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Abstract: A hidden Markov model (HMM) is a method for analyzing a sequence of transitions for a set of data by considering 
the outcomes Y to be output from latent state X, which has the Markov property. The HMM has been widely applied, with 
applications that include speech recognition, genomic analysis, and finance forecasting. The HMM was originally a method for 
dealing with single-process data. Thus, it is a natural extension to apply it to data with a repeated measure structure by 
incorporating random effects in it. This is called the mixed hidden Markov model (MHMM). With this extension, the MHMM 
was recently applied to clinical research data with repeated measurements, e.g. multiple sclerosis, alcohol consumption, and 
primary biliary cirrhosis. In relation to parameter inference, because regular HMM methods can be used in an MHMM 
framework, some legacy knowledge is applicable. The likelihood can be obtained by simply adding a random effect parameter to 
a single process HMM, and the conventional maximum-likelihood method can be used for parameter estimation. On the other 
hand, much work must still be performed. For instance, the mathematical property of the maximum likelihood estimator has not 
yet been thoroughly examined. In this study, the asymptotic normality and consistency of the maximum likelihood estimator of 
the MHMM concerned with time points are examined via simulation, and found that these properties were almost fine. These 
methods are applied to actual study data, and future perspectives are provided in the conclusion. 

Keywords: Hidden Markov Models, Random Effects, Gaussian Quadrature, Newton–Raphson Method, Epilepsy Data, 
Poisson Distribution, Count Data 

 

1. Introduction 

A hidden Markov model (HMM) is a method used to 
analyze sequential data with characteristic transitions by 
considering the sequence of the outcomes to be output from a 
hidden state with the Markov property, for each sequence 
point [1]. The main benefit of this model is its ability to 
estimate the parameters of hidden states from the outcome. 
The history of the model began in the 1960s and 1970s, when 
Baum et al. investigated the mathematical property of the 
probabilistic function of Markov chains [2, 3, 4, 5]. In the 
1980s and 1990s, the technology expanded to wider 
applications, including speech recognition [6], genomic 
analysis [7], finance forecasting [8], and online signature 

recognition [9] In the life science field, the HMM is mainly 
used for bioinformatics, including genetic linkage maps [10] 
distinguishing coding regions in DNA [11], protein modeling 
[12], and the estimation of the genotype and copy number 
[13]. Other implementations include cancer segmentation in 
MRI data [14] and the analysis of kidney disease data [15]. 

The HMM was originally a method for dealing with 
single-process sequential data. Thus, it is natural to extend its 
application to repeated measure data. Wang et al. used a 
hidden Markov Poisson regression (MPR) model [16], and 
Crespi et al. used a hidden semi-Markov model [17]. Altman 
made a breakthrough for this model in 2007 [18]. In this 
paper, she incorporated random effect into the HMM 
likelihood function, and applied it to multiple sclerosis data. 
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With this extension, the mixed hidden Markov model 
(MHMM) could be applied to clinical research data with 
repeated measurements. Kenneth et al. used this model to 
analyze alcohol consumption data [19]. Bartolucci et al. 
expanded it to develop shared parameter models to apply 
missing data [20], but it has room for improvement. For 
example, the distribution which random effect follows is 
limited to discrete distribution. Marino et al. proposed a 
mixed hidden markov quantile regression model in 
conjunction with MHMM and quantile regression and 
applied to CD4 count data in HIV patients [28]. They also 
examined multiple integral problems in Gaussian quadrature 
method in MHMM [29]. De Ruiter et al. analyzed blue whale 
behavior using multivariate MHMM [30]. 

The properties of the single-process HMM parameters have 
also been examined. Leroux proved the consistency of the 
maximum-likelihood estimator, under certain regularity 
conditions [21]. Bickel et al. showed the asymptotic normality 
of the maximum-likelihood estimator (MLE) of the HMM [22]. 
However, in relation to a multi-process HMM like an MHMM, 
almost no conclusions about the estimator’s property have 
been reported. This paper reports some simulation results for 
this problem. In this paper, a maximum-likelihood estimation 
via the direct maximization mentioned in Altman [18] is 
performed, and proposed an approximated likelihood function 
that reduces computational resources. This approximated 
likelihood function is refered in section 3. 

