Abstract: The measurement of total dietary energy is in great triumph on the helm of designing an apt dieting in normal and therapeutic diet. The prevailing procedures in this arena are relatively time consuming, laboratory tests induced and often the misleading data contributors while planning a balanced dieting in nutrition counseling. The dietician is sometimes at bay in the route ahead of perfect dieting to hold up nutritional soundness of the sample at a population in a community. The aim of this current study is making a dot over these ongoing perils exploring a mathematical modeling used in prescribing a confounding free diet. The study can divulge an open secret in measuring total dietary energy to curb the possible health horrors in worldwide nutritional epidemiology. The study finding is the determinant of total dietary energy (DTDE) [equation (16)] can be a splendid biophysical modeling as a dieting tool in human nutrition.

Keywords: Biophysical Modeling, Dietary Energy, Co-efficient of Total Dietary Energy (CTDE), Nutritional Physics, Biochemical Modeling, Health Pedagogy

1. Introduction

About 2 billion people in the world suffering from different forms of malnutrition [1]. Malnutrition is an underlying cause of death of about 2.6 million children each year [2, 3].

Malnutrition is the premier causes of stunted growth and increasing mortality and morbidity rates [4-7]. About 4 of each 5 malnourished children in South-East-Asian (SEA) regions contributing about 83% of their deaths due to mild to moderate malnutrition [8-10]. Malnutrition in developing countries is on action due to poverty, household food insecurity, gender bias, population pressure, food taboos, health, hygiene and nutritional negligence, famine and man-made disasters [11-15]. Malnutrition also occurring for intra-family feud, lower class livelihood, child abuse, deprivation of schooling opportunity and consequence of faulty family planning practices in their families [16-19]. These nutritional giants are engulfing the population and therefore initiatives are in need of galore need to shirk these malnutrition facing factors [20, 21].

Therefore, this study was conducted to form an effective dieting tool to help the dietician to plan the proper dieting for both the therapeutic and normal diet aiming to turn tail the ongoing malnutrition headache across the globe and the government and different international and national NGOs are urged to organize health and nutritional campaigning to aid the population to practice a healthy diet using this study proposed determinant of total dietary energy (DTDE) in nutritional physics.

2. Data Sources and Methodology

The study was a cross-sectional study using secondary data analysis method. The data were collected from the biophysical equation of dietary energy, fuel factor and the mass of consuming nutrients in the branch of human physiology. The logarithmic modeling of equations from mathematics was in application to undergo in analyzing all the data using mathematical modeling to hit upon a trendy and time saving biophysical modeling to calculate total dietary energy needed for individuals in the communities due to consumption of foods.
3. Results

Dietary energy is the amount of energy released in human body through the digestion and absorption of foods associated in a diet [22-25]. Biophysically, it is the product of fuel factor and mass of consuming foods [26-29].

The human diet comprises three main sources of dietary energy naming carbohydrates, proteins and fats among the six components in the diet and lesser degree of alcohol [30-32]. Hence, the fuel factors of carbohydrates, proteins, fats and alcohol be \(f_c, f_p, f_f \) and \(f_a \) kcal g\(^{-1}\) to be responsible to yield (Equation 1) kcal of dietary energy for corresponding consumption of \(m_c, m_p, m_f \) and \(m_a \) g of carbohydrates, proteins, fats and alcohol respectively.

So, considering the equation (1) in the gesture of carbohydrates, proteins, fats and alcohol consumption,

\[
\begin{align*}
(E_d)_c &= f_c m_c \quad \text{(2)} \\
(E_d)_p &= f_p m_p \quad \text{(3)} \\
(E_d)_f &= f_f m_f \quad \text{(4)} \\
(E_d)_a &= f_a m_a \quad \text{(5)}
\end{align*}
\]

Adding the equations (2), (3), (4) and (5),

\[
(E_d)_c + (E_d)_p + (E_d)_f + (E_d)_a = f_c m_c + f_p m_p + f_f m_f + f_a m_a \quad \text{(6)}
\]

Taking log \([38-40]\) on the equation (13),

\[
\log (4 \sum m_c, p, f, a + 5 m_f + 3m_a) = e_a \quad \text{(14)}
\]

The equation (14) can be used to determine the total dietary energy in human physiology as so this linear equation could be marked as the determinant of total dietary energy (DTDE) in health science and nutritional physics [41-48].

4. Discussion

Human health is the level of function or metabolic ability of individuals or communities to adapt and self-manage during physical, mental and social challenges [49-51]. The WHO defines health in a broader sense on its 1948 constitution as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity” [52]. To maintain healthy health is really harder due to different physical, social, economic and environmental affecting factors. The people are often deprived of their country’s constitution named basic health, hygiene, nutritional care and shelter [53-55]. The population is want of balanced diet for frequent occurring dieting malpractices and the dieticians are in quest of a time saving and easy method in measuring total dietary energy needed for the observance of healthy population [52] in the community. There are different degree of health and nutritional problems such as concept of mass, dietary energy, fuel factor and the information gap between the dietary energy and total dietary energy in nutritional physics. The study proposed determinant of total dietary energy (DTDE) in human physiology can be a solvable bid in overcoming different problems during designing an apt dieting in nutrition counseling [56-59]. The present study result is cut and dried by adding the fuel factor of alcohol along with other energy
yields naming carbohydrates, proteins and fats. The \((E_d)_T\) evaluating method is cut short using the result of the study [equation (16)] in name of the determinant of total dietary energy (DTDE) in human physiology. This study proposed determinant of total dietary energy (DTDE) can be an effective spatial microsimulation modeling to be constructive in designing policies for the governments and NGOs for environmental and spatial effects across different countries in the world to aid healthy dieting practices for sustaining sound health. This health microsimulation modeling [equation (16)] gained from the carried out study can be an effective tool at health pedagogy in nutritional epidemiology. This health microsimulation modeling i.e. the logarithmic equation (16) can be an effective policy in maintaining health and nutritional soundness of population in nutritional statistics. This study proposed determinant of total dietary energy (DTDE) can be in vast application while sustaining sound health of population gaining health status in nutritional epidemiology determined using the logarithmic biophysical modulator of health status in statistical modeling.

5. Conclusion

Malnutrition is the crying happening in the developed and developing countries. The present study results can take a serious turn in evading the malnutrition across the globe. This study rendering determinant of total dietary energy (DTDE) should be taking into action in designing healthy diet at different demographic sites in the world. So the national and international think tank should bear the testimony in making awareness on the determinant of total dietary energy (DTDE) as a part of effective dieting tools in nutrition counseling. Future research should adopt this hassle free \((E_d)_T\) measuring modeling to explore a new road in health pedagogy for taking intervention in policy designing, analysis and checking spatial effects for health and nutrition condition upgrading bid for all classes' people.

References

[64] Phill M. Small area housing stress estimation in Australia: Microsimulation modeling and statistical reliability, University of Canberra, Australia 2011.

