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Abstract: The Etherington's distance-duality equation is the relationship between the luminosity distance of standard candles 

and the angular-diameter distance. This relationship has been validated from astronomical observations based on the X-ray 

surface brightness and the Sunyaev-Zel'dovich effect of galaxy clusters. In the present study, we propose a derivation of the 

Etherington's reciprocity relation in the dichotomous cosmology. 
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1. Introduction 

The Etherington's distance-duality equation was 

introduced in 1933 [1]. Etherington mentioned this equation 

was proposed by Tolman as a way to test a cosmological 

model. Ellis proposed a proof of this equation in the context 

of Riemannian geometry [2-3]. A quote from Ellis [3]: "The 

core of the reciprocity theorem is the fact that many 

geometric properties are invariant when the roles of the 

source and observer in astronomical observations are 

transposed". This statement is fundamental in the reciprocity 

theorem as shown here in the derivation of the theorem in the 

dichotomous cosmology. While the proof of the 

Etherington's distance duality in the context of Riemannian 

geometry is tedious, the derivation in the dichotomous 

cosmology is straightforward. As a reminder, the 

dichotomous cosmology [4-5] consists of a static matter 

universe with an expanding luminous world. One needs to 

imagine a cube of light expanding, in a space where galaxies 

do not recede from each other. 

Fortunately, the Etherington's distance-duality equation, 

which is a crucial relationship in cosmology, can be verified 

from astronomical observations. While the luminosity 

distance is measured from supernova observations, the 

angular-diameter distance is determined from the X-ray 

surface brightness and the Sunyaev-Zel'dovich effect [6] of 

galaxy clusters [7]. In [8], the authors found that the ratio 

between the two distances DL for the luminosity distance and 

DA for the angular-diameter distance, defined as η = 

DL/DA(1+z)
2
 is bound to be η = 1.01 +/- 0.07 at 68% c.l. 

Similar results were obtained in [9-10], where no significant 

violation of the distance-duality relationship was found. In 

[11], the authors tested the cosmic distance duality for 

different galaxy cluster samples. The study [12] is focused 

on analytical expressions for the deformation of the distance 

duality in terms of the cosmic absorption parameter. The 

reciprocity theorem is considered to be true when photon 

number is conserved, gravity is described by a metric theory 

with photons traveling on unique null geodesics [13]. Any 

violation of the distance duality would be attributed to exotic 

physics. 

Following the introduction in section 1, the distance 

measurements are derived in section 2. To derive the 

Etherington's reciprocity theorem in the dichotomous 

cosmology, we first need the distance measurements, which 

may be derived from the tired-light paradigm (section 2.1) or 

from expanding metrics (section 2.2). Both derivations lead 

to the same equations. In section 2.3, we derive the 

Etherington's distance duality using our distance 

measurements. In section 3, we provide a brief explanation 

of the method used to estimate the angular-diameter distance 

from X-ray surface brightness measurements and the 

Sunyaev-Zel'dovich effect. In section 4, we present the line 

of thought of the dichotomous cosmology. Finally, we offer 

our conclusion in section 5. 

2. Derivation of the Distance 

Measurements 

Let us recall the derivation of the distance measurements in 

the dichotomous cosmology. 
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2.1. Derivation from Tired-Light Paradigm 

When a photon loses energy during its travel in space, the 

wavelength of light is stretched, and because the number of 

cycles of the light wave is conserved, an expansion of the 

luminous world is produced. As a consequence of this 

stretching of light, the velocity of the light wavefront 

increases during its travel (Fig. 1). According to special 

relativity, the speed of light is invariable. Hence, in order to 

maintain the light wavefront at the speed of light, the model 

introduces a time contraction between the emission point and 

the observer. The study [4] mentions a time dilation; in order 

to rectify this, the model is based on a time contraction in the 

arrow of time. 

 

Figure 1. Light wavefront. Where (a) is the light wavefront without stretching, 

and (b) with stretching. We can see that in (b) the light wavefront is going 

faster than in (a). 

Considering that photons lose energy as light gets stretched, 

the following equation is obtained: 

0

E(z)
1 z

E
+ = ,                    (1) 

where E(z) is the photon energy when emitted, E0 is the 

photon energy at time of observation, and z is the redshift. 

A simple decay law of the photon energy is considered: 

0

E
H

E
= −
ɺ

,                      (2) 

where H0 is the Hubble constant. 

