Gross-pathologic and therapeutic implications for uncomplicated white line disease in dairy cows: A case series study

Mohsen Nouri 2,*, Fateme Katouli 1, Fahime Zibaee 1, Iradj Nowrouzian 2, Seyed Mohamad Karbalaei Seyed Javad 2

1Iranian Arad Pajouh Veterinary University Center, Tehran, Iran
2Department of Clinical Sciences, Faculty of Veterinary Medicine, the University of Tehran, Tehran, Iran

Email address: mnouri@yahoo.com (M. Nouri)

To cite this article:

Abstract: This short communication describes the gross-pathologic and therapeutic implications of uncomplicated white line disease in one large dairy herd with records of lameness events over a 7 months period in the vicinity of Tehran, Iran. White line lesions were confirmed on 232 of cows with the lameness score of 3 and 4. The prevalence rate of WL lesions in axial wall at zone 1, apex of toe at zone 1 and abaxial wall at zone 1, 2 and 3 were 53 cases (23.0 %), 44 cases (19.0 %) and 130 cases (58.0 %), respectively. Fourteen percent have been trimmed incorrectly and the sole becomes too thin during trimming. Full treatment results achieved in 87.0 % of cases in an average of 28 days. This study showed that laminitis-associated white line disease response well to appropriate therapy and proper trimming can play an important role for lameness prevention strategies in large dairy herds.

Keywords: Claw, Lameness, Pathology, White Line Disease, Treatment

1. Introduction

Claw lesions are the most important cause of lameness [1,2]. White line disease (WLD) is a commonly observed lesion and has frequently been reported as a major cause of lameness[1, 3, 4]. WLD accounts for considerable economic cost due to lose in milk yield [3, 5], weight and fertility [6, 7] and increases the risk of culling [7-9].

Several reports from Iran indicated the condition as responsible for between 1.53 % and 27.14 % of lameness[9-11]. Other studies also have reported the disease between 5.5 % and 39.0 % [1, 4, 12-14]. Nouri et al., (2013) observed affected digits of the culled lame cows with WLD depicted a quite wide range of pathologic signs such as excessive new bone formation, osteolysis, ankylosis and sequestration of the third phalanx (P3)[7]. Mansouri et al. (2011) found sub-solar abscess in zone 3 progressed to the septic osteitis of the P3 bone with osseous sequestration in 14.2 % cases[11]. In 14 (18.3%) of 76 cows referred for digit amputation, the primary lesion had been WLD[15]. A prompt identification of problematic cases is needed to be done for prevention of premature culling[7, 9]. This short communication describes the gross-pathologic and therapeutic implications of uncomplicated WLD in one large dairy herd with records of lameness events over a 7 months period in the vicinity of Tehran, Iran.

2. Case History

Between January and July 2011, 232 Holstein cows having WLD were treated and the healing process was observed in the course of veterinary practice. The practice is located in a commercial dairy farm with 2800 milking cows in the vicinity of Tehran. The cows were attended at the request of a farmer and the details of each case were recorded on a prepared lameness form at completion of the farm visit. Cows were kept in free stall with sand bedding on concrete floor and fed a total-mixed ration. The diet consisted of alfalfa hay, corn silage and a commercial concentrate. The mean age of the animals was 3 to 10 years.

All cows were scored for locomotion once a month after milking when leaving the parlour. The locomotion scoring...
system, as developed by sprecher et al., (1997) using a 1 to 5 score, was employed [16]. The animals were examined in a claw trimming box and the affected limbs were raised and the claws were trimmed in accordance with the principle of therapeutic foot care[1]. For the purpose of recording distribution of claw lesions on the solar surface, each claw was divided into 6 zones according to an established protocol (Fig. 1)[17]. The criteria such as hemorrhage, separation and abscess at white line region in zone 1, 2 and 3 served as a basis for the diagnosis.

The lesions open with a hoof-knife to drain the underlying infection and pared of the loose horn that constitutes the white line, using a sharp hoof knife. Necrotic tissue and granulation tissue were thoroughly removed from the entire claw lesions and the margins of the lesions in animals equal with surface of the corium and either a wooden block fixed to the sound claw in cases the corium has been exposed, and where the animal has to remain in the herd. Any debris or foreign material removed from the depth of the widened separation. A topical ointment (SolkaHooofgel®, Kanters Special Products BV, Netherlands) applied to accelerate healing. Systemic antibiotics consisted of the intramuscular administration of oxytetracycline hydrochloride LA (2-5 mg/kg) at seven-day intervals for two weeks.