This paper consists of six sections. Section 2 gives some 
notations for the models and symbols used throughout this 
paper, section 3 describes the inference method for the HMM, 
and section 4 reports some simulation results. Section 5 gives 
descriptions of the actual data analyzed, and shows the 
analysis results. In section 6, a global discussion and some 
challenges for the future are provided.  

2. Notations 

2.1. Markov Chain 

This section provides definitions for some basic ideas. 
First, throughout this paper, Bold letters are used to denote 
vectors, and small letters for scalars, for example, ���� ≔���, ��, … , ���. Then, a Markov chain is defined as follows. 
Let 
, �	 ∈ 	ℕ and 1 ≤ � ≤ 
 represent sequence points, and ���|1 ≤ �� ≤ �� be a series of discrete random variables. 
Then, ���� is called a Markov chain with state size s when 
it satisfies Pr���|����� = Pr	���|�����  for 1 ≤ ∀� ≤ 
 , 
which means the current state ��  depends only on the 
previous state, and is naturally independent of 
����, ����, … , ��. The Markov chain is called homogeneous 
when it satisfies  !���"� = 	#|�� = $� =  !��� = 	#|�� = $� 
for 1 ≤ ∀� ≤ 
. The Markov chain is distinguished by some 
parameters. One of these is the transition probability 
%&' ≔  !��( = #|�) = $� for	1 ≤ , ≤ - ≤ 
	and	1 ≤ $, # ≤ � . 
This is sometimes specified in the matrix form 1:= �%&'�, 
which is denoted as a transition probability matrix (TPM). 
Another parameter is a probability indicating the initial state 
for the Markov chain, called the initial distribution 

3:= �3�, … , 34|3&: = Pr��� = $� for	1 ≤ $ ≤ �� . For � = 1 , 
the Markov chain probability cannot be calculated because 
no previous state exists. Thus, parameters need to be 
specified. The initial probability can also be set by solving 
simultaneous equations = 31,∑ 3' = 14'6� . In this case, the 
HMM is called stationary. In this paper, homogeneous 
Markov chains are considered. 

2.2. HMM 

Now, the HMM is defined. Outcome 7 and latent state X 
are already defined as satisfying the Markov property. It is 
assumed that 7 is discrete. The pair of sequence �7� , ����6��  
is called an HMM when it satisfies  !�7�|�� , 7���� = !�7�|���. The defining characteristics of an HMM consist of 
three kinds of parameters: 1) state-dependent density 
parameters such as 9 for the mean of a Poisson distribution, 2) 
a TPM, and 3) the initial distribution, which represents the 
probability of the initial state for the Markov chain. 

2.3. MHMM 

The MHMM is an extension of the HMM that incorporates 
random effects to explain the between-cluster variability. To 
define a new model, Altman used generalized mixed effect 
models within an exponential family framework, which treats �7��� , where 1 ≤ : ≤ ;  represents certain clusters (e.g., 
patients, sites), as a conditional distribution: let < ≔��='�'6�4 , �>`'�'6�4 , @� represent all of the model parameters, 
and for certain functions a , c , B , C�D��|��� = #, ,, <� =
exp	�HIJKIJL�M�KIJL�N�O� + B�D�� , @��  and Q��' = =' + R`��>' +
S`��',, where =' is a fixed effect when ��� = #, with	R`��  a 
covariate for :  and � , let ,  be a random effect [18]. The 
MHMM is denoted as �7�� , ����. 
2.4. Discrete Repeated Measure Data 

Discrete repeated measure data are data that are discrete 
versions of repeated measurements. Repeated measurements 
are longitudinal data collected over time for a certain cluster [1, 
23, 24]. The cluster could be a subject, but could also easily be 
a rat, tree, field, country, or site. One typical example is the 
data taken from longitudinal studies. The main purpose of 
collecting this kind of data is to answer a scientific question 
such as the efficacy of a drug.  

