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Abstract: In Oil Palm Breeding trials the plots have palms at vertices of equilateral triangles with side length of 9 m. The 

plots consist of 6x6 = 36 palms, hence a plot is a rectangle of 46.8 x 54m. The number of tested varieties is 20 – 40, the 

experimental design needed is an incomplete block design, with usually 3 replications; the alpha-designs can give a connected 

incomplete block design. Current Oil Palm planting materials are DxP hybrid based on crossing selected dura palms (female 

parents) with pisifera palms (male parents) to produce tenera palms with thin shelled fruits. The crossing scheme of A dura 

and B pisifera is an incomplete diallel if he number of crossings C is smaller than A*B. To make a connected crossing scheme 

the alpha-design can be used. In the analysis of an oil palm breeding trial an additive model of the dura and pisifera effects is 

applied to estimate the general combining ability of the parents after removing the fixed replication effect and the random 

blocks within the replication effects. The analysis can be done with the package SAS or IBM SPSS Statistics with program 

Mixed; further with R and the R package lme4. 

Keywords: Incomplete Block Designs, Alpha-designs, Incomplete Diallel Crossing Scheme,  

Use Alpha-designs for a Connected Crossing Scheme,  

Use SAS or IBM SPSS Statistics with Program Mixed for Analysis 

 

1. Variety Trials of Field Crops 

In 1966 Poland wished to reorganize the variety testing of 

field crops. The director of the in 1966 new founded Polish 

“Centre for Research on Varieties of Agricultural Crops 

(COBORU = Centralny Osrodek Badania Odmian Roslin 

Uprawnych)” in Słupia Wielka, Dr. Eugeniusz Bilski, invited 

J. Hogen Esch, the deputy director of the Netherlands State 

“Institute for Research on Varieties of Field Crops” in 

Wageningen (who was a specialist on potato varieties) and 

the head of the Statistical Department of that Institute, Rob 

Verdooren, to advise COBORU with the set-up of variety 

testing and the design of variety trials to cope with the 

climatic regions in Poland. Early July 1967 we both went to 

Słupia Wielka. The statistical advisor of COBORU, the 

Statistical Lecturer of Academia Rolnicza (Agricultural 

University) in Poznań, Dr. Tadeusz Caliński visited with me 

some variety trials in the surrounding area. Meanwhile we 

were discussing the set up of variety testing. My advice to 

COBORU was to apply Incomplete Block designs in the 

variety trials, because the number of varieties was too large 

to lay down in homogeneous complete blocks, and further to 

use not more than three replications per experimental site but 

instead to go for more experimental sites. This was in 

contrast to the practice of variety-trial designs of the 

“Bundes-Sortenamt” of West Germany (the West German 

state variety trial organization). The combination of the 

results of variety trials in climate zones of Poland turned also 

out to be large incomplete two-way layouts as well.  

But variety trials in incomplete two-way layouts were at that 

time difficult to analyze by hand. The Best Linear Unbiased 

Estimators (BLUE) for varietal contrasts were then very 

cumbersome to calculate, by using matrix inversion for the 

solution of the normal equations. There were no mainframe 

computers available. But in The Netherlands at the 

Agricultural University of Wageningen we had done this 

BLUE analysis already by hand with an iterative method using 

mechanical electrical calculators. Back in 1948 W. L. Stevens 

[14] published an iterative solution to get the BLUE for 

incomplete two-way layouts, but he did not prove that this 

iterative procedure was converging and always gave a solution. 

The Mathematics Professor Dr. Nico H. Kuiper of the 

Agricultural University of Wageningen produced evidence in 
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1952 for the incomplete two-way layouts by the projection of 

vectors [7]. His first staff member, Leo Corsten, obtained his 

PhD degree of the Agricultural University of Wageningen in 

1958, with supervisor Prof. Dr. N. H. Kuiper, in which he 

elaborated the iterative method also for incomplete three-way 

classification designs [4]. In the iterative Kuiper-Corsten 

method for the analysis of incomplete blocks, however, there 

was a missing link, namely for the calculation of the standard 

error of varietal contrasts. 

During my visit in Poland I gave a lecture “The use of 

incomplete block designs in agricultural research and its 

analysis” at the Statistical Department of the Agricultural 

University (Academia Rolnicza) in Poznań. I demonstrated 

how to find the BLUE by hand for a small variety-trial 

example with the iterative Kuiper-Corsten method and 

mentioned that in the analysis of incomplete block designs 

with the iterative procedure, there was a missing link namely 

for the calculation of the standard error of varietal contrasts. 

