Interactions of Photosynthetic Reaction Centers with Bc_1 Complexes from *Rhodobacter Sphaeroides* Studied Using SEIRAS on a Nano-Structured Gold Surface

Vedran Nedelkovski, Andreas Schwaighofer, Andreas F. Geiss, Christina Bliem, Renate L. C. Naumann

1. Introduction

The investigation of membrane proteins is facilitated by the immobilization on a surface via his-tag technology. Monolayers of proteins thus obtained can be reconstituted by *in-situ* dialysis into protein-tethered bilayer lipid membranes (ptBLMs) [1]. The proteins can thus be investigated in a functionally active form using SEIRAS (surface-enhanced infrared spectroscopy) [2] and SERRS (surface-enhanced resonance Raman spectroscopy) [3]. SEIRAS in the ATR mode has been successfully applied to several membrane proteins such as cytochrome c oxidase [4-7]. Rhodopsin [8] and the reaction center (RC) of photosynthetic bacteria [9], in a ptBLM configuration. Surface-enhancement is achieved by nano-structured gold or silver surfaces. Here, we report on the co-reconstitution of RCs with the bc_1 complex from *R. sphaeroides* via his-tags attached to the P side of the RC and the C-terminal end of the cytochrome (cyt) b subunit (Fig. 1).

The interaction of the bc_1 complex with the RC has been demonstrated before to interact via ubiquinol and an electron carrier cyt c through flash-induced electron transport in *R. sphaeroides* chromatophores [10]. Reverse electron transfer within the bc_1 complex can be shown by the electric field generated by the RCs [11]. FTIR spectra of the RC and the
bc₁ complex isolated from bacteria have been widely reported, mostly in the form of reduced-minus-oxidized difference spectra, e.g. [12-16]. We have previously shown that SEIRAS allows to reveal slow inter-protein reactions between RC molecules, once the RC has been activated by continuous illumination with a quartz halogen lamp [9]. In the present study, we explore the same inter-protein reactions of RCs in the presence of the bc₁ complex. Even though the cyt c binding site is located on opposite sides of the proteins, the turnover of the bc₁ complex has been demonstrated elicited by cyt c in the aqueous phase. As a requirement for this process a certain mobility of semiquinone species is considered.

Figure 1. RCs and bc₁ complexes immobilized on a NTA-functionalized gold surface, co-reconstituted in the pBLM. RCs are immobilized with the primary donor (P) and the bc₁ complexes with the C-terminal end of the cyt b subunit oriented towards the surface of a silicon ATR crystal, covered with a nano-structured gold film.

2. Experimental Procedures

2.1. Solvents and Chemicals

3-Mercaptopropyltrimethoxysilane (MPTES, 95%) was purchased from ABCR GmbH (Karlsruhe, Germany). Gold granules (99.99%) for evaporation were obtained from Mateck GmbH (Juelich, Germany). Bio-beads (20-50 mesh) were purchased from Bio-Rad Laboratories GmbH (Vienna, Austria). 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DiPhyPC, >99%) was provided by Avanti Polar Lipids (Alabaster, AL). Dithiobis (nitroloacetic acid butylamidyl propionate) (DTNTA, ≥95.0%) was obtained from Dojin do (Kumamoto, Japan). Hydroxylamine hydrochloride (NH₄OH.HCl, 99%), gold(III) chloride hydrate (HAuCl₄·xH₂O, 99.999%), dimethyl sulfoxide (DMSO, puriss., dried over molecular sieve), 3,3’-dithidipropionipic acid (DTP, 99%), dodecyl-β-D-maltoside (DDM, ≥98%), nickel(II) chloride (NiCl₂, 98%), D-(-)-glucose (C₆H₁₂O₆, ≥99.5%), glucose oxidase (GOX) and catalase, as well as ubiquinone-10 (Q-10, 2,3-dimethoxy-5-methyl-6-all-trans-decaprenyl-1,4-benzoquinone) were purchased from Sigma-Aldrich (Steinheim, Germany). All chemicals were used as purchased.