3. Inference Method 

This section describes the inference method for the 
MHMM parameters in detail. First, a likelihood function is 
proposed. Let �7�� , ���� be the HMM as previously defined, 
and let’s be the number of states of a latent Markov chain. Let 1  be a transition probability matrix, and 3  be the initial 
probability. 

Various methods could be used to estimate the HMM 
parameters. Generally, when estimating mixed effects model 
parameters, Restricted Maximum Likelihood (REML) [25] 
are used, but its application to the MHMM has not been fully 
investigated. Altman proposed some methods to estimate 



 American Journal of Theoretical and Applied Statistics 2017; 6(6): 290-296 292 
 

HMM parameters [18], including 1. the 
expectation-maximization algorithm, 2. direct maximization, 
3. Monte-Carlo expectation-maximization algorithm 
(MCEM), and 4. simulated maximum likelihood. In this paper, 
the direct maximization method are used. Even though the 
EM algorithm is said to be "notoriously slow" [18], it is a very 
common method for estimating single-process HMM 
parameters. The difference is that when it comes to repeated 
measurement data, the random effect variables will increase in 
conjunction with an increase in the number of clusters. In the 
direct maximization method, random effect variables are 
marginalized using numerical integration, but this may cause 

an underestimation of the variance parameter value. This can 
be considered in the future. Because the Bayesian method 
allows freer modeling, it may provide more accurate estimates. 
The application of hierarchical Bayesian modeling can also be 
considered in the future. 

3.1. Likelihood Function 

Let the density function for each 7��  be C. Let the density 

for the hidden state be T, and the density for the random effect 

be ℎ. Then, the likelihood function for the MHMM can be 
written in the following form: 

V�<; D� = 	X YC�D|R, ,, <�T�R; 	<�ℎ�,; 	<�
Z

B,)
=	X Y[\\C�D��|R�� , ,, <�

�I
�6�

]
�6�

^
Z) 	× 	[\`aIb\%aI,Jcb,aIJ	

�I
�6�

]
�6�

^ ℎ�,; 	<�B,
= 	X \[YR��C�D� 	|R��, ,, <�aI

×	\%aI,Jcb,aIJ	C�D�� , ,, <�
�I
�6�

^C�,; 	<�B,	]
�6�)

The summation part for each i is a regular HMM likelihood 
function. Thus, this can be more simply expressed as a product 
of matrices. More specifically, for each , , ��� ≔ �3�C�D��	|��� = 1, ,�, … , 34C�D��	|��� = �, ,��, ���: =d�'e�� f, where	�'e�� : = 	 %'eC�D�� 	|��� = i, ,�, � > 1. Then, it can 
be described as follows:  

V�<; D� = 	X \k�����′ m\����
�6�

n1′o]
�6�) C�,; 	<�B,	 

In particular, suppose that a random effect is unique per 
subject and id. Then, the equation will be as follows:  

V�<; D� = 	\X k�����′ m\����
�6�

n1′o)I
]
�6�

C�,�; 	<�B,� 	 
3.2. Approximated Likelihood Function 

Integrating a function is sometimes difficult using computer 
calculations. The simplest way to deal with this problem is to 
use a numerical integration technique. Let C be a function 
and from definition a one-dimensional integral, and let �p, q� 
be a certain interval where r C�-� ; 	<�B-�sN ≒ 1 ,V�<; D� ≒	∏ ∑ s�Nv w������′�∏ �����6� �1′�C�-'; 	<�xv'6y]�6� , where M is 

an appropriately large positive integer and -' = p +�s�N�'v , ��� ≔ �3�C�D��	|��� = 1, -'�, … , δ4C�D��	|��� =�, -'��, ���: = d�'e�� f, where	�'e�� : = 	 %'eC�D�� 	|��� =i, -'�, � > 1. This form is called an approximated likelihood 
function and is quite easy to compute. 