Later at the 7th International Biometric Conference in 

Hannover in August 1970 Dr. Tadeusz Caliński gave in his 

lecture the solution how the Standard Error of varietal 

contrasts could be derived with the same Kuiper-Corsten 

iterative procedure [2]. 

At the first Working Seminar on Statistical Methods in 

Variety Testing in 1976 Dr. Eugeniusz Bilski of COBORU 

invited Prof. Dr. Leo Corsten and Rob Verdooren from 

Wageningen and Prof. Dr. Desmond Patterson and Mike 

Talbot from Edinburgh (Scotland). Then Prof. Dr. Desmond 

Patterson showed the work by him and his PhD student 

Emlyn Williams about the extension of the Incomplete Block 

designs with alpha-designs. These alpha-designs are very 

useful for Variety Testing because they make it easier to find 

designs for a large number of varieties and different (even 

small) sizes of incomplete blocks. COBORU adopted these 

designs immediately. 

In variety testing we have the problem that we often have a 

large number C of varieties to be compared in just 3 or 4 

replications. A Randomized Complete Block Design, with 

block size k = C, can often not be used if C > 10. To take care 

of the heterogeneous growing conditions in an experimental 

field one can use a Randomized Incomplete Block Design. 

With a smaller block size k < C we can find homogeneous 

parts of the experimental field; in that case an incomplete 

block design is used. The well known incomplete block 

designs, such as balanced incomplete block designs often 

require too much replications. Initially, one used the 

incomplete block designs such as lattices (for the case C = 

k×k) and rectangular lattices (for the case C = k×(k +1)); see 

[3]. Often the number of tested progenies C does not fit into 

lattices or rectangular lattices. An extension of the 

incomplete block designs is given in the studies [9, 10]. They 

introduced for binary connected incomplete block designs the 

so-called alpha-designs. They start with a rectangular array 

with column lengths of k (the size of the incomplete blocks) 

of the sequence of 1, …, C varieties and shift the columns 

according to an array. For many combinations of progenies C 

and block sizes k they give a procedure to construct alpha-

designs. (The name of alpha comes from the first letter of 

array in the Greek alphabet). There is now a computer 

program CycDesigN [5] available to generate incomplete 

block designs as alpha-designs and cyclic designs. 

In variety testing trials one wants to use resolvable 

incomplete block designs where the design can be divided 

into r groups (= replications) such that each group contains 

each of the C crosses exactly once. The resolvable 
incomplete block designs, and particularly the so-called 

generalized lattice (GL) or alpha-designs, have become most 

suitable for crop variety trials [11, 13]. The program 

CyCDesigN can give such resolvable incomplete block 

designs. All these above-mentioned designs are connected. In 

a connected incomplete block design one can estimate all 

differences between the varieties. 

Now with the Personal Computers and statistical packages 

as SAS, IBM-SPSS Statistics or R, the Kuiper-Corsten 

iterative method is not needed any more and we solve the 

varietal effects with the Least Squares Method using the 

matrix solution of the normal equations with b = (X’X)-1 X’y 

and the variance of a varietal contrasty p’b is found as σ2 

p’(X’X)-1 p. 

2. Oil Palm Breeding Trials 

In July 1987 I was sent by Harrisons Fleming Advisory 

Services (HFAS) for two weeks to the Oil Palm Research 

Station (OPRS) at Dami, on the island of New Britain north 

of Papua New Guinea. There was a breeding trial with oil 

palm (Elaeis guineensis Jacquin) done with 40 DxP hybrids, 

crosses of selected dura palms, as female parents, with 

pisifera palms, as male parents, to produce tenera palms with 

thin-shelled fruits. Statistical analysis of yield and its 

component of oil did not show significant differences 

between the crosses. The experimental design was a 

randomized complete block design with three replications 

and 6 x 6 palms per plot. The palms were planted at the 

corners of equilateral triangles with side lengths of 9 m. The 

distance between the rows is then equal to the height of this 

triangle = 9×sin(π/3) = 9×(1/2)×√3  = 7.80 m. Hence the 

length of a plot is 6×7.80 = 46.80 m and the width is 6×9 = 

54 m. For the yielding capacity of a cross the yield of the 4×4 

= 16 inner palms is recorded.  