2.2. Preparation of the Two-Layer Gold Surface on the ATR Crystal

Preparation was done as previously described [17]. A polished silicon attenuated total reflection (ATR) crystal was immersed in a 10% ethanolic solution of MPTES for 60 minutes to anchor the gold layer. After rinsing with ethanol, the sample was dried under a stream of argon and annealed at 100°C for 60 minutes. After cooling to room temperature, the crystal was immersed in water for 10 minutes and dried under a stream of argon. A 25 nm gold film was then deposited onto the ATR crystal by electrochemical evaporation (HHV Edwards Auto 306, Crawley, UK). Gold nanoparticles were grown on the gold film by immersing the crystal in 50 mL of an aqueous solution of hydroxylamine hydrochloride (0.4 mM), to which 500 µL of an aqueous solution of gold(III) chloride hydrate (0.3 mM) was added five times at 2-minutes intervals. Finally, the sample was rinsed with water and dried under a stream of argon.

2.3. Immobilization of the Protein

Wild-type *Rhodobacter sphaeroides* RCs with a genetically engineered 7-his-tag at the C-terminus of the M-subunit were expressed from a strain kindly provided by S. G. Boxer (Stanford University, CA) [42]. RCs were purified according to a modification of the original method [29]. The bc₁ complex poly-his-tagged on the C-terminal end of the cyt b subunit was expressed and purified according to Crofts et al. [43]. The immobilization of the proteins on the two-layer gold surface on top of the ATR crystal was performed according to a method described earlier [9] and references therein. Briefly, the gold surface was immersed in a solution of 2.5 mM DTNTA and 7.5 mM DTP in dry DMSO for 20 h. After rinsing with ethanol and purified water, the surface was immersed in 40 mM NiCl₂ in acetate buffer (50 mM, pH 5.5) for 30 minutes, followed by thorough rinsing with purified water to remove excess NiCl₂. The surface was dried under a stream of argon prior to assembly in the measuring cell, and rehydrated with DDM phosphate buffer (DDM-DPK) (0.05 M K₂HPO₄, 0.1 M KCl, pH 8, 0.1% DDM). RCs and bc₁ complexes dissolved in DDM-DPK were adsorbed to the NTA-functionalized gold surface, both at a final concentration of 100 nM. After 4 h adsorption time at 28°C, the cell was rinsed with DDM-DPK to remove nonspecifically adsorbed and bulk protein. Thereafter DDM-DPK was replaced by a DiPhyPC/DDM-DPK solution (40 µM DiPhyPC in DDM-DPK). In the case of additional ubiquinone, Q-10 was solubilized together with DiPhyPC (6 µM Q-10 in DiPhyPC/DDM-DPK). After incubation, DDM was removed by adding Bio-beads to the lipid-detergent solution. An idealized picture of the final structure is shown in Fig. 1

2.4. ATR-SEIRA Spectroscopy (ATR-SEIRAS)

SEIRA spectroscopy was performed in a flow cell, originally designed for electrochemical excitation of the protein, which was mounted on top of a trapezoid single reflection silicon ATR crystal. The IR beam of the FTIR
spectrometer (VERTEX 70v, from Bruker, Ettlingen, Germany) was coupled into the crystal at an angle of incidence $\Theta = 60^\circ$ by using the custom-made setup described previously [17]. All spectra were measured with parallel polarized light. Because the ATR element surface is coated with an electrical conductor, perpendicularly polarized light is unable to penetrate the conducting layer effectively. The total reflected IR beam intensity was measured with a liquid nitrogen-cooled photovoltaic mercury cadmium telluride (MCT) detector.

Establish anaerobic conditions within the flow cell, the DPK solution was flushed with argon for 20 minutes, after which a chemical oxygen trap consisting of glucose (0.3% w/w), glucose oxidase (75 µg/mL) and catalase (12.5 µg/mL) was added.