3.3. Maximum Likelihood Estimation 

For a single-process HMM, the most common method for 

computing the estimator of the MLE seems to be the Baum–
Welch algorithm [2], which is the HMM version of the usual 
EM algorithm. However, for the MHMM, the EM algorithm 
converges very slowly, because this method attempts to infer 
each random effect individually, which causes the number of 
parameters to increase with the number of cluster elements. In 
this study, the direct maximization via Newton–Raphson 
method is selected. This method is very reasonable because a 
variance-covariance matrix of the parameter estimator is 
obtained at the same time, by inversing the observed Fisher 
information matrix.  

3.4. Asymptotic Normality 

The biggest issue with this method is the asymptotic 
normality of the estimator, which has not yet been thoroughly 
examined. For a single-process HMM, Leroux proved the 
consistency of the MLE [21], and Bickel showed asymptotic 
normality [22] under sine regularity conditions. In a later 
section, the asymptotic normality will be examined via 
simulation results, showing that this assumption is almost fine. 

3.5. Statistical Test 

Sometimes there is a need to test some statistics and clarify 
whether a certain parameter estimation value is significant, 
such as in the case of an observational study, like a drug 
efficacy investigation. After confirming the asymptotic 
normality of the MLE for the MHMM, conducting an 
approximate Wald-type test [23] will be very reasonable. This 
can be denoted as {/}~, where the SE value of the maximum 

likelihood estimator can be given by 1/����V~� , and ���V~� is the Fisher information of the parameter replaced 
by the observed Fisher information. 
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4. Simulation 

This section reports simulation results that confirm the 
asymptotic normality and consistency of MLEs as the number 
of time points increases.  

4.1. Model 

First, the simulation details are described. The assumptions 
of the simulation were as follows. It was a small clinical trial 
to assess the efficacy of an investigational drug. The target 
disease was chronic and the condition of a patient transitioned 
between relapse and remission, satisfying the Markov 
property, with the outcome following a Poisson distribution. 
The number of states of the Markov chain } is set to 2, and 
the Markov chain is supposed to be stationary. The number of 
time points 
 is 5, 10, 20, 30, or 40, and h ∈ �A, P�. The 
number of subjects is set to 10, which is denoted as : = 1,... 10. 
In addition, : = 1 to 5 is set as group A, : = 6 to 10 is group P, 

����� is the latent hidden state, R�� = �0, ℎ� = P1, ℎ� = A,R�� ∈ ℝ are 

the covariates of each :, and �>�, >�� are the coefficients for 
the covariates. �7���  follows a Poisson distribution, as 
specified below. 

7��|��� , ,�~Poisson����"�baIb"��aI�")I� 
Here, ,�~��0, �������� , and �τ�, τ��  are supposed to 

fixed effects corresponding to �R��, R���. The TPM for ����� 
is 1 = � γ��` 1 − γ��`1 − γ��` γ��` � , where %��` ≔ �

�"�a����bb� , 	%��` =

�
�"�a�	������ , to avoid setting the boundary constraint to a 

parameter during the estimation. This Markov chain is already 
supposed to stationary. Thus, no initial distribution parameters 
are needed.  

The simulation is executed as follows: 
1. Construct a system that generates sample data following 

the MHMM, as previously mentioned.  
2. Set the true values for the parameters in the system.  
3. Execute the MHMM parameter estimation program for 

the sample data.  
4. Record the estimated value.  
5. Return to step 1 and iterate until the iteration count 

reaches a pre-specified value.  
The true values are specified in Table 1. After execution, the 

results and calculated the sample mean of the MLEs for each 
parameter value are summarized, with the 5 percentile point 
and 95 percentile point for the 90% confidence interval. 

SAS 9.4 are used for the computation, and executed the 
direct maximization using the Newton–Raphson method via 
the NLPNRA subroutines of SAS/IML. To integrate the 
random effect, the quadrature points of the Gaussian 
quadrature were set to 60, and range was set to (-3, 3), because 
the likelihood function had a value of zero outside of the range. 
Each iteration number is set to 300.  

4.2. Simulation Results 

Table 1 lists the simulation results. 

Table 1. Sample Mean (5 Percentile, 95 Percentile) of the Parameter Estimates under T=5, 10, 20, 30, 40. 