 

Figure 1. Part of an experimental layout using diamond-shaped plots. 
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Figure 2. An oil palm breeding trial. 

With the English agronomist I walked about two 

kilometers over the trial to the end of a replication and back 

again through the other replications over the hilly land. After 

the visit of the trial I asked him what his impression was 

about the experimental field. He said the plots were well 

maintained. I agreed with him, but I explained to him that in 

the experimental design a block is supposed to have 

homogeneous growing conditions. In England with their 

centuries of agricultural history on flat land, a homogeneous 

part along the ditch may have uniform growing conditions 

suitable for a block in the field trial. Another parallel part of 

the land along this first block has also the same growing 

circumstances but with a different water level. Therefore in 

English books of Design of Experiments there were always 

figures with rectangular blocks. Most of the agronomists in 

tropical countries were taught about Experimental Designs 

with those English books, and applied, therefore, rectangular 

blocks even on freshly cleared forests after removing the tall 

trees by excavating or dynamiting the large trees. 

Neighboring plots could have different soil structure. In the 

oil palm trial at Dami the plots on hill tops will have different 

growing conditions than those on the slopes and in the 

valleys. These varying conditions preclude the required level 

of chance of finding significant difference between the 

crosses. The trial has therefore to be laid down with 

incomplete blocks. 

Back in the office, I made a post-mortem analysis by using 

incomplete blocks of 8 adjacent plots, hence a replication 

consists of 5 incomplete blocks. I had my own FORTRAN 

program with me to analyze incomplete two-way 

classifications with the Kuiper-Corsten iteration method 

which could be run at the PC in the office. In the rows of the 

two-way classification system were the 40 DxP crosses and 

in the columns the 3*5 = 15 incomplete blocks. Now the 

analysis showed statistically highly significant differences 

between the crosses. 

The HFAS company had send a colleague of me to set up a 

data base of all the oil palm crossings at the OPRS in Dami 

and further me to solve the problems of the breeding trials 

with oil palm. They assumed that we would require each two 

weeks to complete our assignment. My colleague needed 

these two weeks, but I had finished my report and explaining 

lecture to the staff about the main goals of the breeding trials 

after one week. Because I had nothing else to do I asked the 

OPRS oil palm breeder about the main goal of the breeding 

program. He confirmed that this was to find the best dura x 

pisifera combinations to maximize oil yields of the resulting 

tenera palms. I solved this problem in the second week of my 

stay. 

First of all I would like to give some background on oil 

palm breeding. The main economic product is palm oil 

extracted from the mesocarp, i.e. the fruit flesh surrounding 

the pit (or stone) of the oil palm fruit. The shell thickness is 

therefore an important characteristic as this determines the 

proportion of the fruit available for the oil bearing mesocarp. 

Shell thickness is determined by a single gene. One 

homozygote, the pisifera, is shell-less; many pisifera palms 

fail to set fruit, so the pisifera is not grown for commercial 

use. The other homozygote, the dura, has a thick shell. The 

heterozygote of the dura × pisifera cross, the tenera, has a 

thin shell. The tenera is the fruit form preferred for 

commercial use, because of its larger proportion of oil-

bearing mesocarp.  

 

Figure 3. Fruit forms of tenera, dura (female parent) and pisifera (male 

parent). 

 

(Note: L.S. = Longitudinal Section; pisifera fruits have no shell) 

Figure 4. Fruit flesh surrounding the pit of the oil palm fruit in dura, 

pisifera and tenera. 
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As pisifera are predominantly female sterile, i.e. early 

abortion of fruit bunches, the dura is used as the female and 

the pisifera as the male parent (male inflorences produce 

fertile pollen) of tenera planting material. The search is thus 

for dura and pisifera parents which transmit high bunch yield 

and oil-and-kernel extraction per hectare to their tenera 

offspring. Fortunately, as in other crops, These additive 

effects of the parents are in quantitative genetics termed 

General Combining Ability (GCA) values. Reliability of 

selection can therefore be greatly improved by selecting 

parents according to GCA values estimated from results of 

dura×pisifera crosses. The additive model, however, does not 

fully predict the performance of the tenera offspring; crosses 

may perform better or worse than estimated by adding GCA 

values of the parents. This deviation is due to the effect of 

Specific Combining Ability (SCA); but this SCA effect is 

usually much smaller than the effect of GCA. A model for the 

expected yield of the tenera offspring (Di×Pj) is then, E(yij) = 

µ + αi + βj + γij where γij is the SCA of the cross Di×Pj. 

