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Abstract: Disease mapping studies have found wide applications within geographical epidemiology and public health and 

are typically analysed within a Bayesian hierarchical model formulation. The most popular disease mapping model is the 

Besag-York-Molli´e model. A distinguishing feature of this model is the use of two sets of random effects: one spatially 

structured to model spatial autocorrelation and the other spatially unstructured to describe residual unstructured heterogeneity. 

Very often the spatially unstructured random effect is assumed to be normally distributed. Under practical situations, this 

normality assumption is found to be over restrictive. In this study, we investigate a more robust spatially unstructured random 

effect distribution by considering the Inverse Gaussian (IG) distribution in the disease mapping problem. The distribution has 

the normal distribution as special case. The inferences under this model are carried out within a bayesian hierarchical model 

formulation implemented in WinBUGS. The IG distribution is introduced in WinBUGS using zero tricks. The usefulness of the 

proposed model is investigated with a simulation study and applied in real data; mapping HIV in Kenya. In this work we 

showed that the IG distribution can produce better results when the normality assumption is violated due to the skewness of the 

data. For the case of data in which the random effects are truly normal, the IG distribution adjusts to a normal distribution as 

dictated by the data itself. On the other hand, the spatially structured random effect is normally modelled using the intrinsic 

conditional autoregressive (iCAR) prior. This prior is improper and has the undesirable large scale property of leading to a 

negative pairwise correlation for regions located further apart. In addition, the BYM model presents some identifiability 

problems of the spatial and non-spatial effects. In this work, we consider Leroux CAR (named lCAR hereafter) prior, a less 

widely used prior in disease mapping, as the prior distribution for the spatially structured random effects. 

Keywords: Disease Mapping, Spatial Analysis, Random Effects, Bayesian Analysis, Markov Chain Monte Carlo,  

Inverse Gaussian Distribution 

 

1. Introduction 

Disease mapping is the study of the geographical or spatial 

distribution of health outcomes. Over the past few decades 

and with the advent of computational methods and statistical 

methodology, and availability of spatially-referenced data 

and software tools, disease mapping has increased in 

popularity in epidemiological research [1, 2]. Particularly for 

modeling rare diseases, it is critical to consider spatial 

variabilities in order to reliably conduct inference or 

prediction about the process under study. In disease mapping, 

usually the object of analysis is to provide (estimate) the true 

relative risk of a disease of interest across a geographical 

study area (map). Disease mapping is useful for several 

purposes such as health services resource allocation, disease 

atlas construction and in formulation of hypotheses about 

disease aetiology. Several statistical reviews on disease 

mapping have been done [3, 4, 5, 6, 7]. 

Most of the work in spatial disease mapping considers the 

Besag-York-Molli´e model (BYM) proposed by [8] which 

includes two spatial effects: one assuming a Gaussian 

exchangeable prior to model unstructured heterogeneity and 

another one assuming an iCAR prior for the spatially 

structured variability. Assumption of normality on the 
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uncorrelated random effect in models is common. However, 

under practical situations, this normality assumption can be 

incorrect because some random effects can be skewed 

violating this general normality assumption, see [9, 10]. In 

this study, we investigate a more robust spatially unstructured 

random effect distribution by considering the Inverse 

Gaussian (IG) distribution in the disease mapping problem. 

The IG distribution is a member of the exponential family 

and it offers a convenient modeling for positive right skewed 

data. It has two parameters, the location parameter, � and the 

scale parameter	�. The normal distribution is obtained as a 

limiting case for the IG distribution. On the other hand, the 

iCAR prior that is usually used for modeling spatially 

structured random effect is improper and has the undesirable 

large scale property of leading to a negative pairwise 

correlation for regions located further apart [11, 12]. In 

addition, the spatial and non-spatial effects in the BYM 

convolution model are not identifiable from the data [13, 14]. 

In this work, we also consider the Leroux CAR prior 

proposed by [15] as the prior distribution for the spatially 

structured random effects. This prior has been shown to 

outperform the iCAR prior [16]. 

This paper is organized as follows. In section 2, a review 

of the BYM and Leroux CAR models is given. Section 3 

focuses on the IG distribution and discusses its limiting 

distribution, while a simulation to study the effect of 

misspecifying the random effects is conducted in Sections 4. 

In section 5, the models discussed are used to analyse the 

HIV data from 2012 Kenya Aids Indicator Survey (KAIS). In 

section 6, we present discussions and finally conclusion is 

given in section 7. 