 Number of Timepoints 

Parameters True values 5 10 20 30 40 �� 1 1.406 (-1.199,4.923) 1.292 (-0.846,3.914) 1.092 (-0.448,2.91) 1.097 (-0.041,2.708) 0.866 (0.209,1.697) �� 2 2.434 (-0.149,6.054) 2.17 (0.119,5.061) 2.108 (0.573,3.918) 2.084 (0.953,3.579) 1.863 (1.195,2.603) %�� 1.5 1.443 (0.128,2.885) 1.517 (0.765,2.325) 1.524 (0.938,2.051) 1.535 (1.083,2.015) 1.513 (1.167,1.826) %�� 0.5 -0.091 (-3.799,1.851) 0.451 (-0.514,1.466) 0.491 (-0.029,0.984) 0.456 (0.072,0.955) 0.458 (0.105,0.863) >� 1 1.166 (-0.12,2.846) 1.018 (-0.237,2.266) 1.149 (0.247,2.021) 1.193 (0.486,1.987) 1.115 (0.851,1.706) >� 0.5 0.643 (-1.386,2.448) 1.157 (-0.676,2.738) 0.781 (-0.13,3.041) 0.831 (0.217,1.855) 0.756 (0.31,1.077) ��N��l 0 -0.204 (-0.523,0.318) -0.169 (-0.457,0.35) -0.052 (-0.346,0.335) -0.103 (-0.313,0.367) -0.032 (-0.295,0.298) 

 

For T = 5, some parameters were not well estimated. For 
example, the sample means of τ�, τ�  were overestimated. 
However, with T = 10, these values were improved, and with T 
= 20 and 30, the sample means almost coincided with the true 
values. For T = 40, the sample means of τ�, τ� were a little bit 
far from the true value, but other parameters were precisely 
estimated. In terms of the confidential interval, the width 
became narrow as T increased for all the parameters. In 
addition, for T = 5, some skewness of the sample distribution 
are observed, with the interval between the 5 percentile to 
sample mean smaller than the range between the sample mean 
and 95 percentile point. However, as T increases the 
disproportion tends to improve. On the other hand, the 
variance component of the random effect tends to be 
underestimated for all values of T. It is considered that this is 
because, if less between-patient variability is observed, the 
estimated value tends to be smaller. Overall, the consistency 
and asymptotic normality of the MHMM parameters in 
relation to the time points are very reasonable. In addition, the 

confidential interval of >�  straddles zero at T = 5, but the 
range decreases as T increases. At T = 10, the 5 percentile 
point (lower value of confidential interval) is almost equal to 
zero, but at T = 20, 30, and 40, the 5 percentile value is 
obviously greater than zero. Thus, the drug efficacy can be 
detected, and it is concluded that as far as the situation of this 
simulation, a precise estimation can be performed if the 
number of time points is greater than 20. 

5. Application  

5.1. Background 

This section gives a detailed description of an actual data 
application. The study was a randomized, double-blind, 
parallel group multi-center study to compare a placebo with a 
new anti-epileptic drug (AED), in combination with one or 
two other AEDs. The datasets were obtained from the 
supplemental materials of Molenberghs et al. [26]. 
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The study is described in full detail in Faught et al. [27]. 
The outcome of interest was the number of epileptic seizures 
experienced during the last week, i. e., since the last time the 
outcome was measured. The key research question was 
whether or not the additional new treatment reduced the 
number of epileptic seizures.  

Table 2 lists the descriptive statistics for the demographic 
variables. There was no significant difference between the 
placebo arm and treatment arm. 

Table 2. Descriptive statistics for demographics of epilepsy data. 

  Plcebo Treatment 

N 45 44 

Sex Male 36 38 
 Female 9 6 
Age Mean 36.22 33.77 
 Min 19 20 

  Plcebo Treatment 

N 45 44 

 Max 68 58 
 Std. Dev 11.56 8.189 
Weight Mean 169.48 180.90 
 Min 88 97 
 Max 270 264 
 Std. Dev 36.53 36.44 
Height Mean 68.51 69.00 
 Min 59 60 
 Max 75 76 
 Std. Dev 3.82 3.45 
Baseline Sererate Mean 15.98 23.65 
 Min 4.00 4.30 
 Max 73.70 198.30 
 Std. Dev 16.10 34.10 

The spaghetti plot of the epileptic seizure counts for each 
treatment group is shown below.  

