Malt Quality Profile of Malt Barley Varieties Grown in the Central Highlands of Ethiopia

Biadge Kefale, Yadesa Abushu

Food science and Nutrition Research Program, Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, Addis Ababa, Ethiopia

Email address: biadgekefale@yahoo.com (B. Kefale), abeshuy@gimal.com (Y. Abushu)

To cite this article:

Received: February 24, 2017; Accepted: March 18, 2017; Published: April 22, 2017

Abstract: The bio-chemical composition of barley is highly affected the beer quality and the economic efficiency of the brewing process. A large number of parameters had been important to define malting quality. Samples were collected from barley breeding research center at Holeta which were verified and released malt barley varieties. Varieties used for the study were Holker, Bekoji-1, EH-1847, Bahati, Sabini, Grace, Travller, Beka, Ibon 174/03, Miscal -21, HB-1533 and HB-1307. The malt quality traits were evaluated according to the European brewery convention methods and the value were in the range grain size (88.5-97.5), germination energy (96-98.5), malt moisture content (3.6-6.7), protein content (10.1-13.5), soluble protein (3.9-7.7), kolbach index (35.5-48.8), thousand kernel weight (34-42.8), extract (73.8-80.9), color of wort (3.7-7), PH of wort (5.5-6.1) and friability (31.6-90.2). From all the varieties Holker, Travller, Sabini, Bekoji-1, Grace, Bahati and Beka were acceptable grain and malt quality traits according to the brewing specification.

Keywords: Malt, Malt Barley Variety, Parameters, Malt Specification

1. Introduction

Barley (Hordeum Volgare L) a highly adoptable cereal grain that is produced in climate region from sub-arctic to sub-tropical. Historically, barley is an important food source in many parts of the world. At present only 2% of barley is used for human food worldwide [4]. The greatest use of barley for malting purpose mostly for brewing industry. The increased competition within the brewing industry needs maximizing the raw materials. Barley is the basic raw material for brewing. Its chemical composition is highly affected the beer quality and the economic efficiency of the brewing process. A large number of parameters have been important to define malting quality. The texture of endosperm influences the malt modification process by affecting water uptake and enzyme synthesis within the endosperm [5].

The malting of hull less barley presents a number of challenges due to difference in chemical and physical changes [10]. The structural changes and biochemical degradation of the endosperm components referred to as endosperm modification [8]. Therefore different modification of kernel properties have been identified as a factor affecting water uptake during stepping of barley, protein, starch granule size and distribution of enzymes are factors affecting the hardness of the endosperm.

This paper presents the results of the released varieties quality profile and the varieties data which fit the brewing specification that is important for malt barley improvement in the breeding program in the future time. The target was to select the appropriate varieties for malting and brewing barley. This provides good indication for the selection of the best varieties and further improvement.

2. Materials and Methods

Samples were collected from highland barley breeding research center at Holeta which were verified and released malt barley varieties.

2.1. Sampling of Barley

A sample representing the quality of lot obtained by reduction
2. Malt Quality Traits Analysis Protocol

All the malt analysis were measured according to European Brewery Convention method (EBC) 3.3.1.

2.2. Sieving Test of Malt Barley

Hundred gram of the grain sample was placed at the top of the sieve (>2.8mm, >2.5mm, >2.2mm and <2.2mm sieve sizes) and the grain was sieved into four fractions within five minutes. The four fractions were weighted at each sieve sites.

2.2.2. Germination Energy

Five hundred grains was distributed evenly on the whole surface of germination plate. The plate was moistening with distilled water. The germinated grain was removed after 48, 72 and 96 hour and counted.

\[
\text{Germination energy} (\%) = \frac{500-n}{5} \times 100
\]

where \(n\) is the number of germinated grain

2.2.3. Moisture Content

five gram of ground sample in a clean dry crucible were placed in oven at 105°C for three hour and the sample were allowed to cool in a desiccators to maintain the sample temperature to room temperature for 30 minute.

\[
MC = \frac{\text{Weight before}}{-\text{Weight after+100}} \times \text{Total weight}
\]

2.2.4. Protein Content

One gram ground sample of malt barley measured and transferred into completely dry kjeldhal flask. Ten gram of kjeldhal tablet was added to the sample inside the flask. Twenty milliliter of 98% concentrated sulphuric acid was mixed with the sample. The sample digestion was started by connecting the kjeldhal flasks with the digestion rock. The digestion was completed when the brown color of the sample was completely disappeared.