Thereafter IR measurements were done under anaerobic conditions at 28°C. The sample chamber housing the flow cell was purged with dry, carbon dioxide-free air in order to remove CO$_2$ and water vapour from the light path. FTIR spectra were recorded at 4 cm$^{-1}$ resolution using Blackham-Harris 3-term apodization and a zero filling factor of 2. The interferograms were measured in double-sided mode and transformed into spectra using the power phase correction mode. Spectra were analyzed using the software package OPUS 7 and Origin Lab’s Origin software. Sample illumination was provided by white light from a Fiber-Lite DC950 illuminator (150 W, quartz halogen lamp) with an optical fiber from Dolan-Jenner (Boxborough, MA). The light intensity measured at 800 nm was 0.2 W/cm2.

3. Results and Discussion

3.1. SEIRA Spectra as a Function of Co-Immobilization Time

Co-immobilization of RC and the bc$_1$ complex via his-tags attached to the P side of the RC and the C-terminal end of the cyt b subunit, respectively, was monitored as a function of time (Fig. 2). For this purpose, we employed a two-layer gold surface, optimized with respect to the enhancement effect of nano-structured gold surfaces [17] (Fig. 1). Immobilization is indicated by an increase of vibrational components in the amide I region with a maximum at 1647 cm$^{-1}$ as in the case of RC alone. The presence of the bc$_1$ complex is indicated by an additional band at 1592 cm$^{-1}$, which has been attributed to the γ_{37} vibration of hemes b_L and b_H [18] or, alternatively, to the $\nu(C=C)$ vibration of quinone [19]. Protein films of the bc$_1$ complex alone, dried and rehydrated on an ATR crystal, also showed characteristic bands at 1649 and 1540 cm$^{-1}$ attributed to amide I and II vibrations [20]. Bands around 1567 cm$^{-1}$ are generally assigned to N-H bending and C-N stretching vibrations of the amide II band. However, bands around 1590 cm$^{-1}$ were also found in SEIRA spectra of other his-tagged proteins together with small bands at 1438 cm$^{-1}$ with a shoulder at 1422 cm$^{-1}$, which have been attributed to the rearrangement of NTA moieties [21].

Figure 2. SEIRA spectra of RCs co-immobilizing with bc$_1$ complexes to the gold surface as a function of time. Total adsorption time is 4 h. Time intervals between recordings are 10 min.

3.2. Light-Minus-Dark SEIRA Spectra of the Co-reconstituted Proteins

Light-minus-dark difference spectra were recorded under continuous illumination of both proteins reconstituted in the pbBLM. A steady state was not obtained on the seconds time scale as described by Breton, probably because different from our experiment they used an electron donor to reduce the oxidized primary special pair, P870^+ or P$^+$ back to P [12]. Moreover, the overall appearance of the spectra is strikingly different from steady state FTIR difference spectra found in the literature, which usually are composed of narrow peaks and troughs [12]. Most of the unfamiliar features of our spectra can be explained in terms of the theory of SEIRAS, notably the strong dependence on the orientation of the transition dipole moments, which must be oriented perpendicular to the surface. This is expressed in the surface selection rule shown to be valid in the context of SERRS as well as of SEIRAS, predicting that bands are the stronger the more the transition dipole moment of the respective functional group is oriented perpendicular to the surface [8, 22]. This means that the same component present in different orientations may be strongly represented or not at all. This largely accounts for the different sensitivities of bands associated with the same functional group, e.g. bands that represent QH$_2$ at 1434, 1491, 1470 cm$^{-1}$, of which only 1434 cm$^{-1}$ is definitively seen here. The same holds for the bands that represent P$^+$ modes such as 1750, 1704, 1550, 1480, 1283 and 1295 cm$^{-1}$, of which only 1283 cm$^{-1}$ is seen. This effect is strongly enhanced by the pre-orientation of the RC molecules due to his-tag binding followed by reconstitution into a lipid bilayer. This arrangement has to be compared to solubilized RCs used previously for FTIR after drying and rehydration [12]. Nevertheless, the single bands can be tentatively assigned to certain modes on the basis of FTIR spectra known from the literature, see Table 1. Almost all the bands represent products of the illumination, which explains the fact that mostly positive bands are recorded. For a more detailed discussion of the bands see further below.
Absorbances of all the bands thus obtained under continuous illumination increased on a time scale of minutes similar to the observation made with the RC alone [9]. For an explanation of the long time scale, see further below. The spectrum taken after 5 min illumination time of co-reconstituted bc1 complex and RC is shown in Fig. 3, and compared with the respective spectra of the RC alone obtained under the same conditions.