2. Review of the BYM and the Leroux 

CAR Models 

2.1. BYM Model 

Consider a study region subdivided into n contiguous 

areas. Let ��  and ��  denote, respectively, the observed and 

expected counts for a disease in the �th area	(� = 1, . . . , ). 
Expected counts for each area can be obtained by applying a 

standard table of group-specific sex and age rates to each 

area-specific background population, subdivided by age and 

sex. The Besag-York-Molli´e (BYM) model has the 

following set of assumptions: 

	 ��~Poisson(����)
log(��) = �� + �� + ��	                              (1) 

in which �� = ����  describes the effect of area-level 

covariates �� , whereas vectors � = (��, . . . , ��)  and � =
(��, . . . , ��) represents spatially unstructured and structured 

random effects respectively. The implied prior on  = � + � 

is termed a ‘convolution prior’ since it is the sum of two 

independent components. Specifically, the following priors 

are assumed: 

	�|"# ∝ "#
%&'
( exp ,− ./

0 ∑ ��0�
�2� 3	                      (2) 

�|"# ∝ "4
%&'
( exp ,− .5

0 ∑ 6�� − �78
0�

7~� 3 = "4
%&'
( exp ,− .5

0 ��9�3                                                 (3) 

where :~�  denotes the set of all unordered pairs of 

neighbours, i.e., regions sharing a common border, and hence 

the sum over all such sets can be written using a precision 

matrix Q. Here �  is a zero mean white noise Gaussian 

process with precision "#; i.e � ∼ <(0, "#>�?) and � is a first 

order intrinsic Gaussian Markov random field [17] with 

precision 	"4 ; i.e � ∼ <(0, "4>�9>)  where 9>  denotes the 

generalized inverse of	9. The resulting covariance matrix of 

  is 

	Var( |"# , "4) = "#>�? + "4>�9>	                    (4) 

The full conditional distributions of ��  given all the 

remaining components �>� = (��, . . . , ��>�, ��C�, . . . , ��)  can 

be expressed as follows: 

	��|�>� , "4~Normal , �
�F
∑ �7�
7~� , �

�F.5
	3               (5) 

This conditional distribution for �  is called the intrinsic 

conditional autoregressive (iCAR) prior distribution. 

2.2. Leroux CAR Model 

In the BYM model, the structured and unstructured 

components cannot be seen independently from each other, 

and are thus not identifiable [13, 14]. That is, each data 

point is represented by two random effects but only their 

sum �� + �� is identifiable. An additional challenge, which 

makes the choice of hyperpriors more difficult, is that �� 
and �� do not represent variability on the same level. While 

"#>�  can be interpreted as the marginal variance of the 

unstructured random effects, "4>� controls the variability of 

the structured component �� , conditional on the effects in 

its neighbouring areas [7, 18]. [15] proposed an alternative 

model formulation to make the compromise between 

unstructured and structured variation more explicit. Here,   

is assumed to follow a normal distribution with mean zero 

and covariance matrix 

Var( |"G , H) = "G>�I(1 − H)? + H9J	>�	             (6) 

where H ∈ I0,1J	  denotes a mixing parameter. The model 

reduces to a model with independent (exchangeable) random 

effects if H = 0 and to the iCAR model when	H = 1, see [16, 

14, 11]. 

The univariate full conditional distribution of ��  is given 

by: 

	��|�>� , "4~Normal , L
(�>L)C�FL

∑ �7�
7~� , �

I(�>L)C�FLJ.5
	3	  (7) 

The basic idea of these models is that, conditional upon 

its neighbours, ��  is independent of all �7 s at non-

neighbouring areas. A neighbouring structure needs to be 
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specified. Many structures have been proposed in the 

literature. In this study, we follow the most popular 

approach: areas are considered to be neighbours if they 

share a boundary, and information about neighbouring is 

summarised in the  ×  matrix N, whose entries O�7 = 1 

if areas � and : share a boundary and 0 otherwise (O�� = 1 

completes the specification). 

The posterior distribution can be sampled using McMC 

algorithms such as the Gibbs or Metropolis-Hastings 

samplers. In this study, we use a Gibbs sampler as 

conditional distributions for the parameters were available in 

that formulation. 