To exploit both GCA and SCA effects the parents must be 

crossed; If we have A dura and B pisifera and all A×B 

dura×pisifera are realized, then we have a complete diallel 

crossing scheme; if there are only made C dura×pisifera 

crosses where C < A×B, then we have a partial diallel or 

incomplete diallel crossing scheme. In order to compare the 

entire set of the A dura and the B pisifera on the basis of the 

GCA values, the parents must be crossed according to a so-

called connected crossing scheme. A crossing scheme is 

called connected if for each dura pair (Dh, Di) of the A dura, 

there is a chain of dura from dura Dh to dura Di, in which 

each of the adjacent links of the chain occur together with the 

same pisifera. Otherwise the crossing scheme is called 

disconnected. In the same vein, the crossing scheme is 

connected if for each pisifera pair (Pk, Pj) of the B pisifera, 

there is a chain of pisifera from pisifera Pk to pisifera Pj, in 

which each of the adjacent links of the chain occur together 

with the same dura. Another way to check whether the 

crossing scheme is connected, is to form a two-way table of 

the crosses with the A dura as rows and the B pisifera as 

columns. The crossing scheme is connected if we cannot split 

the table in separate tables by interchanging rows and 

columns. Let us elucidate this by a little example with C = 8 

crosses made from A = 4 dura and B = 4 pisifera. Let the 

realized crosses be indicated by an asterisk (*) in the two-

way table given in Table 1. 

Table 1. Realized 8 crosses of an incomplete diallel of 4 dura and 4 pisifera. 

  
 pisifera 

P1 P2 P3 P4 

 D1 *  *  

dura D2  *  * 

 D3 *  *  

 D4  *  * 

From the cross of dura D1 with pisifera P1, D1×P1, we can 

make a chain to the cross of dura D3 with P1, D3×P1; from 

D3×P1 we can go to the cross D3×P3, and from this cross 

D3×P3 we can go to the cross D1×P3, and then we come back 

to the cross D1×P1. In this chain we have missed dura D2 and 

D4. Hence this crossing scheme is disconnected. When we 

have rearranged the two-way table as follows (interchange P3 

with P2 and also interchange D3 with D2), we see directly that 

there are two disconnected sets of four crosses each, see 

Table 2. 

Table 2. Rearranged two-way table of Table 1 showing directly the 

disconnected crossing scheme. 

  
 pisifera 

P1 P3 P2 P4 

 D1 * *   

dura D3 * *   

 D2   * * 

 D4   * * 

The first set contains the 4 connected crosses D1×P1, 

D1×P3, D3×P1 and D3×P3; the second set contains the 4 

connected crosses D2×P2, D2×P4, D4×P2 and D4×P4. In such a 

disconnected crossing scheme no unbiased estimate can be 

made for the difference in GCA effect between, for example 

dura D1 and D2 or from the difference in GCA effect between 

pisifera P3 and P4. 

A more practical method of checking whether a crossing 

scheme is connected is to draw a chain from one cross to 

another following a horizontal or vertical direction only. If all 

the crosses are connected by one continuous chain the 

crossing scheme is connected.  

A necessary (but not sufficient) condition to have a 

connected design is that C must be at least equal to the sum 

of the degrees of freedom of Intercept, dura and pisifera C ≥ 

1 + (A-1) + (B-1) = A + B -1. In the example above we have 

A = 4 and B = 4, so C ≥4+4-1=7 crosses are sufficient for a 

connected design. In Table 3 the crossing scheme is 

connected when the following C=8 crosses were made: 

Table 3. A connected incomplete diallel with 8 crosses of 4 dura and 4 

pisifera. 

  
 pisifera 

P1 P2 P3 P4 

 D1 * *   

dura D2  * *  

 D3   * * 

 D4 *   * 

Here we have 8 crosses and the crossing scheme is still 

connected when C=7, for example, if the cross D4×P1 was not 

made. 

In the past the author found many large crossing schemes 

that were not connected, because the oil palm breeder looked 

only for including previous good dura and pisifera parents. 

But the easiest way is to produce random yields with A dura 

and B pisifera parents and analyse the two-way classification 

of the crosses with a Personal Computer with statistical 

packages as SAS, IBM SPSS-Statistics or R, to find in the 

Analysis of Variance the Sum of Squares (SS) Type III option 

(SS of dura after correction for pisifera and SS of pisifera 

after correction for dura). If the degrees of freedom (df) of 

dura = A-1 and the df of pisifera = B-1, then the crossing 
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scheme is connected, otherwise it is disconnected. 