 

Figure 1. Epilepsy counts by Treatment Group. 

Verbeke et al. applied a generalized linear mixed effect 
model with a Poisson regression to these data [23], which 
include a random intercept as well as a random slope. The 
problem with this method is that the model assumes that the 
data have a tendency to increase or decrease over time. 
However, in Figure 1 the transitions of the outcomes are more 
stationary. Thus, the assumption does not seem reasonable. 
Furthermore, there are some outstanding values, and the usual 
Poisson regression model with identical random effects within 
patient data is difficult to use to describe that phenomenon. 
The MHMM can deal with this problem, and effectively 
explain the stationarity and transition of the disease state. The 
treatment effects are evaluated using p-values based on Wald 
tests, with the level of significance set to 0.05. 

5.2. Application 

This section describes how to apply the MHMM model to 
epilepsy data. Let 7���  be the epileptic seizure counts for 

subject :, time point t, and treatment arm ℎ ∈ � ,  �, where P 

= placebo and D = drug, and �¡��� is the hidden state. It is 
supposed that ¡�� ∈ �1, 2�, which represents the remission 
and relapse of the disease state. The distribution for 7��� is 
supposed to follow a Poison process, which has the mean £���, 
with £��' = �R¤	�	=' + >�'R�' 	+ ,�� , where R�' =
�0	:C	ℎ =  	1	:C	ℎ =   . The parameters are set using the same method as 

used in the simulation. Random effect ,�~��0, ��������, and �τ�, τ�� are fixed effects corresponding to the hidden state. 

The TPM for �¡���  is 1 = � γ��` 1 − γ��`1 − γ��` γ��` � , where %��` ≔
�

�"�a����bb� , 	%��` = �
�"�a�	������ , and ¡��  is assumed to be 

stationary. 

5.3. Result 

The results are listed in Table 3. 
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Table 3. Analysis results using MHMM. 

Parameters  Estimate Observed Standard Error P-Value 

τ� -0.615806 0.1795157 - τ�  1.130064 0.1521669 - %��  1.515724 0.2614786 - %��  2.085650 0.1902266 - >¥� -0.074923 0.2218215 >0.05 >¥� -0.127366 0.1720933 >0.05 ��N��  0.052522 0.0421172 - 

It is also denoted that the TPM 

1 = ¦0.8199079 	0.18009200.1104994 	0.8895006®  and ,�~��0, 1.1107595� . The 

results show that the treatment effects are managed to decrease 
the outcome, but no significant differences are detected. In 
relation to the transition probability, as it can be seen from the 
TPM, it was relatively difficult for the state transition to occur, 
so the data were almost in the remission state. Thus, an 
inference on the parameter associated with the relapse state 
may not have worked well. This point will need further 
investigation. Overall, the analysis results effectively 
explained the phenomenon.  

6. Conclusion 

To summarize, MHMMs are imprementedand examined 
the asymptotic normality and consistency in relation to the 
time points via a simulation study. The results showed that 
both properties were reasonable, and if the time points are set 
to more than 20, good inference values are obtained in the 
situation that are set. An application to actual study data are 
investigated and found that it effectively interpreted the data. 
Our future tasks include the application of random effects to 
the transition probability matrix, which will cause the Markov 
chain to become non-homogenous and produce some 
difficulty explaining the correlation between random effects. 
It is easy to assume that all of the effects are independent, but 
this causes divergence from reality. Second, in this simulation 
study missing outcomes and subject dropout are not 
considered, but these are unavoidable in an actual study, 
especially long-term observational trials. Hence, the authers 
are planning to handle these problems by using a shared 
parameter model (SPM). An SPM is a model that is used to 
treat missing data in a longitudinal study, in which the missing 
process is non-informative. 
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