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Abstract: This paper provides the model, estimation and test procedures for the measures of association in the correlated 

binary data associated with covariates in multivariate case. The generalized linear model (GLM) which satisfies the Markov 

properties for serial dependence, and the alternative quadratic exponential form (AQEF) are employed for multivariate Bernoulli 

outcome variables. The log-odds ratios as measures of association have been estimated, and the appropriate test procedures are 

suggested. The over-dispersion measure is investigated for the multivariate correlated binary outcomes. The scaled deviance is 

used as a goodness of fit of the model. For comparison, we have used the data on the respiratory disorder. In such situation, we 

indicate that the vectorized generalized linear models (VGLM) and AQEF procedures have the same estimates of regression 

parameters in the bivariate case. 

Keywords: Multivariate Bernoulli Distribution, Generalized Linear Model, Scaled Deviance Test, Likelihood Ratio Test, 

Maximum Likelihood Estimators, Alternative Quadratic Exponential Form 

 

1. Introduction 

The dependence between the responses and the explanatory 

variables have been focused in the recent studies specially 

with one and two correlated outcomes variables associated 

with covariates. These studies make an attempt to focus on the 

multivariate correlated binary outcomes. Lovison [10] 

proposed a matrix-valued Bernoulli distribution, based on the 

log-linear representation introduced by Cox [6], for the 

multivariate Bernoulli distribution with correlated 

components. The model is based on the integration of 

conditional and marginal models. Teugels [12] used the 

concept of the Kronecker product to give some relationships 

between the correlated variables, namely, the correlation and 

odds ratios as measures of association. Zhao and Prentice [16] 

discussed the pseudo-maximum likelihood for analyzing 

correlated binary responses. Their parametrization is based on 

a simple pairwise model in which the association between 

responses is modeled in terms of correlations. Also, Heagerty 

[7], Heagerty and Zeger [8] presented the the conditional 

log-odds interpretation, and developed a general parametric 

class of the serial dependence models that permits the 

likelihood based marginal regression analysis of binary 

response data. Islam et al. [9] developed a new simple 

procedure to take account of the bivariate binary model with 

covariate dependence. Many of the vectorized generalized 

additive model (VGAM) features come from generalized 

linear model (GLM) and generalized additive model (GAM), 

so that readers with these functions can be returned to 

Chambers and Hastie [4]. Additionally, Yee and Wild [15] and 

the VGAM user R-manual, [14], should be consulted for 

general instructions about the software. General books dealt 

with log-linear model are referred as well, especially 

Christensen [5], Agresti [1] and McCullagh and Nelder [11]. 

Finally, El-Sayed et al. [3] introduced an alternative measure, 

based on the quadratic exponential form in the bivariate case, 

to make it more realistic, in terms of defining the underlying 

pseudo likelihood function, by modifying the normalizing 

term and developed Zhao and Prentice model [16] in the 

bivariate case, and this work also is devoloped in the trivariate 

case by El-Sayed [2]. 

In this paper, the major work is modeling the GLM with 

serial dependence, and the AQEF procedures associated with 

covariates. The estimations and tests of the association 

parameters are specified with appropriate link functions for 

the multivariate correlated binary case. Hence, the bivariate 

and trivariate AQEF will be extended to the multivariate case 

by modifying the the normalizing process. Also, to compare 
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with the AQEF procedure for the log-odds ratios as measures 

of association and the regression parameters, we will use the 

GLM approach which demonstrates the serial dependence 

with the first-order Markov model. Section (2) presents the 

introduction to the multivariate Bernoulli distribution, namely, 

the joint probabilities and the log-odds ratios as measures of 

association explaining the relationship between the marginal, 

conditional and joint probabilities. Sections (3) and (4) present 

the modeling of the GLM and the AQEF procedures, in the 

multivariate case, respectively. Section (5) present simple 

introduction to VGLM procedure. Section (6) explained the 

numerical examples using the respiratory disorder data. 

2. Multivariate Bernoulli Distribution 

In this section, we will present the joint probability and the 

log-likelihood function for K  correlated binary outcomes 

variables each following the Bernoulli distribution. 

