log-likelihood function (26) which is become

Up,a)= Z{Zﬂ X, - Zlog(1+e/ )+Za,1, XV

=l j=1 (28)

=Yy ot +% 7 |~ log1 + % ).
j=2

Taking the first derivative for (28) with respect to ,8 »a,;_, ; » and putting it equal to zero, we get the estimating equations

,Gx

oUp.a) _¥
Y ji =0, =1,
08, HU T g I
0U(B,a) _X RURIENE i
) :z( /i ,3 r)x Zy/ 11( p r+a Avx_ B.x )x:O, j:2,,,,k, (29)
a,Bj i=1 A 1+e -1,j l+e’
oUB.a) _ e
aaj—l,j Z(y] iV T V- leeT)x 0, Jj= 2,..k.

Solving the equations (29), numerically, we have the vectors estimates Bj( j=12,.,k), éf/._l"f (j=2,3,.,k).

4.5. Hypothesis Test for Regression Parameters

We can test the regression parameters using the null hypothesis H, : B, =0(j = 1,2,..,k), by the function

LRT = =2[0(B,=0.@,., )= (B, )] ~ X o

Finally, we can test the association parameters using the the null hypothesis H, : @ ,_, ; =0, by the function

5

LRT ==2[U(B,,a,_, ,=0)= B4, )] ~ X; (1)

The estimate of dispersion parameter ¢ can be defined as shown in the equation (19). Also, to specify the goodness of fit
model, we can use the scaled deviance function (21).

5. Multivariate VGAM Procedure

The conditional distribution of vectorized generalized linear models (VGAM), Yee and Wild [15], for multivariate correlated
binary responses ( 1},Y,,....,Y, ), given that some covariates, x , is given by the function:

10 f (V15 V3 reeeeene ,ykIX)—uo(x)+Zu(X)y,+Z u, (X)y .

J<l
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Where, #,(x) is the normalizing term. Similar to the
GLM and AQEF procedures, we can get the estimate of
natural parameters, the estimate of regression parameters,
the estimate of dispersion parameters, the scaled deviance
and the LRTs.

6. Numerical Examples

Respiratory Disorder Data: Source: Stokes, Davis, and
Koch (1995), SAS and R programs.

These data is taken from a clinical trial of patients
comparing two treatments for a respiratory illness. The data
contains (111) patients from two different clinics (centers)
which were randomized to receive either placebo = 0 or active
= 1 treatment. Patients were examined at baseline (represent
the baseline respiratory status) and at four visits during the
treatment. At each examination, the respiratory status was
determined. A data frame are (444) observations and (8)
variables which are: outcome variable (represent the
respiratory status at each visit [categorized as good = 1, poor =
0]), center (center 1=1, center 2 = 2), id (repetition), age (age
at time of entry into the study which represents a continuous
variable), baseline (baseline respiratory status good or not,
hence [good = 1, poor = 0]), treatment (placebo = P, active =
A), hence to be binary data we can put P =0 and A = 1, sex
(female = 1, male = 0) and visit (four visits). We suppose that,
for the bivariate case (K = 2), the response variables in this
model are two variables: the "outcome" variable represented

by the binary variable Y, and the "treatment" variable

represented by the binary variable Y,. Explanatory variables
in this model are six variables: center, age, baseline, sex and
visit. In this example, the two dependent correlated binary
variables Y; and Y, represent the outcome and the treatment
variables respectively. One explanatory variable X
represents the visit. In the next examples, we use the VGLM
procedure, Yee [14], Yee and Wild [15], which depends on the
log-linear approach in the bivariate case. The estimates
obtained using the BB-package of R program, [13].

Table 1 explains the results for the GLM, QEF and AQEF
procedures as following:

Table 1. Results of VGAM, AQEF and GLM procedures.

Estimate VGAM AQEF GLM
B -0.1402 -0.1402 03818

B, -0.0356 -0.0356 -0.0585
B -0.7328 -0.7328 -0.7318
By 0.0481 0.0481 0.0477

% 1.1331 1.1331 1.1323
a4 -0.0583 -0.0583 -0.0579

o 2.6901 2.6901 2.6900

¢ 1.5251 1.5251 1.3915
Scaled Deviance 2769002  276.9002 269.2120
Log likelihood Value -599.1579  -599.1579 -599.1584
LRT (Hy: @=0) 25.8172 25.8172 25.8162

From Table 1, we have found that:

The VGLM and AQEF procedures have the same estimates,
but the GLM procedure has different estimates.