After the digested sample was cooled, 250 ml of distilled water and 70 ml of sodium hydroxide (32%) were added and distilled into 25 ml of excess boric acid containing 0.5 ml of screened indicator. The distillate was titrated with 0.1N hydrochloric acid to the red end point.

\[
\text{Total nitrogen} (N\%) = \frac{(T-B)+14}{W(100-Mc)} \times 100
\]

where W is weight of the sample taken for analysis

T is volume of HCl used for titration

B is blank used as control

Crude protein (CP\%) = N\times6.25

2.2.5. Soluble Protein

Soluble protein was measured by taking 20 ml of wort into kjedal flask and digesting. The wort was preheated to evaporate the excess moisture and dry it. Then digested by adding 3 ml of concentrated sulphuric acid 10 g of catalyst and anti-foam. The digestion, distillation and titration completed according to EBC method 3.3.1

\[
\text{Total(N\%)} = \frac{T+14+100}{V}
\]

where V is volume of wort taken and T volume of HCl taken during titration.

2.2.6. Kolbach Index (Ratio S/T)

Kolbach index was calculated according to ASBC (2008) by using the following formula.

\[
\text{Kolbach index(KI)} = \frac{\% \text{Soluble protein}}{\text{Total protein}} \times 100
\]

2.2.7. Thousand Kernel Weight of Malt Barley

The number of corn was counted by grain counter machine and the thousand counted corn was weighed and taken as thousand kernel weight.

2.2.8. Extract Determination

Mashing Procedure

The mashing process was according to the EBC congress mashing method. 55 g of malt sample from each varieties were weighed (at room temperature) in to mash beaker and grinded through mill set for standardized fineness of grind. Then, ground malt was collected in same mash beaker, carefully brushing malt particles remaining in mill in to mash beaker. Mix, and without delay, the mash beaker was placed with content on balance accurate to within ±0.05 g under 750 g load and adjust weight of malt to 50 ± 0.05 g by removing excess in to tared dish for moisture determination. The mashing procedure was done by adding 200 mL of distilled water at 45°C to 50 g of ground malt, and then the vessel was placed in a mashing apparatus. The sample was held at 45°C for 30 min, then the temperature was raised to 70°C by 1°C for every 1 min increase for 25 min, and then 100 mL 70°C distilled water was added to each sample and held at 70°C for 1 h. After 10 min and 15 min (for late saccharified samples), saccharification test EBC (1998) was done with 0.02 N iodine solution. At the completion of mashing, the sample was cooled to room temperature and then distilled water was added to adjust weight of the content in mash vessel to 450 g. The extract was filtered through 32 cm fluted filter paper in 20 cm funnel. The time elapsed by each sample to filter fully into a flask was recorded to determine filtration time. The density of the clear wort was determined using anwort hydrometer and expressed in degrees Plato (°P). The extract obtained was converted and expressed in percentage on wet basis (% wb) using the following equation.

\[
\text{Extract wet basis} = \frac{P(100+M)}{(100-P)} \times 100
\]

where P is g extract in 100 g wort (°P), M is % moisture in the malt and E is extract as wet basis.

2.2.9. Color of Malt and PH of Wort

The color of diluted sample wort estimated by a serious of standards comprising colored glass discs.

PH of wort was measured 30 minute after the start of
filtration with a glass electrode PH meter.

2.2.11. Friability of Malt

Friability- Samples were analyzed using a Pfeuffer Friability meter, which uses a pressure roller to grind the sample against a rotating screen. Low, medium and high friability malts were tested according to EBC method 4.15 (EBC, 1998). Malt sample, 50 g, was run in the friability meter for 8 min, and the non-friable fraction was weighed.

Friability(%)=100-R×2 (8)
Table 1) among the varieties. The moisture content of varieties varied between 3.6 -6.9%. Miscal-21 (9.6%), Holker (6.7%), Bekoji-1 (6.1%) and Sabini (6.9%) were with high moisture content. Moisture levels need to be low enough to prevent heat damage and the growth of disease microorganisms. The rest of the varieties were within the accepted range of malt moisture content. The malt moisture content for long shelf stable storage is recommended 4 to 5% [1].