Let 
k

Y Y Y Y
1 2

= ( , , ..., )  be a K dimensional vector of 

possibly correlated Bernoulli outcomes variables. The most 

general form of the joint mass function for Y  is 

                    (1) 

The corresponding log-likelihood function, for n  observations, is 

        (2) 

For special case, k = 2 , we have the joint mass function for the correlated Bernoulli outcomes variables, Y
1
 and Y

2
, as 

                  (3) 

and the log-likelihood function, for n  observations, is 

   (4) 

The next sections explain the parameters estimation and appropriate test procedures for both the AQEF and GLM procedures 

for the multivariate Bernoulli distribution as following: 

3. Multivariate AQEF Procedure 

In this section, we will extend the bivariate alternative quadratic exponential form which proposed by El-Sayed et al. [3] to the 

multivariate case. So, the joint mass function for K  correlated binary variables 
k

Y Y Y
1 2
, , ...,  is 

           (5) 
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                         (6) 

In this case, the normalizing constant can be obtained as 

    (7) 

the summation over all k
2  possible values of Y . Then, the normalizing constant is 

                  (8) 

For special case, k = 2 , the joint probability mass function for Y
1
 and Y

2
 is 

    (9) 

3.1. Natural Parameters Estimation 

The log-likelihood function, for n  observations, can be written as 

        (10) 

where c θ ψ( , )  is defined as shown in (8). 

Taking the first derivatives for (10) with respect to j jl kθ ψ ψ123..., , ..., , and put it equal to zero, we have: 

  (11) 
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Solving the equations (11), numerically, we can get the estimates ˆ ˆ ˆ ˆ
j l jl kθ θ ψ ψ

123...
, , .., , .., , respectively. 

3.2. Testing Hypothesis for Natural Parameters 

We can test the null hypothesis jH θ0 : = 0  against the alternative hypothesis jH θ ≠≠≠≠0 : 0 , j k= 1,2.., . To test the 

significance of association parameters, we can test the null hypothesis jlH ψ0 : = 0  against the alternative hypothesis 

jlH ψ ≠≠≠≠0 : 0 , j l k≤ ≤≤ ≤≤ ≤≤ ≤1 < . Also, we can test the null hypothesis jlmH ψ0 : = 0 , j l m k≤ ≤≤ ≤≤ ≤≤ ≤1 < < , and so on. All tests can be 

done using the Likelihood ratio test (LRT). 

3.3. Modeling Multivariate AQEF Procedure 

In this section, we will use the next link functions to generalize the model, with correlated dependent binary variables 

associated with some covariates, x  (not always binary variables). The marginal probabilities jp j k( = 1,2, .., )  is given by the 

the regression model 

    (12) 

A regression model expresses the association between these responses, associated with some covariates, x , can be given by 

                         (13) 

The covariates, x , which are selected show some significant association with the variables, 
k

Y Y Y
1 2
, , ..., , in multivariate 

analysis. 

Now, we will study the effect of covariates x  on the log-likelihood function (10), using the equations (12) and (13). 

3.4. Regression Parameters Estimation 

The log-likelihood function can be expressed as follows: 

        (14) 

where c β α( , )  is defined as shown below 
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  (16) 

Solving the equations (16), numerically, we can get the estimates 
ˆ ˆ ˆ

j jl k
β α α

123...
, .., , .., , respectively. 

3.5. Testing Hypothesis for Regression Parameters 

We can test the null hypothesis, jH j kβ0 : = 0( = 1,2, .., ) , using 

                          (17) 

Finally, we can test the null hypothesis, H α
0

: = 0  ( jlα α=  or jlmα  or... or 
k

α
12...

), using 

                          (18) 

The estimated dispersion parameter ϕ  can be used as a measure for the over-dispersion. So, let us define 

 

The quantity ˆˆ ˆY p Y pΣ−−−−′′′′− −− −− −− −1
( ) ( )  follows the non-central χ 2

 distribution. Under independence, the estimator of dispersion 

parameter ϕ  can be defined as 

                             (19) 

the value of ϕ̂  should be closed to one for a Bernoulli data. To evaluate ϕ̂ , we must obtain the estimate of marginals, ˆ
jp , using 

the equation (12), as 

                               (20) 

Also, to specify the goodness of fit model, we can use the scaled deviance function 
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where p  is the number of estimated parameters, and ϕ̂  is the dispersion parameter estimate as defined in (19). Since, the 

deviance function is 

                          (22) 

4. Multivariate GLM Procedure 

The Markov structures of dependence often adequately describe serial stochastic dependence in specified data. This pattern of 

dependence has been studied and so only a few remarks will be made here. Markov dependence of first order implies 