Now we will discuss the construction of a good crossing 

design when we have A dura and B pisifera and we want to 

use C crosses in an incomplete diallel connected scheme 

where A+B-1 ≤ C ≤ A×B. The choice between several 

connected mating designs can best be tested on the standard 

error of the estimator for the difference in the GCA value of 

all the dura pairs and of the pisifera pairs. The standard error 

of the estimator for the difference in the GCA value between 

two dura parents Di and Dj is (SDij)×σ, or between two 

pisifera parents Pi and Pj is (SPij)×σ, where σ is the residual 

standard deviation and the value of SDij and SPij depends 

solely on the mating scheme. The value of σ depends on the 

studied trait (e.g. yield), the variation between the plots in the 

experimental field and the plot size. For complete crossing 

schemes (as a complete diallel) with A dura and B pisifera, 

where each cross occurs on r plots, the standard error of the 

estimator of the difference between the GCA values of the 

dura parents is the same for all pairs of dura and SDij is 

�2/(B × 	); also the standard error of the estimator of the 

difference between the GCA values of the pisifera parents is 

the same for all pairs of pisifera and SPij is �2/(A × 	). For 

incomplete mating designs the standard error of the estimator 

of the differences in GCA values varies across the parents. 

The quality of such mating designs can be measured by the 

average and range of the standard errors of the estimator of 

the differences between the GCA values of a pair of dura 

parents or of a pair of pisifera parents. As shown above, such 

quality evaluation can solely based on the coefficients SDij 

and SPij. 

To find a good mating design one can search for balanced 

or partially balanced incomplete mating designs. For such 

incomplete mating designs one can use the incomplete block 

designs. In such incomplete block designs there must be 

compared v varieties (or treatments) in blocks of sizes of k 

plots, where the block size k < v. Well known incomplete 

block designs are lattices where v =k×k or rectangular lattices 

where v = k×(k+1). To extend the possibilities for v unequal 

to k×k or k×(k+1) there are the so-called alpha-designs (see 

[9, 10]). To use such an incomplete block design the role of 

treatments is played by the dura and the role of the 

incomplete blocks by the pisifera. So we must look for 

incomplete block designs with A treatments and B blocks. 

The block size k is then chosen as C/B, where C is the 

number of crosses used. If there is no incomplete block 

design which fits the requirements, we can always start from 

a smaller design and add some extra treatments (= dura) to 

the blocks (= pisifera). 

As an example we give here some mating designs 

involving C = 40 crosses among A = 20 dura and B = 10 

pisifera. In these designs each dura must be crossed with two 

pisifera; further-more each pisifera must be crossed with four 

dura. Two designs (I and II) were solely chosen intuitively 

on the basis of symmetry by two experienced oil palm 

breeders and the last design III is chosen by the author as an 

alpha-design, with v =20 treatments (= dura), k = 40/10 = 4 

as block size, b = 10 blocks (= pisifera), r = 2 replications 

where the first replication consists of blocks 1-5 and the 

second replication consists of blocks 6-10, hence a resolvable 

design. 

Table 4. Three crossing schemes with C = 40 crosses of 20 dura and 10 pisifera. 

Design I Design II Design III 

pisifera pisifera pisifera 

dura 1 2 3 4 5 6 7 8 9 10 dura 1 2 3 4 5 6 7 8 9 10 dura 1 2 3 4 5 6 7 8 9 10 

1 *          1 *          1 *     *     

2 *          2 *     *     2  *     *    

3 * *         3 * *         3   *     *   

4  *         4  *     *    4    *     *  

5  * *        5  * *        5     *     * 

6   *        6   *     *   6 *         * 

7   * *       7   * *       7  *    *     

8    *       8    *     *  8   *    *    

9    * *      9    * *      9    *    *   

10     * *     10     *     * 10     *    *  

11     * *     11     * *     11 *        *  

12     * *     12 *     *     12  *        * 

13      * *    13      * *    13   *   *     

14    *   *    14  *     *    14    *   *    

15       * *   15       * *   15     *   *   

16   *     *   16   *     *   16 *       *   

17        * *  17        * *  17  *       *  

18  *       *  18    *     *  18   *       * 

19         * * 19         * * 19    *  *     

20 *         * 20     *     * 20     *  *    

 

It can be directly seen that all these three mating designs 

are connected. In the following table the minimum, 

maximum and average of the coefficients SDij and SPij for the 

standard errors of the estimators of the difference between 
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GCA values of pairs of dura and pisifera parents, for the three 

designs are given in Table 5. 