3. The Inverse Gaussian Distribution 

Several authors, [9, 7, 8, 19], have suggested that it is 

possible to replace the normality assumption of the spatially 

unstructured random effect with other choices such as the 

Laplace distribution or the Student's P  distribution. For 

instance, [9] used generalized Gaussian distribution. In this 

work we explore the use of the IG distribution as a candidate 

for the unstructured random effects. 

Definition: A random variable Y is said to have an IG 

distribution if its probability density function is given by; 

Q(R|�, �� = , S
0TUV3

0 exp ,>S(U>W�(0W(U 3 , R > 0, � ∈ ℝ, � > 0	 (8) 

The mean and the variance of this parametrized IG 

distribution is given by �(�� = �  and Z[\(�� = �] �⁄ .  In 

GLMs, the parametrization �, _0 = 1 �⁄  is normally used. 

The normal (Gaussian) distribution is obtained as a 

limiting case of IG distribution when � → ∞  (or _0 → 0). 

See [20] for further discussions on statistical properties of 

this distribution. 

4. Simulation 

In this section, we carry out a simulation study to 

determine the effect of wrongly specifying the distribution of 

the random effect in a BYM model. Two scenarios were 

considered in the simulation. In the first simulation, the 

dataset is generated through a random effect �  which 

assumes IG distribution as follows: Assuming that there are 

50 geographical regions and b�  is the number of disease 

counts observed in region �  and ��  is the corresponding 

expected counts in that region. Without loss of generality, we 

further assume that no covariates are available for use. 

Step 1: Generate 50 values of � ∼ ?cd(0.5,1�. 
Step 2: Set � = 30 for all the regions. 

Step 3: Calculate the relative risk � = log(�� 
Step 4: Calculate = � × � 

Step 5: Generate the observed counts as 

b~Poisson(50,gh[ = �� 
In the second scenario, the procedure above is repeated 

but changing the random effect generation mechanism in 

step 1, as � ∼ <(0.5,0.125� . We fitted two Bayesian 

hierarchical models for the data set. The models were 

specified based on different assumptions on the random 

effects as follows: 

	 ��~Poisson(�����
log(��� = log(�� + �� 	                              (9) 

with  

a. Model a: �� ∼ ?cd(0.5, �� 
b. Model b: �� ∼ <(0.5, _0� 
The estimated relative risk 	�jk = log	(��� . The simulation 

steps above were repeated g = 1000 times. To compare the 

two models, we calculated the mean squared error (MSE), for 

each model, using the formula: 

lm� = 1
1000 n

1
50n

1
50

op

�2�

�ppp

72�
6�q�7 − ��780	

The model with a small MSE provides the best fit. 

In the second scenario, the procedure above is repeated but 

changing the random effect generation mechanism in step 1, as 

�~<(0.5,0.125� . From the simulation results, the inverse 

gaussian random effect is seen to perform well even in cases 

where the random effect strictly follows a normal distribution. 

In Table 1, the IG distribution produces lower mean squared 

error values as compared to the normal distribution in both 

cases. When the random effects are generated using IG 

distribution, the loss in efficiency incurred for using normal 

random effects is 4.7%. When the random effects are 

generated using normal distribution, the IGD still has a lower 

MSE compared to the normal counterpart. The loss in 

efficiency for this case is low at 2.1%. 

Table 1. Model comparison under simulation. 

Generating distribution Parameters used Model used MSE % loss in Efficiency 

Inverse Gaussian � = 	0.5, � = 1 
Normal 0.09836 4.7 

IGD 0.09395 0 

Normal � = 	0.5, _0 = 0.125 
Normal 0.05135 2.1 

IGD 0.05028 0 

 

5. Application to HIV Data 

In this section we apply the model to HIV data collected 

by the Ministry of Health, Kenya. The data was extracted 

from the 2012 Kenya Aids Indicator Survey (KAIS), 

conducted by the Government of Kenya. The main objective 

of survey was to collect high quality data on the prevalence 

of HIV and sexually transmitted infections (STI) among 

adults, and to assess knowledge of HIV and STI in the 
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populations. The survey collected a representative sample of 

households selected from the eight provinces in the country. 

In this study, we focus only on HIV cases among adults, that 

is, men and women in the age of 15-64 years. Two 

questionnaires were used in the survey. The first one is a 

household questionnaire which collected information about 

the household head and the characteristics of the dwelling 

place. The second one, the individual questionnaire, collected 

information from men and women aged 15-64 years, about 

their demographic characteristics, and their knowledge on 

HIV and STI. All women and men aged 15-64 years in 

selected households who were either usual residents or 

visitors present the night before the survey were eligible to 

participate in the individual interview and blood draw, 

provided they gave informed consent. 