               (23) 

Using the conditional logg-odds interpretation, Heagerty [7], and Heagerty and Zeger [8], and the Markov property, the joint 

mass function for the variables Y  can be defined as 

             (24) 

For special case, k = 2 , the joint probability mass function for Y
1
 and Y

2
 is 

  (25) 

4.1. Natural Parameters Estimation 

In this section, we present the estimation of parameters of the multivariate Bernoulli distribution. For n  observations, we can 

get the log-likelihood function as 
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association parameters, we can test the null hypothesis j jH ψ −−−−0 1,: = 0  against the alternative hypothesis j jH ψ −−−− ≠≠≠≠0 1,: 0 , 

j k= 2,3, .., . All tests can be done using the Likelihood ratio test (LRT). 

4.3. Modeling Multivariate GLM Procedure 

In this section, we will use the same link functions similar to the AQEF to determine the regression model. A regression model 

which expresses the link functions and the association between the correlated binary responses, Y , associated with covariates, 

x , can be given by the equations (12) and (13). 

4.4. Regression Parameters Estimation 

Now, we study the effect of covariates on the log-likelihood function (26) which is become 

               (28) 

Taking the first derivative for (28) with respect to j j jβ α −−−−1,, , and putting it equal to zero, we get the estimating equations 
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Solving the equations (29), numerically, we have the vectors estimates ˆ ˆ
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Where, ( )u x
0  is the normalizing term. Similar to the 

GLM and AQEF procedures, we can get the estimate of 

natural parameters, the estimate of regression parameters, 

the estimate of dispersion parameters, the scaled deviance 

and the LRTs. 

6. Numerical Examples 

Respiratory Disorder Data: Source: Stokes, Davis, and 

Koch (1995), SAS and R programs. 

These data is taken from a clinical trial of patients 

comparing two treatments for a respiratory illness. The data 

contains (111) patients from two different clinics (centers) 

which were randomized to receive either placebo = 0 or active 

= 1 treatment. Patients were examined at baseline (represent 

the baseline respiratory status) and at four visits during the 

treatment. At each examination, the respiratory status was 

determined. A data frame are (444) observations and (8) 

variables which are: outcome variable (represent the 

respiratory status at each visit [categorized as good = 1, poor = 

0]), center (center 1=1, center 2 = 2), id (repetition), age (age 

at time of entry into the study which represents a continuous 

variable), baseline (baseline respiratory status good or not, 

hence [good = 1, poor = 0]), treatment (placebo = P, active = 

A), hence to be binary data we can put P = 0 and A = 1, sex 

(female = 1, male = 0) and visit (four visits). We suppose that, 

for the bivariate case ( = 2)K , the response variables in this 

model are two variables: the "outcome" variable represented 

by the binary variable Y
1  and the "treatment" variable 

represented by the binary variable Y
2 . Explanatory variables 

in this model are six variables: center, age, baseline, sex and 

visit. In this example, the two dependent correlated binary 

variables Y
1  and Y

2 , represent the outcome and the treatment 

variables respectively. One explanatory variable X , 

represents the visit. In the next examples, we use the VGLM 

procedure, Yee [14], Yee and Wild [15], which depends on the 

log-linear approach in the bivariate case. The estimates 

obtained using the BB-package of R  program, [13]. 

Table 1 explains the results for the GLM, QEF and AQEF 

procedures as following: 

Table 1. Results of VGAM, AQEF and GLM procedures. 

Estimate VGAM AQEF GLM 

β̂
10

 -0.1402 -0.1402 0.3818 

β̂
11

 -0.0356 -0.0356 -0.0585 

β̂
20

 -0.7328 -0.7328 -0.7318 

β̂
21

 0.0481 0.0481 0.0477 

α̂0  1.1331 1.1331 1.1323 

α̂1  -0.0583 -0.0583 -0.0579 

ψ̂
 

2.6901 2.6901 2.6900 

ϕ̂
 

1.5251 1.5251 1.3915 

Scaled Deviance 276.9002 276.9002 269.2120 
Log likelihood Value -599.1579 -599.1579 -599.1584 

LRT (H0: 0=α ) 25.8172 25.8172 25.8162 

, , p = 6 parameters. 

From Table 1, we have found that: 

The VGLM and AQEF procedures have the same estimates, 

but the GLM procedure has different estimates. 