4.1.4. Protein Content
The protein content, soluble protein content and Kolbach index of the malt result showed that there were significance difference (P<0.05, Table 1) among varieties. Lowest mean protein content were obtained in Holker (9.6%), followed by Traveller (10.1%), Miscal-21 (13.5%), Bekoji (12.5%) and Ibon-174/03 (12.1%) protein content which were very high and indicates low extract yield. The rest of the varieties were in the range 9.6-11% protein content which were in the accepted range. Desirable protein content range for 2-rowed barley is 9.0-11.0% and for 6-rowed barley is 9.0-11.5% [3]. Soluble protein for the Varieties were ranged from 3.9-7.7% which showed that good amino acids sources for yeast growth. Amino acids and peptides they are important nitrogen sources for yeast growth. Varieties which had high Kolbach index were Traveller (42.9), Grace (39.1), EH-18-47 (39.6) and HB-1307 (39.2) which indicates high protein modification that gives the degree of solubility of barley protein during malt production should be between 39-44% [2].

4.1.5. Thousand Kernel Weight
The thousand kernel weight result showed that there were significance difference (P<0.05, Table 1) among the varieties. Varieties Bekoji-1 (40.0), Ibon 174/03 (42.8), Holker (36.7) were high in grain size. Thousand grain weight (g) should be >45 g for 2-rowed barley and > 42 g for 6-rowed barley [3]. These results for most varieties were low according to the standard requirement for industry.

4.1.6 Friability
The analysis results showed that, there were significantly different (P<0.05, Table 2) among varieties for friability content. Varieties with high friability were Grace (90.2), Sabini (86.5), Holker (74.9), Bahati (67.5), Traveller (63.1) which indicates high lautering performance. Varieties with low friability were Miscal-21 (31.6), Bekaji (38.5) HB-1533 (33.7) indicated that Under modification can lead to poor mash conversion and more high viscosity polysaccharides such as beta glucan. Factors that interfere with endosperm modification, such as poor germination, large kernels and high protein, are expected to reduce malt friability [6].

4.2. Wort Quality Traits

4.2.1. Extract Content of Malt
The fine grind, coarse grind extract and extract difference of the malt result showed that there were no significance difference (P<0.05, Table 2) among varieties. Varieties with high malt extract were Holker (80.9), Traveller (80.5), Bekaji (78.9), Sabini (78.5) where as varieties with low malt extract were Miscal-21 (73.8), EH-18-47 (75.5) and HB-1533 (76.8). Extract difference were poor for most of the varieties which indicates low malt modification. The extract yield reflects the extent of enzymatic degradation and the solubility of grain components after malting and mashing [11]. Mean EBC hot water extract value ranged from 75.0-80.7% but this result were indicated most of the varieties in the specification of the EBC standard. This study result indicates high malt extract result compared to EBC range for the Varieties.

4.2.2. Color of Wort
Color of wort was significantly different among the varieties (P<0.05, Table 2). The mean color of wort among varieties ranged from (3.7-7.0 EBC unit) (Table 2). Varieties which were not in the EBC specification were Traveller (5.0), Bekaji (5.5), Ibon 174/03, HB-1533 (5.2) where as the other varieties were in the specification range. Color variation in wort is due to non-enzymatic browning reactions, the Maillard reaction, that take place during kilning in the malting process, and wort boiling in the brewing process. In this case, the sugars interact with the amino acids, producing a variety of odors and flavors. This reaction is the basis of the flavoring industry with the type of amino acid involved determining the resulting flavor and color [7]. In this study most of the varieties were in the specification range according to brewing industry.

4.2.3. PH of Wort
PH of wort was significantly different among the varieties (P<0.05, Table 2). The PH range for the varieties were 5.5-6.5 which were in the specific range of European brewery convention. Varieties with appropriate PH were Bekoji-1 (5.6), grace (5.7), Sabini (5.9), Miscal-21 (5.9) and Holker (5.9). It was shown that over the pH range 5 to 6.6, the photolytic activity of malt can vary [9]. PH variation limit the growth of microorganism in this case the growth of fermenting yeast is influenced within the variation of PH. but in this study the PH of wort is in the specified range.

5. Conclusion
The result of this study showed that the varieties Holker, Traveller, Sabini, Bekoji-1, Grace, Bahati and Bekaji were acceptable malt quality traits such as grain size, germination energy, moisture content, thousand kernel weight, protein content, extract amount, malt protein content, PH of wort, Color of wort, soluble protein, kolbach index and friability but the remaining malt varieties results were poor malt quality traits compared to the European brewery convention specification and Ethiopian malt quality standard requirement. These good varieties are useful for row material for brewing industry as well as for the breeding program in the future for development of malt barley Varieties.
References