Table 5. Coefficients SDij and SPij for the standard errors of the estimators of 

the difference between GCA values. 

mating SDij for pairs of dura SPij for pairs of pisifera 

design min max average min max average 

I 1.000 2.236 1.561 0.765 2.072 1.417 

II 1.000 1.483 1.313 0.841 1.250 1.125 

III 1.125 1.291 1.214 0.949 1.080 1.001 

From Table 5 it is clear that design III (the alpha-design), 

which has the smallest average value for SDij and SPij for the 

dura and the pisifera pairs, and moreover has the smallest 

range (max – min) for SDij and SPij, is the mating design 

which must be preferred. Hence it is worthwhile to use an 

alpha-design which gives always a connected mating design 

and be careful to rely too much on “experience”! 

3. Analysis of an Oil Palm Breeding Trial 

Let us consider the case that we have made C = 10 

connected tenera crosses T1, T2, … , T10 derived from A = 5 

dura mothers and B = 5 pisifera fathers. In the following 

two-way table the crossing scheme is given; a dot (●) 

indicates a cross which has not been made, see Table 6. 

Table 6. A connected incomplete diallel of 10 crosses tenera from 5 dura and 

5 pisifera. 

  
  pisifera 

P1 P2 P3 P4 P5 

 D1 T1 ● ● ● T10 

 D2 T2 T3 ● ● ● 

dura D3 ● T4 T5 ● ● 

 D4 ● ● T6 T7 ● 

 D5 ● ● ● T8 T9 

The palm plot consists of 6 rows of 6 palms, where the 

palms are laid down at the corners of an equilateral triangle 

with 9 m sides. For the yielding capacity of a cross the yield 

of the 4×4 = 16 inner palms is recorded. Suppose that the 

experimental field is very heterogeneous, and that we can 

only find homogeneous growing conditions (blocks) of five 

adjacent plots.  

A resolvable alpha-design with block size k = 5 and with r 

= 4 replications is used. The index of the tenera crosses Ti is 

given by the program CycDesigN in the randomized 

resolvable alpha-design in Table 7. 

Table 7. Randomized design of 10 tenera crosses in the incomplete blocks of 

size 5. 

Rep 1 
Block 1 9 4 1 6 2 

Block 2 5 7 8 10 3 

Rep 2 
Block 3 5 4 3 8 1 

Block 4 6 2 7 9 10 

Rep 3 
Block 5 10 4 9 6 3 

Block 6 7 8 1 5 2 

Rep 4 
Block 7 9 1 3 5 7 

Block 8 10 4 8 6 2 

After we have laid out the design of Table 7 in the field, 

we gathered after a year the yield y in ton/ha. We made then 

the following data file of the results from this example (see 

Table 8) for IBM-SPSS Statistics, where we used consecutive 

block numbers 1 – 8 for the blocks in the replications. 

Table 8. Data file for the yields of the design of Table 7 for IBM-SPSS 

Statistics. 

rep block tenera dura pisifera y 

1 1 9 5 5 20.10 

1 1 4 3 2 17.50 

1 1 1 1 1 15.70 

1 1 6 4 3 18.10 

1 1 2 2 1 14.60 

1 2 5 3 3 16.20 

1 2 7 4 4 18.70 

1 2 8 5 4 21.10 

1 2 10 1 5 18.80 

1 2 3 2 2 16.70 

2 3 5 3 3 17.20 

2 3 4 3 2 15.80 

2 3 3 2 2 17.90 

2 3 8 5 4 18.10 

2 3 1 1 1 15.10 

2 4 6 4 3 16.70 

2 4 2 2 1 15.00 

2 4 7 4 4 20.00 

2 4 9 5 5 21.70 

2 4 10 1 5 18.60 

3 5 10 1 5 16.00 

3 5 4 3 2 15.60 

3 5 9 5 5 21.50 

3 5 6 4 3 17.20 

3 5 3 2 2 16.00 

3 6 7 4 4 18.40 

3 6 8 5 4 17.30 

3 6 1 1 1 14.70 

3 6 5 3 3 16.70 

3 6 2 2 1 13.50 

4 7 9 5 5 20.00 

4 7 1 1 1 16.00 

4 7 3 2 2 14.60 

4 7 5 3 3 16.70 

4 7 7 4 4 17.20 

4 8 10 1 5 17.20 

4 8 4 3 2 14.90 

4 8 8 5 4 19.10 

4 8 6 4 3 18.30 

4 8 2 2 1 13.80 

The IBM-SPSS Statistics syntax to find the GCA values 

for the dura and the pisifera and the adjusted tenera means 

(EMMEANS= Estimated Marginal Means) is given in Table 

9. 