In the presence of the bc1 complex, absorbances of the bands at 1282, 1360, 1434 cm⁻¹ are almost unchanged whereas the bands at 1234, 1507, 1642 and the negative band at 1685 cm⁻¹ are almost absent. Moreover, the broad negative and positive bands at 3400 and 3629 cm⁻¹ exhibit a much smaller absorbance compared to the RC alone. The negative band at 1685 cm⁻¹ may reflect the decrease of the ground state of the primary donor, P [13, 23], whereas the band at 1642 cm⁻¹ could reflect the C=O vibration of ubiquinone, however, strongly overlapping with the water bending vibration [12, 13, 16, 24-26]. The band at 1234 cm⁻¹, a prominent band also in the absence of the bc1 complex, could not be correlated to any kind of alteration. It lies in the region of C-O stretching vibrations of protonated carboxylic acids [27]. A band at 1238 cm⁻¹ has been assigned to the δ (COH) vibration of tyrosine or, alternatively, to the νas (PO₂) vibration of certain lipids [18, 19]. The band at 1507 cm⁻¹ has been reported by Leonard and Mäntele [23] in FTIR spectra of the RC, but was not assigned to any vibration. The bands at 1282 and 1434 cm⁻¹ have been assigned to the P’ species of the primary donor [12, 25], and QH² [28, 29], respectively, and were shown previously to be formed slowly over time under continuous light excitation of the irrespective of the presence of the bc1 complex. The band at 1360 cm⁻¹ has been assigned to the δ (CH₃) vibration of the methyl group at the 5-position of the ring of the semiquinone difference spectra, QA-minus-QB and QB-minus-QB, the electron acceptors of the RC. It was also found to increase during continuous illumination of RCs alone [30, 31]. Broad positive and negative bands in the region 3400-3650 cm⁻¹ have been attributed by Iwata et al. [14] to water stretching vibrations associated with semiquinone formation at the QA and QB sites of the RC. The bands at 3400 and 3629 cm⁻¹ observed here are most akin to those of QH₂/QB. Changes of these bands under continuous illumination are considerably smaller in the presence of the bc1 complex. The same applies to the band pair 1642/1685 cm⁻¹. The band at 1642 cm⁻¹ is in the amide I region but has also been assigned to ubiquinone and the re-orientation of water molecules, which would be consistent with the decrease of the bands at 3400 and 3629 cm⁻¹. The negative band at 1685 cm⁻¹ could reflect the decrease of the ground state of the primary donor, P [13, 23], which would decrease on illumination, consistent with the appearance of the P’ species indicated by the positive band at 1282 cm⁻¹. Tentative band assignments are collected in Table 1. The very slow evolution of spectra in the absence of an electron donor was explained earlier [9] in terms of an inter-protein reaction between two RC molecules

\[
2 \text{P'}Q_B^- + 2\text{H}^+ \rightarrow \text{P'}Q_B^2 + \text{P'}Q_B\text{H}_2
\]

(Fig. 3. Light-minus-dark spectra under continuous illumination, taken after 5 min illumination of RC alone (blue line) and RC co-reconstituted with bc1 complex (magenta line) in the ptBLM, in the upper (A) and lower (B) wavenumber region.

Following the light excitation of the RC consisting of electron transfer between the primary electron donor (special pair, P870 or P) and the electron acceptors QA and QB

\[
\text{PQ}_2^+ + \text{hv} \rightarrow \text{P'}Q_B^2
\]

