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Abstract: V iscoplastic fluids are materials of great interest both in industry and in our daily lives. These applications range 

from food and cosmetics products to industrial applications such as plastics in the industry of polymers and drilling muds the 

oil industry. This class of material is characterized by having a yield stress that must be exceeded to the material starts to flow. 

These fluids are classically predicted by purely viscous models with yield stress. In the last decade, however, there some 

experimental visualizations has reported that the unyielded regions exhibit elasticity inside. This work is an attempt to 

investigate the effect of elasticity and inertia in those materials. We will studied, therefore, inertia flow of elastic-viscoplastic 

materials with no thixotropic behavior, according to the material equation introduced in de Souza Mendes (2011). The 

mechanical model is approximated by a stabilized finite element method in terms of extra stress, pressure and velocity. Due to 

its fine convergence feature, the method allows the use of equal-order finite elements and generates stable solutions in high 

advective-dominated flows. In this study is considered the geometry of a biquadratic cavity, in which the top wall moves to the 

right at constant velocity. In all computations is used biquadratic Lagrangian (Q1) elements. Results focuses in determining the 

influence of elasticity and inertia on the position and shape of unyielded. These results proved to be physically meaningful, 

indicating a strong interlace between elasticity and inertia on determining of the topology of yield surfaces. 
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1. Introduction 

Elasto-viscoplastic fluids are structured materials that 

exhibit a complex non-Newtonian behavior that is related to 

their structure state, which, in turn, depends on the level of 

stress applied to it. Below a certain stress limit, called the 

yield stress, the material is highly structured, with high levels 

of elasticity and viscosity. This region can be called a 

apparently unyielded regions. When subjected to stress levels 

above the flow value, the material undergoes a rupture 

leading to a fluid-like behavior, where the viscosity decays in 

order of magnitude and their elasticity tends to disappear and 

these regions are called apparently yielded regions. Recent 

experiments present some data showing some elastic effects 

on viscoplastic fluid flows [12]. This class of material is 

present in several important industrial sectors such as 

petroleum, food products and cosmetics. 

The constitutive equation used in this work is a 

modification of the Oldroyd-B equation, where it considers 

the elasticity below the yield stress and a pseudoplastic 

behavior above the yield stress. However, the model 

employed does not consider the structure of the fluid and has 

not been tested in simple flow. More recently, a new and 

more reliable constitutive equation of the Oldroyd-B type 

was proposed [12]. An important feature of this equation is 

that it is also able to predict the thixotropic behavior of 

fluids, a feature that may be present in many viscoplastic 

materials. This model is more representative than that used in 

the study, since it involves the determination of a structure 

parameter to describe the microstructure of the fluid [13]. In 

this work, numerical solutions of conservation and 

government equations were obtained using a formulation of 

three Galerkin least squares (GLS) fields, which takes into 



10 Giovanni Minervino Furtado, Renato da Rosa Martins:  Numerical Approximation of a Non-Newtonian Flow with Effect Inertial  

 

account the fields of velocity, pressure and extres-stress as 

prime variables [2]. This formulation can be seen as an 

extension - for the elasto-viscoplastic case subject to shear-

thinning of the relaxation and retardation times, and the 

viscoplastic SMD function  - of the formulation proposed in 

the paper, for fluids of constant viscosity [11]. Thus, the 

numerical results of inertial flows of elasto-viscoplastic 

fluids are obtained within a lid-driven cavity and a discussion 

is presented on inertia, elastic and viscous contributions to 

the flow pattern. 

2. The Mechanical Model 

For the flow of elasto-viscoplastic material can be modeled 

by the following governing equations, 

�. � = 0                                        (1) 

� ���	 = −�� + div��� + ��                      (2) 

where u is velocity vector, g is the gravitational force per 

unit mass, p is the pressure field and� is the extra stress 

tensor. 

To model the elasto-viscoplastic behavior of the material, 

the extra stress tensor is described by an Oldroyd equation 

that takes into account not only elasticity, but also 

viscoplasticity and thixotropy. The constitutive equation of 

the model adopted in this work was proposed by the study 

[12], which follows the following relation: 

� + ����̇��� = 2���̇� �D�u� + ����̇�D� �u��          (3) 

Where �̇ =  2tr #$D�u�%�# is the magnitude of the strain 

rate tensor, D is the strain rate tensor and �� and &�  represent 

the upper convected derivatives, respectively given by: 

�� = ����u − ��u� ⋅ � − � ⋅ ��u�(                     (4) 

D� = ��D�u − ��u� ⋅ D − D ⋅ ��u�(                (5) 

The differential equation of the extra stress tensor is the 

standard Oldroyd-B viscoelastic model, except that structural 

viscosity, �, relaxation time, ��, and retardation time, ��, are 

dependent parameters. The evolution of the structure 

parameter is governed by a kinetic equation, with its material 

derivative in time given by: 

)̇ = � *+,+-. = /�1 − )� − $1 − )12% 3 ,
,4567          (6) 

where the imbalance between the building term, 
�
	45 �1 −

)�, it's the break, 
�
	45 /$1 − )12% 3 ,

,4567, determines whether 

the material will undergo aging or a rejuvenation process. 