3. Results and Discussion

WL lesions were confirmed on 232 of cows with the score of 3 and 4. The prevalence rate of WL lesions inaxial wall at zone 1, apex of toe at zone 1 and abaxial wall at zone 1, 2 and 3 were 53 Cases (23.0 %), 44 Cases (19.0 %) and 130 Cases (58.0 %), respectively (Fig. 2A, B). Fourteen percent have been trimmed incorrectly; the sole becomes too thin during trimming and exposed corium (Fig. 2A). Full treatment results achieved in 87.0 % of cases in an average of 28 days. Hashemi et al., (2005) observed 56.2 % of WLD cases have been associated with bone changes of P3, decreased locomotion scoring in an average of 17 days. They found bone changes of P3 have any effect in treatment of WLD cases.

![Figure 1: The weight bearing surface of each claw is divided into the following zones: 1 White zone at the toe, 2 Abaxial white zone, 3 Abaxial wall-bulb junction, 4 Sole-bulb junction, 5 Apex of the sole, 6 Bulb of the heel. Zones of sole conform with recommendations established at the 6th Symposium on Diseases of the Ruminant Digit, Liverpool, 1990. Vet Rec., 1991; 128:12.](image)

![Figure 2: A: Improper hoof trimming techniques resulted in traumatic laminitis; the sole became too thin during trimming in zone 1 and 2 (red arrows). B: This is the appearance of an affected claw with WLD 3 that has been severely destroyed. This lesion exposed after careful paring and excavates a small black area in the white line 3.](image)

Complete recovery was achieved in 87.0 % of cases following therapeutic intervention. In cases of deep sepsis of the digit, antimicrobial therapy alone does not usually elicit a cure[18]. It is possible that necrosis of infected tissue and the resultant loss of blood supply prevent effective concentrations of antimicrobials from reaching all areas of bacterial colonization[19, 20]. Another possible explanation is that the anatomical changes of infected or non-infected tissue can be effective on locomotion score. Anatomical changes of P3 bone such as excessive new bone formation, osteolysis, ankylosis and sequestration has been reported by others[5, 7, 9, 11]. On the other hand, complication by secondary infections can effect on healing process. Thus, digital amputation or digital salvage procedures involving debridement, drainage and lavage of infected structures is usually required for resolution of lameness[20-22].

White line abscesses occurring towards the zone 3 are more likely to under-run the entire sole. Claw examination involves careful paring to expose and excavate any small black areas in the white line that could mask the site of an abscess (Fig. 2B). In the author's experience, penetration in the zone 3 is easily missed. Percussion of the zone 3 by the hoof knife is helpful in locating regions of pain. The colors of the pus escaping from wound were cream (14.0 %) and black (43.5 %). Anecdotally, the color of the pus produced is an indicator to differentiate a lesion caused by external trauma from one caused as the result of the collapse of the pedal bone support system (cream if internal pressures and black if from external entry) [23].

In a proportion of cases lameness did not resolve following drainage of the white line abscess and
re-examination of the foot revealed a protrusion of granulation tissue from the original lesion. This is often an indication that not all of the under-run horn was removed at the first examination[1, 24]. Foreign bodies and secondary infection such as the infectious agents of bovine digital dermatitis (BDD) can effect on healing process. Recently, there have been a number of reports of ‘new’ disorders affecting the bovine digit. All studies suggested the potential involvement of BDD [25-27].

It is important to minimize wet and unhygienic conditions. Trim the claws regularly to prevent overgrowth, but avoid over-trimming. Improper hoof trimming techniques may result in traumatic laminitis [28]; at least if the trimmer takes away supportive mechanism of the horn with a grinder or the sole becomes too thin during trimming [4] (Fig. 2A). Improve walkways to gateways, and areas of congestion. Repair or replace damaged or broken concrete surfaces. Any kind of solid floor will give uniform support to the weight-bearing system of the claw and cause less stress than slatted floors [29]. In addition to an even floor, straw bedding and rubber mats seem to prevent problems [30-31]. Biotin is known to increase the rate of healing and to reduce the occurrence of white line lesions [13, 32].

4. Conclusion

This study showed that laminitis-associated white line disease response well to appropriate therapy and proper trimming can play an important role for lameness prevention strategies in large dairy herds.

References