Table 9 IBM-SPSS Statistics syntax file for the analysis of 

data file Table 8. 

Title 'Table 8, blocks random with module MIXED'. 

MIXED y BY dura pisifera rep 

/CRITERIA=CIN(95) MXITER(100) MXSTEP(10) 

SCORING(1) SINGULAR(0.000000000001) 

HCONVERGE(0,ABSOLUTE) 

LCONVERGE(0,ABSOLUTE)  

PCONVERGE(0.000001, ABSOLUTE) 

/FIXED= rep dura pisifera | SSTYPE(3) 
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/METHOD=REML 

/PRINT=SOLUTION TESTCOV 

/RANDOM=INTERCEPT | SUBJECT(block) 

COVTYPE(VC) 

/EMMEANS=TABLES(dura) COMPARE ADJ(LSD) 

/EMMEANS=TABLES(pisifera) COMPARE ADJ(LSD). 

 

Title 'Table 8, tenera, blocks random with module 

MIXED'. 

MIXED y BY tenera rep 

/CRITERIA=CIN(95) MXITER(100) MXSTEP(10) 

SCORING(1) SINGULAR(0.000000000001) 

HCONVERGE(0,ABSOLUTE)  

LCONVERGE(0,ABSOLUTE)  

PCONVERGE(0.000001, ABSOLUTE) 

/FIXED= rep tenera | SSTYPE(3) 

/METHOD=REML 

/PRINT=SOLUTION TESTCOV 

/RANDOM=INTERCEPT | SUBJECT(block) 

COVTYPE(VC) 

/EMMEANS=TABLES(tenera) COMPARE ADJ(LSD). 

 

The SAS syntax to find the GCA values for the dura and 

the pisifera and the adjusted tenera means (LSMEANS = 

Least Square Means; this LSMEANS is the same as what 

SPSS called EMMEANS), is given in Table 9. 

Table 9. SAS syntax for the analysis of the yields of the design of Table 7. 

data table7; 

input rep block tenera dura pisifera y; 

datalines; 

1 1 9 5 5 20.10 

1 1 4 3 2 17.50 

1 1 1 1 1 15.70 

1 1 6 4 3 18.10 

1 1 2 2 1 14.60 

1 2 5 3 3 16.20 

1 2 7 4 4 18.70 

1 2 8 5 4 21.10 

1 2 10 1 5 18.80 

1 2 3 2 2 16.70 

2 3 5 3 3 17.20 

2 3 4 3 2 15.80 

2 3 3 2 2 17.90 

2 3 8 5 4 18.10 

2 3 1 1 1 15.10 

2 4 6 4 3 16.70 

2 4 2 2 1 15.00 

2 4 7 4 4 20.00 

2 4 9 5 5 21.70 

2 4 10 1 5 18.60 

3 5 10 1 5 16.00 

3 5 4 3 2 15.60 

3 5 9 5 5 21.50 

3 5 6 4 3 17.20 

3 5 3 2 2 16.00 

3 6 7 4 4 18.40 

3 6 8 5 4 17.30 

3 6 1 1 1 14.70 

3 6 5 3 3 16.70 

3 6 2 2 1 13.50 

4 7 9 5 5 20.00 

4 7 1 1 1 16.00 

4 7 3 2 2 14.60 

4 7 5 3 3 16.70 

4 7 7 4 4 17.20 

4 8 10 1 5 17.20 

4 8 4 3 2 14.90 

4 8 8 5 4 19.10 

4 8 6 4 3 18.30 

4 8 2 2 1 13.80 

; 

run; 

 

proc print data = table7; 

run; 

 

title 'Table 7; proc Mixed, blocks random'; 

proc mixed method=REML data = table7; 

class dura pisifera rep block; 

model y = rep dura pisifera / ddfm=satterthwaite; 

random block / type =VC; 

lsmeans dura / diff=all; 

lsmeans pisifera / diff=all; 

run; 

 

title 'Table 7; proc Mixed, tenera, blocks random'; 

proc mixed method=REML data = table7; 

class tenera rep block; 

model y = rep tenera / ddfm=satterthwaite; 

random block / type =VC; 

lsmeans tenera / diff=all; 

run; 

 

From the output we find that the dura is significant (P-

value = 0.005) and that the pisifera is significant (P-value = 

0.001) and the tenera is significant (P-value = 0.000).  