The following eight models were fitted: 

��~Poisson(��) 
with 

1. Model 1:  log(��) = r + log(��) + ��; 	��~<(0, _#0) 
2. Model 2:  log(��) = r + log(��) + ��; 	��~?cd(0.5, �) 
3. Model 3:  log(��) = r + log(��) + ��; 	��~�tuv(_40) 
4. Model 4:  log(��) = r + log(��) + ��; 	��~wtuv(_40) 
5. Model 5:  log(��) = r + log(��) + �� + ��; 	��~<(0, _#0), ��~�tuv(_40) 
6. Model 6:  log(��) = r + log(��) + �� + ��; 	��~<(0, _#0), ��~wtuv(_40) 
7. Model 7:  log(��) = r + log(��) + �� + ��; 	��~?cd(0.5, �), ��~�tuv(_40) 
8. Model 8:  log(��) = r + log(��) + �� + ��; 	��~?cd(0.5, �), ��~wtuv(_40)	 

where ��  and ��  denote, respectively, the observed and 

expected cases of HIV in the �th county (� = 1, . . . ,47). Model 

estimation was carried out using a Bayesian approach. All 

parameters in the models were assigned prior distributions. In 

this analysis, a non-informative normal prior was assigned to 

the fixed effect coefficient	r. The shape parameter � was given 

a gamma prior distribution, and the variance parameters were 

assigned inverse gamma distributions. The models were 

implemented using WinBUGS version 1.4 [21, 22). For each 

model, 6,000 Markov chain Monte Carlo (McMC) iterations 

were ran, with the initial 4,000 discarded to cater for the burn-

in. The 2,000 iterations left were used for assessing 

convergence of the McMC and parameter estimation. We 

monitor McMC convergence using trace plots, see [23]. For 

model comparison, we adopt the deviance information 

criterion (DIC) proposed by [24]. DIC is defined as	d?t =
d + zd, where d is a measure of current model fit and zd is a 

penalty for model complexity. The best fitting model is one 

with the smallest DIC value. The overall loss across the data 

was assessed by the use of the Mean Squared Predictive Error 

(MSPE), which is an average of the item-wise squared error 

loss, lm{� = ∑ ∑ 6R� − R�7|}8
0 (c × g)~7�  with R�7|}  being 

the predictive data item at iteration	:, g being the number of 

observations and c is the sampler sample size. The best model 

for prediction is the one with the lowest MSPE value. The 

results for this analysis are given in Table 2 below.  

Table 2. Model comparison in mapping HIV in Kenya. 

Model � ��
� ��

� � � ��	 ��� MSPE 

Model 1 -0.09 (-0.09, -0.09) 0.86 (0.86, 0.86) - - - 75.30 693.13 50590 

Model 2 -2.94 (-2.96, -2.92) 0.28 (0.00, 3.69) - 0.12 (0.10, 0.15) - 46.61 637.16 50320 

Model 3 -0.21 (-0.21, -0.21) - 1.24 (1.11, 1.37) - - 133.23 928.30 76130 

Model 4 0.02 (-0.01, 0.05) - 1.03 (0.91, 1.15) - 0.73 (0.60, 0.87) 46.97 636.48 50610 

Model 5 -0.23 (-0.25, -0.20) 0.24 (0.20, 0.28) 1.22 (1.07, 1.36) - - 67.05 676.60 50490 

Model 6 0.09 (0.06, 0.11) 0.27 (0.21, 0.29) 0.95 (0.84, 1.06) - 0.75 (0.62, 0.88) 46.95 636.44 50880 

Model 7 -0.90 (-0.97, -0.84) 0.48 (0.00, 11.28) 0.79 (0.68, 0.91) 0.67 (0.50, 0.84) - 54.23 651.03 58030 

Model 8 -1.00 (-1.02, 0.99) 0.24 (0.00, 2.59) 0.77 (0.66, 0.89) 0.57 (0.40, 0.74) 0.66 (0.50, 0.82) 46.73 636.03 50190 

 

From table 2 above, it can be seen that models whose 

unstructured random effects follow IG distribution have quite 

small DIC values in comparison to the models with normally 

distributed unstructured random effects. Similarly models 

whose structured random effects are modelled with lCAR 

prior distribution have smaller DIC values as compared to 

models with the iCAR distributed structured random effects. 