Eq (1) is followed by release of QH₂ into the membrane and rebinding of QB from the quinone pool. Mechanistically, eq (2) will involve transient states such as P’QA’ and P’QA’QH₂, with coupled protonation events [35]. Hence, instead of reaching a steady state on the level of P’Q₂, species such as P’ and QH₂ (and/or QH₂, as indicated by bands at 1282 cm⁻¹ for P’ [12, 25] and 1434 cm⁻¹ for QH₂ [28, 29]) could be formed on the time scale of minutes. In the presence of the bc1 complex, this slow inter-protein reaction (eq 1) described in [9] seems to go on almost unimpeded, as illustrated by Fig. 3. Only the bands indicating the disappearance of P (1685 cm⁻¹) and UQ (1642 cm⁻¹), as well as the water stretching vibrations associated with semiquinone formation bands, are smaller, which can be explained in terms of eq. 1 followed by protonation of QB⁻ and release as QH₂ into the membrane, with rebinding of QB from the quinone pool. This reaction is considered to depend
on the concentration of Q within the lipid phase. With no Q-10 added this concentration will be determined by the amount of UQ which stays with the membrane protein during purification. In the case of the RC, there is always some UQ left during purification as we have seen in [9]. The preparation of the bc_1 complex, on the other hand, apparently does not contribute to the concentration of UQ and hence the total concentration within the mixed layer is smaller. This can explain the disappearance of the band pair 1685 and 1642 cm$^{-1}$ within the mixed protein layer as compared to the homogeneous layer of RCs. In order to support this explanation, we have co-reconstituted additional lipophilic Q-10 together with the two proteins. The absorbance of all the bands was increased (Fig. 4) and more importantly, absorbances of the band pair 1685/1642 cm$^{-1}$ were restored when the spectrum was taken under otherwise the same conditions (Fig. 4).

Table 1. Tentative band assignment of bands of RCs co-reconstituted with bc_1 complexes in the ptBLM under continuous illumination.

<table>
<thead>
<tr>
<th>Band position [cm$^{-1}$]</th>
<th>Experimental</th>
<th>Literature</th>
<th>Tentative Assignment</th>
<th>Vibrational Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1282</td>
<td>1282 [23, 25, 32]</td>
<td>P$^+$ (complex)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1360</td>
<td>1355 [3], 1365 [31]</td>
<td>QA</td>
<td>δCH$_3$</td>
<td></td>
</tr>
<tr>
<td>1434</td>
<td>1433 [13, 28, 33, 34]</td>
<td>QH$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1642</td>
<td>1640 [25, 26], 1641 [12, 16, 24], 1642 [13]</td>
<td>Quinone – Q$_B$, Q$_B$</td>
<td>C=O</td>
<td></td>
</tr>
<tr>
<td>1685</td>
<td>1682 [23], 1683 [13]</td>
<td>9-keto group of P</td>
<td>C=O</td>
<td></td>
</tr>
<tr>
<td>3400</td>
<td>3485 [14]</td>
<td>Q$_B$/Q$_B$ or P$^+$</td>
<td>H$_2$O</td>
<td></td>
</tr>
<tr>
<td>3629</td>
<td>3632 [14]</td>
<td>Q$_B$/Q$_B$ or P$^+$</td>
<td>H$_2$O</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Light-minus-dark spectra under continuous illumination taken after 5 min illumination of RC co-reconstituted with bc_1 complex and additional Q-10 (green line) in the ptBLM, in the upper (A) and lower (B) wavenumber region. The black line is the dark-minus-dark difference spectrum.

Moreover, the bands in the region 3600 – 3300 cm$^{-1}$, interpreted by Iwata et al. [14] in terms of water stretching vibrations associated with semiquinone formation, undergo a dramatic change in appearance. The small peak at 3632 cm$^{-1}$
may be a remnant of the 3629 cm\(^{-1}\) band seen in the absence of \(bc\)\(_1\) complex. Additional bands are now observed at 2851, 2922, 2958 cm\(^{-1}\), which are not seen before co-reconstitution of additional Q-10. They could be due to CH stretching vibrations of the hydrocarbon residue of Q-10. Alternatively, it may reflect changes in the water spectrum in response to changes in membrane structure or surface architecture due to the presence of Q-10. The band at 1234 cm\(^{-1}\), which is negligible in the absence of added Q-10, is substantially enhanced with Q-10 added. The state obtained after five minutes illumination time was then permitted to relax in the dark (Fig. 5).

All the bands decreased over time including the 1642/1685 cm\(^{-1}\) band pair, as illustrated in the plots of the band areas vs. time of relaxation (Fig. 6).