For the scaled deviance measure as a goodness of fit of the
model, we found all measures have wvalues less than
X?(0.05,n - p =438) = 487.7930 , p = 6 parameters.

This means that all measures have a good fit.

For the estimate of dispersion parameter ¢, the procedure
GLM has the smallest value.

For the LRT to test the null hypothesis #, : o = 0, we find,

for all procedures, the value of LRT is more than
x2(0.05,1) = 3.8415 . This means that, for all procedures, the
two correlated dependent variables ¥, and Y, are affected
significantly with the explanatory variable X .

Then, the patient respiratory status, contributed and the
treatment, are affected significantly by each visit. Hence the
test of associated parameters reflect the significant association
between Y, and Y, associated with x covariates.

In sum, the previous results proved that the same results are
obtained for the VGLM and AQEF procedures. Then, we can
use the Wald statistic to test the significance of the parameters
of regression model as shown below.

The results in Table 1, are demonstrated in the regression
model shown below:

For the GLM procedure, we have the regression model:

logit (p,;) = 0.3818 —0.0585 x,
logit (p,;) = —0.7318 + 0.0477 x,
Y, =1.1323 -0.0579 x,

(32)

Also, for the VGAM and AQEF procedures, we have the
regression model:
logit (p,;) = —0.1402 - 0.0356 x,
logit (p,;) = —0.7328 + 0.0481 x,
¢, =1.1331 -0.0583 x,

(33)

Table 2 reflects the estimates, standard error and Wald
statistic for regression parameters for the procedures VGAM
and AQEF, which have the same results.

Table 2. Estimates, Standard error and Wald statistic.

By B, B B., 4 &
Estimate  -0.1402  -0.0356  -0.7328 0.0481 1.1331 -0.0582
Standard 376 01193 03740 01340 04881 0.1770
Error
Wald 4300 002982 -1.9593 03592 23217 -0.3292
Statistic

X(0.05,n— p=438)=487.7930, x*(0.05,1)=3.8415, p = 6 parameters.

Zy 005 = £1.95996

From Table 2, the Wald statistics reflect the dependent
variables Y, and Y, together are affected significantly with
the explanatory variable, X . This confirms the results
obtained for the LRT in Table 1. Also, we can use the
VGAM-package to fit the model using more than one
covariates. Applying that on the respiratory disorder data,
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considering the dependent correlated binary variables are
outcome (Y ) and treatment (Y, ), and the the explanatory

variables are: center (X,), sex (X,), age (X;), visit (X,)

and baseline (X;).

Table 3 represents the results associated with more than one
covariates:

Table 3. Logits, Measure of association, Standard error and Wald statistic.

Model Intercept Center X; Sex X, Age X3 Visit Xy Baseline X5
logit P, -0.5026 0.5189 0.0376 -0.03596 -0.0504 1.6967
Standard Error 0.6194 0.3125 0.3531 0.0119 0.1279 0.3067
Wald Statistic -0.8114 1.6605 0.1065 -3.0237 -0.3938 5.5316
logit P, 0.2095 -0.0784 -2.0342 -0.0098 0.0553 -0.9838
Standard Error 0.6663 0.3494 0.5669 0.0123 0.1393 0.4221
Wald Statistic 0.3143 -0.2245 -3.5883 -0.7932 0.3971 -2.3309
1,012 -0.4083 0.3308 0.8610 0.0340 -0.0619 0.4303
Standard Error 0.8806 0.4448 0.6715 0.0161 0.1804 0.5060
Wald Statistic -0.4637 0.7438 1.2822 2.1082 -0.3430 0.8504
Log-likelihood: =531.1790 , Z 4,5 = £1.95996.
From Table 3, we have found that: age (X,).
The two dependent correlated binary variables, outcome The dependent variable treatment (Y,) is affected

(1),

and treatment ( Y, ) are together affected significantly by

the explanatory variable age (X,).

The dependent variable outcome ( Y, ) is affected

significantly by the explanatory variables, baseline (X;) and

significantly by the explanatory variables, baseline (X;) and
sex (X,).
From Table 3, we have the regression model:

logit (p,;) = =0.5026 +0.5189 x,, + 0.0376 x,, —0.03596 x,, —0.0504 x,, +1.6967 x.,

logit (p,;) = 0.2095 —0.0784 x,, — 2.0342 x,, — 0.0098 x,, +0.0553 x,, — 0.9838 x.,

(34

Y, = —0.4083 +0.3308 x,, +0.8610 x,, +0.0340 x,, —0.0619 x,, +0.4303 x,,
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