Therefore 

( )0 0E(t) E exp H t= − ,               (3) 

and 

( )0 0E(T) E exp H T= ,               (4) 

where t is the time which is equal to zero at the time of 

observation, and T the light travel time of the source from the 

observer. 

A set of two transformations is considered: first a 

time-variable light wavefront to accommodate the expansion 

of the luminous world, and second a time contraction to 

maintain the light wavefront at the speed of light. 

2.1.1. Light Wavefront with Respect to the Source 

The light wavefront velocity before time contraction is 

expressed as follows: 

emit
E

v(t) c
E(t)

= ,               (5) 

where Eemit is the photon energy when emitted, and E(t) the 

photon energy at time t. 

To maintain the light wavefront at the speed of light, the 

following time contraction is applied: 

emit
Et

t E(t)

′δ =
δ

.                (6) 

Hence, the light travel time with respect to the source is: 

0 0

emit

T T

Et
T dt dt

t E(t)− −

′δ′ = =
δ∫ ∫ .          (7) 

Introducing (3) in the previous equation and integrating, we 

get: 

emit 0

0 0 emit

E E1
T 1

E H E

 ′ = − 
 

.           (8) 

Introducing (1) in the previous equation, we get: 

0

z
T

H
′ = ,                 (9) 

which is the light travel time measurement for the luminosity 

distance. 

2.1.2. Light Wavefront with Respect to the Observer 

The light wavefront velocity before time contraction is 

expressed as follows: 

0E
v(t) c

E(t)
= .               (10) 

To maintain the light wavefront at the speed of light, the 

following time contraction is applied: 

0 0t E

t E(t)

δ
=

δ
.               (11) 

Hence, the light travel time with respect to the observer is: 

0 0

0 0

0

T T

t E
T dt dt

t E(t)− −

δ
= =

δ∫ ∫ .           (12) 

Introducing (3) in the previous equation and integrating, we 

get: 

( )0 0

0

1
T 1 exp( H T)

H
= − − .          (13) 

Introducing (4) in the previous equation, we get: 
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0

0

0 emit

E1
T 1

H E

 
= − 

 
.             (14) 

Introducing (1) in the previous equation, we get: 

( )0

0

1 z
T

H 1 z
=

+
,               (15) 

which is the light travel time measurement for the actual 

distance. 

2.2. Derivation from Expanding Metrics 

In the dichotomous cosmology, the luminous world is 

expanding; therefore, we can derive the distance 

measurements using expanding metrics. 

2.2.1. Luminosity Distance 

The luminosity distance is the distance measured from the 

luminosity of standard candles. Supernovae Ia are considered 

standard candles, meaning they all have the same absolute 

brightness when they explode. From their apparent brightness, 

we can deduce the luminosity distance, because the brightness 

diminishes proportionally to the inverse of the distance 

squared. The formula used to measure the luminosity distance 

is the distance modulus equation. 

For considering a photon travelling away from the center of 

a supernova, the luminosity distance is calculated as follows: 

L

0 L

dr
c H r

dt
= + ,              (16) 

where rL is the luminosity distance, H0 the Hubble constant, 

and c the speed of light. 

By integrating this equation between 0 and T, we get: 

( )L 0

0

c
r exp(H T) 1

H
= − .           (17) 

Because da/dt = H0a, we get dt = da/H0a, where a is the scale 

factor. In addition, the relationship between the scale factor 

and the redshift is given by the cosmological redshift equation 

(1 + z) = 1/a , where the scale factor is equal to one at present 

time. Hence, the light travel time versus redshift is as follows: 

1

0 01/(1 z)

da 1
T ln(1 z)

H a H+

= = +∫ .        (18) 

Equations (17) and (18) yield: 

L

0

c
r z

H
= ,                (19) 

which is identical to (9) with rL = cT’. 

2.2.2. Euclidean Distance 

A measurement of the distance is obtained by calculating 

the corresponding distance if there were no expansion, which 

we call the Euclidean distance. Let us introduce y to this 

distance measurement. By considering a photon moving 

towards the observer, we get: 

0

dy
c H y

dt
= − + .              (20) 

By setting time zero at a reference Tb in the past, we get: t = 

Tb - T; therefore, dt = -dT (where T is the light travel time 

when looking at a source into the past). Hence: 

0

dy
c H y

dT
= − ,               (21) 

with boundary condition y(T = 0) = 0. 