For the scaled deviance measure as a goodness of fit of the 

model, we found all measures have values less than 

n pχ −−−−2
(0.05, = 438) = 487.7930 , p = 6 parameters.  

This means that all measures have a good fit. 

For the estimate of dispersion parameter ϕ , the procedure 

GLM has the smallest value. 

For the LRT to test the null hypothesis H α0 : = 0 , we find, 

for all procedures, the value of LRT is more than 

χ 2
(0 .0 5 , 1 ) = 3 .8 41 5 . This means that, for all procedures, the 

two correlated dependent variables Y
1

 and Y
2

 are affected 

significantly with the explanatory variable X . 

Then, the patient respiratory status, contributed and the 

treatment, are affected significantly by each visit. Hence the 

test of associated parameters reflect the significant association 

between Y
1
 and Y

2
 associated with x  covariates. 

In sum, the previous results proved that the same results are 

obtained for the VGLM and AQEF procedures. Then, we can 

use the Wald statistic to test the significance of the parameters 

of regression model as shown below. 

The results in Table 1, are demonstrated in the regression 

model shown below: 

For the GLM procedure, we have the regression model: 

      (32) 

Also, for the VGAM and AQEF procedures, we have the 

regression model: 

     (33) 

Table 2 reflects the estimates, standard error and Wald 

statistic for regression parameters for the procedures VGAM 

and AQEF, which have the same results. 

Table 2. Estimates, Standard error and Wald statistic. 

 ˆ
10

ββββ  β̂βββ11
 β̂βββ 20

 β̂βββ 21
 α̂ααα0  α̂ααα1  

Estimate -0.1402 -0.0356 -0.7328 0.0481 1.1331 -0.0582 
Standard 

Error 
0.3262 0.1193 0.3740 0.1340 0.4881 0.1770 

Wald 
Statistic 

-0.4300 -0.02982 -1.9593 0.3592 2.3217 -0.3292 

 

From Table 2, the Wald statistics reflect the dependent 

variables Y
1
 and Y

2
 together are affected significantly with 

the explanatory variable, X . This confirms the results 

obtained for the LRT in Table 1. Also, we can use the 

VGAM-package to fit the model using more than one 

covariates. Applying that on the respiratory disorder data, 487.7930=438)=(0.05,2 pn −χ 3.8415=(0.05,1)2χ

ii

ii
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considering the dependent correlated binary variables are 

outcome ( Y
1

) and treatment ( Y
2

), and the the explanatory 

variables are: center X
1

( ) , sex X
2

( ) , age X
3

( ) , visit X
4

( )  

and baseline X
5

( ) . 

Table 3 represents the results associated with more than one 

covariates: 

Table 3. Logits, Measure of association, Standard error and Wald statistic. 

Model Intercept Center X1 Sex X2 Age X3 Visit X4 Baseline X5 

logit P1 -0.5026 0.5189 0.0376 -0.03596 -0.0504 1.6967 

Standard Error 0.6194 0.3125 0.3531 0.0119 0.1279 0.3067 

Wald Statistic -0.8114 1.6605 0.1065 -3.0237 -0.3938 5.5316 

logit P2 0.2095 -0.0784 -2.0342 -0.0098 0.0553 -0.9838 

Standard Error 0.6663 0.3494 0.5669 0.0123 0.1393 0.4221 

Wald Statistic 0.3143 -0.2245 -3.5883 -0.7932 0.3971 -2.3309 

ˆ
12ψ  -0.4083 0.3308 0.8610 0.0340 -0.0619 0.4303 

Standard Error 0.8806 0.4448 0.6715 0.0161 0.1804 0.5060 

Wald Statistic -0.4637 0.7438 1.2822 2.1082 -0.3430 0.8504 

Log-likelihood: , . 

From Table 3, we have found that: 

The two dependent correlated binary variables, outcome 

(Y
1
), and treatment (Y

2
) are together affected significantly by 

the explanatory variable age .X
3

( )  

The dependent variable outcome ( Y
1

) is affected 

significantly by the explanatory variables, baseline X
5

( )  and 

age X
3

( ) . 

The dependent variable treatment Y
2

( )  is affected 

significantly by the explanatory variables, baseline X
5

( )  and 

sex X
2

( ) . 

From Table 3, we have the regression model: 

         (34) 
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