This confirms that the IG and lCAR prior models produce 

better results than the popular normal and iCAR prior 

models. In particular, the IG convolution model (model 8) 

provides the smallest DIC value. Thus, Model 8 is the best 

model in terms of goodness-of-fit measures. It also has the 

lowest MSPE value as compared to the other models 

indicating that it has a good predictive behaviour. Figure 1 

shows the spatial distribution of HIV in Kenya in 2016 based 

on the best fitting model (model 8). This is a map of relative 

risk and its corresponding credible interval. 
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Figure 1. HIV relative risk map (a) and the corresponding 95% lower (b) and upper (c) credible limits maps, respectively, produced by model 8. 

6. Discussion 

Correlated data are usually modelled using generalized 

linear mixed effects model through the inclusion of subject-

specific, random effects. Very often such random effects are 

assumed to be normally distributed. The normality 

assumption for the random effects has been both criticised 

and supported by several authors [25, 26, 27]. 

A similar situation arises in disease mapping context. The 

most popular model is the BYM model. This model has two 

sets of random effects: one which is spatially unstructured and 

the other which is spatially structured. The spatially 

unstructured random effect is usually assumed to have a 

Gaussian exchangeable prior distribution. However, this 

normality assumption can be incorrect and too restrictive 

because some random effects can be skewed violating this 

general normality assumption, see [9, 10]. The spatially 

structured component is usually modelled by an iCAR prior 

distribution. However, this prior has been shown to produce 

negative correlations for regions located further apart [11, 12]. 

In addition, the variance components in the BYM convolution 

model are not identifiable from the data; see [13]. 

This study has revealed that more robust and flexible 

distributions for the random effects can be used to improve 

the model fit in disease mapping models. In particular, we 

have considered IG distribution for the spatially unstructured 

random effects. This distribution contains the normal as a 

special case. For the spatially structured random effects, we 

propose Leroux CAR prior [15] which is a less widely used 

prior in disease mapping. 

7. Conclusion 

In this paper, we have shown that models whose 

unstructured random effects follow IG distribution perform 

better than those with normally distributed unstructured 

random effects. Similarly models whose structured random 

effects are modelled with the Leroux CAR prior distribution 

perform better than those models with the iCAR distributed 

structured random effects. 

We adopt a bayesian modeling approach and assign prior 

distributions to all model parameters. This approach offers 

several potential advantages over classical (e.g. maximum 

likelihood) estimation procedures. First, bayesian inference 

allows us to express uncertainty about model parameters 

through prior distributions. Second, by incorporating recent 

developments in McMC methods [28], including Gibbs 

sampling, bayesian models provide a flexible way to handle 

complex non-linear regressions such as ours. This was 

implemented easily within WinBUGS. Since the IG 

distribution is not a standard distribution in the WinBUGS 

software, it was introduced in the software using zero tricks. 

We assessed McMC convergence of all models parameters 

by checking trace plots and autocorrelation plots of the 

McMC output. The models were compared using the DIC as 

suggested by [24]. In addition, the overall loss across the data 

was assessed by the use of the Mean Squared Predictive 

Error (MSPE). 

The models were compared using a simulation study and a 

real data set. In the simulation study, it was noted that the 

effect of misspecification of the random effects when the 

normal distribution is used in place of the IG distribution was 

high as compared to using the IG distribution in place of the 

normal distribution. IG distribution is often used as 

alternative to the normal distribution because of the 

similarities between the inference methods for these 

distributions. In fact the normal distribution is a special case 

of the IG distribution. When the random effect distribution 

fails to adhere to the normality assumption due to skewness, 

the IG distribution plays a big role in capturing this, 

something that the normal distribution cannot. 

In the real data sets comparison, it can be seen that models 

whose unstructured random effects follow IG distribution 

generally perform better than models with normally 

distributed unstructured random effects. Similarly, models 

whose spatially structured random effects are modelled with 

Leroux CAR prior distribution perform better than those 

modelled with the iCAR prior. The IG convolution model 

(model 8) is the best fitting model. This model was used to 

produce the county relative risk maps of HIV in Kenya for 

the year 2016. Disease maps play a key role in descriptive 

spatial epidemiology. Maps are useful for several purposes 

such as identification of areas with suspected elevations in 

risk, formulation of hypotheses about disease aetiology, and 

assessing needs for health care resource allocation. 
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