Integrating this equation between 0 and T, we get: 

( )0

0

c
y 1 exp( H T)

H
= − − .            (22) 

By substitution of (18) into (22), we get : 

( )0

c z
y

H 1 z
=

+
,               (23) 

which is identical to (15) with y = cT0. 

2.3. Etherington’s Distance Duality 

From (19) and (23), we get: 

( )Lr 1 z y= + .               (24) 

The angular-diameter distance dA of an object is defined in 

terms of x, the object's actual size, and θ, the angular size of 

the object as viewed from earth. The equation is as follows: 

A

x
d =

θ
.                  (25) 

Because of the expansion of the luminous world, the 

apparent size of celestial objects is stretched by a factor (1+z), 

and the apparent angular size is increased by the same factor. 

Hence, the relationship between the actual distance y and the 

angular-diameter distance is as follows: 

( ) Ay 1 z d= + .               (26) 

Equations (24) and (26) yield: 

( )2

L Ar 1 z d= + ,              (27) 

which is the Etherington's distance-duality relationship. We 

have just derived the Etherington's reciprocity theorem. 

3. Method 

It is worthwhile to provide a brief explanation of the method 

used to validate the Etherington’s distance-duality equation 

based on astronomical observations. The luminosity distance 

is measured from supernova observations using the distance 

modulus and is related to the redshift. The challenge is to 
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measure the angular-diameter distance because we don’t know 

the actual size of astronomical objects. This has been done for 

galaxy clusters using X-ray surface brightness measurements 

and the Sunyaev-Zel'dovich effect. Galaxy clusters contain 

large quantities of hot and ionized gas at temperatures between 

10 to 100 megakelvins. This hot gas radiates in the X-ray 

domain through bremsstrahlung, or radiation produced by the 

deceleration of a charged particle when deflected by another 

charged particle. This intra-cluster gas distorts the cosmic 

microwave background radiation (CMBR) through the 

so-called Sunyaev-Zel’dovich effect: the inverse Compton 

interaction of photons which receive an energy boost when 

colliding with high energy free electrons. This decreases the 

CMBR brightness at low frequencies but increases it at high 

frequencies. The drop in temperature or brightness of the 

CMBR spectrum in the Rayleigh-Jeans region due to the 

Sunyaev-Zel’dovich effect is a function of electron 

temperature and density. The X-ray surface brightness is a 

function of the volume of the cluster and electron temperature 

and density. Using both measures, we can therefore eliminate 

the electron density term and estimate the size of the cluster. 

Finally, we compute the angular-diameter distance using the 

size of the cluster and angular size as shown in (25). The 

details of the method and quantitative aspects are described in 

[14-15]. 

4. Interpretation 

The dichotomous cosmology is in line with the school of 

thought of the Greek philosopher Democritus. Born around 

460 B.C., Democritus was a materialist philosopher disciple 

of Leucippus. Both held that everything is composed of atoms, 

the smallest particle of a substance, which interact with each 

other and lie in empty space. In the dichotomous cosmology 

there is no need for dark energy or other exotic substances, and 

the universe consists of atoms and vacuum. 

The dichotomous cosmology is in contradiction with the 

big bang theory. In the big bang theory the universe is 

expanding, whereas in the dichotomous cosmology the 

universe is static. The three pillars of the big bang are 

respectively, the expansion of the universe according to 

Hubble’s law, the discovery of the microwave background 

radiation, and the relative abundances of light elements. The 

dichotomous cosmology challenges the first pillar of the big 

bang. A consequence of our theory is that the age of the 

universe is indefinite. In the big bang theory, the age of the 

universe, is defined by the moment when all the universe was 

confined in one point - the big bang singularity, which is 

estimated to have occurred around 13.7 billion years ago. In 

the dichotomous cosmology, we cannot define a beginning of 

time. Hubble time, which is the inverse of the Hubble 

constant, becomes the maximum distance that light can travel 

in the universe. 

5. Conclusion 

The Etherington's distance-duality equation, which relates 

the luminosity distance of standard candles to the 

angular-diameter distance, is a crucial relationship in 

cosmology. Although the Etherington's reciprocity theorem is 

considered to be peculiar to cosmological models based on 

Riemannian geometry, in the present study we propose a new 

derivation of this relationship in the dichotomous cosmology. 

This derivation is straightforward and follows naturally from 

the dichotomous cosmology. Today, the Etherington's 

reciprocity theorem is considered established and has been 

verified using astronomical observations based on X-ray 

surface brightness and the Sunyaev-Zel'dovich effect of 

galaxy clusters. 
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