The LSMEANS (= EMMEANS) are collected in the 

following EXCEL worksheet in Table 10. 

Table 10. Excel Worksheet with the Least Squares means of tenera, dura and pisifera to calculate the GCA. 

Table 10  LS mean LS mean LS mean Additive   LS mean   LS mean 

tenera dura pisifera tenera dura pisifera mean D+P SCA dura GCA dura psifera  GCA pisifera 

1 1 1 15.375 16.533 15.703 15.0284 0.3466 1 16.533 1 15.703 

2 2 1 14.225 16.077 15.703 14.5724 -0.3474 2 16.077 2 17.083 

3 2 2 16.3 16.077 17.083 15.9524 0.3476 3 16.422 3 17.138 

4 3 2 15.95 16.422 17.083 16.2974 -0.3474 4 17.993 4 17.442 

5 3 3 16.7 16.422 17.138 16.3524 0.3476 5 19.013 5 18.672 

6 4 3 17.575 17.993 17.138 17.9234 -0.3484     
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Table 10  LS mean LS mean LS mean Additive   LS mean   LS mean 

tenera dura pisifera tenera dura pisifera mean D+P SCA dura GCA dura psifera  GCA pisifera 

7 4 4 18.575 17.993 17.442 18.2274 0.3476  17.2076  17.2076 

8 5 4 18.9 19.013 17.442 19.2474 -0.3474  Mean  Mean 

9 5 5 20.825 19.013 18.672 20.4774 0.3476     

10 1 5 17.65 16.533 18.672 17.9974 -0.3474     

 
The first dura mean in column 5 (for dura 1) is done with 

Excel-function VLOOKUP(B3,$I$3:$J$7;2;1). 

The first pisifera mean in column 5 (for pisifera 1) is done 

with Excel-function VLOOKUP(C3,$K$3:$L$7;2;1). Then 

this has been done for all the other tenera. 

The Additive Mean of D+P (= dura + pisifera) for tenera = 

LSMEAN GCA dura + LSMEAN pisifera – Mean GCA; for 

tenera 1 we get as Additive Mean = 16.533 + 15.703 – 

17.2076 = 15.0284. 

The SCA (Specific Combining Ability)of tenera is 

calculated as LSMEAN(ternera) – Additive Mean; the SCA 

for tenera 1 is 15.375 – 15.0284 = 0.3466. Then this has been 

done for all the other tenera. 

In a recent handbook about Oil Palm Breeding, see 

Chapter 12 “Field Experimentation” [12] the use of 

incomplete block designs for Oil Palm breeding trials is also 

treated. 

For the use of statistical selection procedures to select the 

best set of dura and pisifera parents with the indifference 

zone approach of selection of Bechhofer [1], or the subset 

selection procedure of Gupta [6, 8]. 

4. Conclusions 

In Oil Palm Breeding trials the breeder must be aware that 

he must use a connected incomplete crossing scheme of the 

dura (female parents) and the pisifera (male parents) to 

produce the tenera hybrids. The use of an alpha-design to 

produce such a connected incomplete diallel is easily be done 

by using the dura as the treatment and the pisifera as the 

incomplete blocks.  

Because the field plots of the tenera palms, which are 

planted at the side of an equilateral triangle with sides of 9 m, 

are quite large, the breeder must use an incomplete block 

design. For the trial design of the tenera crosses in the field 

use an incomplete block design given by an alpha-design, 

because this gives easily a solution for the number of tenera 

with a small block size of the incomplete blocks.  

Using the program CycDesigN the needed alpha-designs 

are easily found for the incomplete diallel and later for the 

experimental design in the field. 

The analysis can be done on a Personal Computer with a 

statistical package which can analyze a Mixed Model. Syntax 

are given for SAS and IBM-SPSS Statistics. But the analysis 

can also be done with the free program R with the package 

lme4. 
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