The almost complete disappearance, after switching off the light, of all the bands formed during continuous illumination supports the explanation given above for the slow inter-protein reaction between RC molecules. Relaxation can be explained in terms of the reversal of the original disproportion, eq (1)

\[
2\text{P'}Q\text{H} + \text{QH}_2 \rightarrow \text{P'}Q\text{H}^2^- + \text{P'}Q\text{H} \rightarrow 2\text{P'}Q\text{H}^- ,
\]

where the rates of both forward and backward reactions are limited by the exchange of Q and QH\(_2\) species between protein and lipid phase. Local concentrations of quinone species rather than diffusion coefficients are considered to control reaction rates, as shown in other instances [36].

Finally, light-minus-dark absorbance spectra were recorded not only in the presence of additional Q-10 but also with (oxidized) cyt c added to the aqueous phase (Fig. 7). As a result, we observe a drastic change in the behavior of the system. Just as in the experiment described by Breton [12], it quickly arrives at a stationary state characterized by bands that are much smaller than those obtained in the experiments without cyt c (Fig. 7). However, the bands below 1460 cm\(^{-1}\) are essentially identical in position and relative amplitude to those seen in the absence of cyt c (compare Fig. 4).

The stationary state indicates a fast interaction of the light-activated RC with the \(bc\)\(_1\) complex, but only in the presence of cyt c in the aqueous phase. This suggests that electrons delivered to the \(bc\)\(_1\) complex by QH\(_2\) are used to reduce cyt c. In addition, the bands at 3632, 3510, 3394, 3357 cm\(^{-1}\) disappeared entirely, whereas a band at 3454 cm\(^{-1}\) appears, which resembles a shifted version of the band at 3400 cm\(^{-1}\) seen in the absence of \(bc\)\(_1\) (Fig. 3A). These effects indicate an appreciable re-arrangement of water molecules associated with semiquinone formation at the Q\(_A\) and Q\(_B\) site of the RCs [14]. Moreover, the band around 1642 cm\(^{-1}\) has disappeared and two new bands, at 1660 and 1544 cm\(^{-1}\), are seen, characteristic for amide I and amide II vibrations, respectively, usually indicating changes in the protein secondary structures.

4. Conclusions

Due to the position of the his-tags, the RC and the \(bc\)\(_1\) complex are oriented with the primary donor and the C-terminal end of the cyt b subunit directed toward the gold film, respectively (Fig. 1). In this configuration, the cyt c
binding side of the two proteins is located on opposite sides of the membrane. This is different from photosynthetic bacteria, where cyt c is reduced and re-oxidized within the lumen of chromatophores, by c_1 via the Rieske iron sulfur center (ISP) of the bc_1 complex and by P^+ of the RC, respectively, while cyt c shuttles between the two complexes. This configuration, however, could not be realized at the time of this study.

Nevertheless, in the present configuration the bc_1 complex presents the cyt c binding site to the outside of the membrane, thus allowing cyt c added to the surrounding solution to interact directly with the bc_1 complex but not with the RC. The decrease of the bands at 1282 and 1434 cm$^{-1}$ (attributed to P^+ and QH$_2$, respectively) is explained in terms of the inter-protein reaction eq (1) that is inhibited in the presence of cyt c. We conclude that the bc_1 complex turns over, however, to an extent that is controlled by the amount of QH$_2$ thus transferring electrons to cyt c. We consider that during this turnover a species may be formed that is able to reduce P$^+$ back to P, i.e., an electron donor just as in the experiment described by Breton [12]. We have to conclude that such a species is absent before the addition of cyt c because otherwise the disproportionation reaction eq (1) would proceed undisturbed. Nevertheless, some QH$_2$ will be available together with fully oxidized cyt c present in the aqueous phase adjacent to cyt c$_1$ of the bc_1 complex, while P$^+$ is still oxidized. These are the conditions under which the bc_1 complex will undergo the well known Q-cycle mechanism [37].