The equilibrium viscosity adopted is a function of the 

stress when the fluid is apparently flowing characterized by a 

high finite viscosity at the limit where �̇ → 0, given by [11]: 

�12��̇� = /1 − 9:� 3;<=>̇?@ 67 A
?@
>̇ + B�̇C;�D + �E    (7) 

Where �F is the low shear rate viscosity plateau, �G is the 

yield stress, K is the consistency index, n is the power-law 

index, and �E is the high shear rate viscosity plateau. 

The relaxation time and retardation, respectively used are 

defined: 

�� = 31 − <H
<456

<45
I45                                (8) 

�� = 31 − <H
<456 <HI45                                (9) 

where, J12  is the elastic modulus in equilibrium and 

follows the relation, 

J12$)12% = JF9K3
L
M45;�6                        (10) 

This function is used to predict the elastic behavior of 

viscoplastic fluids only in regions where the stress level is 

lower than the flow stress. 

As �E , the low viscosity region corresponds to the 

retardation time is practically zero and the relaxation time is 

reduced to: 

�12 = <45
I45                                    (11) 

And the relationship between the equilibrium structure 

parameter and the equilibrium viscosity is given by, 

)12��̇� = NC<45�>̇�;NC<H
NC<=;NC<H                      (12) 

3. The Numerical Modeling 

To approximate the mechanical model described above, a 

multi- field Galerkin least-squares formulation, in terms of 

velocity, pressure and extra-stress, is employed. This 

formulation may be viewed as a direct extension of the model 

introduced by the author for constant viscosity fluids, to 

flows of elasto-viscoplastic materials [2]. Proposed by the 

research for Stokes flow, and later extended by the study for 

Navier–Stokes flow, this formulation has been successfully 

applied to many engineering applications [5, 7]. 

This model overcomes the shortcomings present in 

classical Galerkin approximations for fluid problems of 

interest, primarily, the need to satisfy functional 

compatibility conditions among the finite element subspaces 

of its primal variables. The model produces stable and 

meaningful approximations for fluid problems of interest that 

are exempt from numerical pathologies, even employing 

equal-order combinations of Lagrangean finite elements (for 

details, and references therein) [2, 5]. Exploiting such a 

feature in all of the computations shown in the upcoming 

numerical section, an equal-order bi-linear (Q1) finite 

element interpolation is used. 

A. Geometry and boundary conditions 

The geometry considered is shown in Figure 1. It consists 
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of a unit cavity of length L with the upper wall moving with 

constant velocity ��� = �O; �� = 0� and its other walls and 

the two points of singularity in the two upper corners of the 

cavity subjected to non-slip and impermeable conditions 

��� � �� � 0�. All results were obtained using Lagrangian 

bi-linear interpolations (Q1) for all primary variables. 

 

Figure 1. Geometry and boundary conditions. 

In this figure, we can see three recirculation regions, one 

central region associated with the main flow and two 

secondary regions in the lower chinas of the cavity. These 

regions are caused by the effect of velocity on the cavity 

cover and will always be present in this geometry under the 

contour conditions discussed above. 

4. Numerical Results 

The results aim to study the effect of inertia on the flow 

pattern of viscoplastic materials subject to elasticity, by 

determining the morphology and position of their apparently 

unyielded regions, being that the evaluation of the effects 

caused by inertia is due to the advective term of the 

momentum equation. 

A. Influence of flow intensity 

The Figure 2 shows the influence of the flow intensity on 

the flow surfaces. The material parameters used were: 

�F
* � 100, S � 0,5, �* � 500. 

In this figure, it is perceived that as the flow intensity 

increases, the apparently unyielded regions decrease 

throughout the cavity. When the flow intensity reaches a high 

value (high velocity), a strong displacement occurs of the 

apparently unyielded regions in the top of the cavity, this is 

due to the displacement of the central vortex, also called the 

main flow vortex, since with a high velocity, the inertial 

effects become more evident and also, with a high velocity 

and high inertial effects, we will have an increase of the 

advection in the flow. 

 

Figure 2. Flow surfaces: (a) U* � 0,01 , (b) U* � 0,05 , (c) U* � 0,1 , 

(d)U* � 0,2. 

5. Conclusions 

In this work numerical simulations of elasto-viscoplastic 

flows were performed with the introduction of the inertial 

effects and neglecting the thixotropy, where the geometry 

used was a forced cavity. 

The mechanical modeling was done using the mass 

conservation equation, the equation of the conservation 

principle of the momentum coupled to an elasto-viscoplastic 

material equation proposed in the study [12]. The mechanical 

model was approximated by a Finite Element method, 

namely the least squares Galerkin multi-field method in 

terms of extra stress, pressure and velocity. 

Regarding the influence of the flow intensity, a marked 

reduction was observed in the apparently unyielded regions 

with increasing flow intensity. This is because the increase in 

U* causes increasing levels of tension throughout the cavity, 

causing larger regions to exceed the flow limit of the material 

and begin to flow as a power-law fluid. By the variation of 

U* and fixing �*, increasing the advective effects in the flow 

the apparently yield regions suffer a strong displacement to 

the right in the superior part of the cavity. 

The advective term of the momentum equation is the term 

that represents the forces of inertia in the flow, that is, the 

greater the inertia in the flow, the greater the advection in that 

flow. 
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