The first and rate limiting step in the Q-cycle is the oxidation of QH$_2$ in the Q$_i$ site by the ISP. The SQ formed at this site is highly unstable [38] and transfers the second electron to the low potential chain of b hemes (b_1 and b_3) to a quinone at center Q$_{1}$ forming a SQ. A second turnover at the Q$_{1}$ site leads to a second electron arriving at the Q$_i$ site, reducing the SQ to QH$_2$ [37, 39]. Hence, after the first turnovers we expect three possible reductive species as candidates for P$^+$ reduction: SQ at center Q$_{1}$, SQ at center Q$_{1}$ and reduced cyt c. We consider the most likely candidate to be the SQ at center Q$_{1}$, as the Q$_{1}$ site SQ is well protected and very short lived [38]. Moreover, in the present configuration, center Q$_{1}$ is located closer to P/P$^+$ than center Q$_{o}$ (Fig. 1). Cyt c is a highly unlikely candidate because the illumination of the RC yields only P$^+$ and semiquinone Q$_{1}$ and the second electron can be transferred to Q$_{i}$ only when P$^+$ is re-reduced to P [15]. This would result in a continuous formation of QH$_2$ as well as a continuous turnover of the both the RC and the bc_1, which obviously does not happen.

The assumption that the reducing species for P$^+$ is semiquinone is supported by the finding that the relative amplitudes of the 1282 and 1434 cm$^{-1}$ bands are almost unchanged, albeit much smaller in the presence of cyt c. This can be explained in terms of the reduction of P$^+$ at the level of P$^+$Q$_{1}$ which controls the disproportionation reaction eq (1) and hence the formation of P$^+$ and QH$_2$ in equal amounts. The reduced amount of QH$_2$ in turn controls the reaction of the bc_1 with cytochrome c until both reactions balance each other in a stationary state. We conclude that the SQ formed at the Qi site of the bc_1 reduces P$^+$Q$_{1}$ thereby controlling both the disproportionation reaction eq (1) and the turnover of the bc_1 in agreement with our observation. This conclusion implicates a certain mobility of the SQ considered previously [40]. We conclude that the stationary state attained in the presence of cyt c is a strong indication of the interaction of the bc_1 with QH$_2$.

The stationary state finally obtained in the presence of cyt c can be compared with those obtained in previous FTIR studies of the RC reported by Breton in the presence of an electron donor [12]. They reported bands at 1657 and 1549/1533 cm$^{-1}$, which were attributed to conformational changes of the protein backbone of RCs as a consequence of semiquinone formation. A broad band in the spectral range 3200-2200 cm$^{-1}$ was also reported by the same author, corresponding to broad continuum bands previously assigned to excess protons in hydrogen bond networks. Strong bands at 1653 and 1544 cm$^{-1}$ were also shown in perfusion-induced ATR-FTIR redox difference spectra particularly of the ISP of the bc_1 complex from R. capsulatus [41]. Therefore, the appearance of the bands at 1660 and 1544 cm$^{-1}$ support the notion of a turnover of the bc_1 complex as a consequence of RC excitation.

Acknowledgment

We are very much indebted to Prof. Colin A. Wraight, University of Illinois, Urbana, Illinois, who unexpectedly passed away before the paper could be submitted. He not only provided us with preparations of the RC but he was also responsible for the major part of the interpretation and discussion of the results. Moreover, we gratefully acknowledge the cooperation of Professor Anthony Crofts, University of Illinois, Urbana, Illinois, who provided us with preparations of the bc_1 complex and for helpful discussions. Partial support for this work was provided by ZIT, Center of Innovation and Technology of Vienna. Molecular graphics were in part performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco.

Abbreviations

References

Breton, J (2007) Steady-state FTIR spectra of the photoreduction of Q(A) and Q(B) in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones. Biochemistry 46, 4459-4465.

Iwata, T, Paddock, ML, Okamura, MY & Kandori, H (2009) Identification of FTIR Bands Due to Internal Water Molecules around the Quinone Binding Sites in the Reaction Center from Rhodobacter sphaeroides. Biochemistry 48, 1220-1229.

Vedran Nedelkovski et al.: Interactions of Photosynthetic Reaction Centers with Bc_1 Complexes from Rhodobacter Sphaeroides Studied Using SEIRAS on a Nano-Structured Gold Surface

