Prognostic Ability of Simplified Pulmonary Embolism Severity Index (PESI) Score in Real World: A Brief Report

Luca Masotti1, 7, 25, *, Grazia Panigada2, Giancarlo Landini1, Filippo Pieralli3, Francesco Corradi3, Salvatore Lenti4, Rino Migliacci5, Carlo Nozzoli3, Maddalena Grazzini3, Lucia Ciucciarelli3, Alessandro Morettini3, Sara Bucherelli3, Alessandra Petrioli3, Carlotta Casati3, Mario Felici4, Luciano Ralli4, Stefano Arrigucci4, Laila Teghini2, Giovanni Antonio Porciello5, Stefano Spolveri6, Daniele Baldoni6, Anna Frullini6, Barbara Cimolato1, Gianni Lorenzini7, Alessandro Pampana7, Guidantonio Rinaldi8, Maria Chiara Bertieri9, Raffaele Laureano9, Stefano Tatini9, Alberto Fortini10, Chiara Angotti10, Valerio Verdiani11, Anna Maria Romagnoli11, Irene Cascinelli11, Alberto Camaiti12, Nicola Mumoli12, Marco Ce12, Stefano Giuntoli12, Massimo Alessandri13, Alessandro De Palma13, Maurizio Manini14, Veronica De Crescenzo14, Michele Piacentini15, Carlo Passaglia16, Giancarlo Tintori16, Carlo Palermo17, Alba Dainelli17, Roberto Andreini18, Giuseppa Levantino18, Plinio Fabiani19, Lucia Raimondi19, Massimo Di Natale20, Filippo Risaliti20, Rossella Nasi21, Roberta Mastriforti21, Roberto Cappelli22, Michele Voglino22, Paola Lambelet23, Stefano Fascetti23, Adriano Cioppi23, Valentina Carli23, Alessandro Tafi24, Simone Mein24, Emilio Santoro25, Claudia Rosi26

1Internal Medicine, Santa Maria Nuova Hospital, Florence, Italy
2Internal Medicine, Pescia Hospital, Pistoia, Italy
3Internal Medicine, Careggi Hospital, Florence, Italy
4Internal Medicine, Arezzo Hospital, Arezzo, Italy
5Internal Medicine, Cortona Hospital, Arezzo, Italy
6Internal Medicine, Borgo San Lorenzo Hospital, Florence, Italy
7Internal Medicine, Cecina Hospital, Livorno, Italy
8Internal Medicine, Barga Hospital, Lucca, Italy
9Internal Medicine, Santa Maria Annunziata Hospital, Florence, Italy
10Internal Medicine, San Giovanni di Dio Hospital, Florence, Italy
11Internal Medicine, Grosseto Hospital, Grosseto, Italy
12Internal Medicine, Livorno Hospital, Livorno, Italy
13Internal Medicine, Massa Marittima Hospital, Grosseto, Italy
14Internal Medicine, Orbetello Hospital, Grosseto, Italy
15Internal Medicine, Piombino Hospital, Livorno, Italy
16Internal Medicine, Cisanello Hospital, Pisa, Italy
17Internal Medicine, Campostaggia Hospital, Siena, Italy
18Internal Medicine, Pontedera Hospital, Florence, Italy
19Internal Medicine, Portoferraio Hospital, Livorno, Italy
20Internal Medicine, Prato Hospital, Prato, Italy
21Internal Medicine, San Sepolcro Hospital, Arezzo, Italy
22Internal Medicine, Le Scotte Hospital, Siena, Italy
23Internal Medicine, Viareggio Hospital, Viareggio, Italy
24Internal Medicine, Volterra Hospital, Volterra, Italy
25Internal Medicine, Santa Maria Nuova Hospital, Florence, Italy
26Internal Medicine, Bibbiena Hospital, Bibbiena, Italy

Email address:
lucamasotti@tin.it (L. Masotti), g.panigada@usl3.toscana.it (G. Panigada), filpiero@tin.it (F. Pieralli), lentisa@libero.it (S. Lenti)

To cite this article:
Luca Masotti, Grazia Panigada, Giancarlo Landini, Filippo Pieralli, Francesco Corradi, Salvatore Lenti, Rino Migliacci, Carlo Nozzoli, Maddalena Grazzini, Lucia Ciucciarelli, Alessandro Morettini, Sara Bucherelli, Alessandra Petrioli, Carlotta Casati, Mario Felici, Luciano...

Abstract: Background and aim: Prognostic stratification of acute pulmonary embolism (PE) represents the cornerstone of modern management of this potentially life-threatening disease. In the latest years, a lot of clinical prognostic models have been validated. However, these are yet underused in clinical practice, especially in real world populations. The aim of our study was to test the prognostic ability of the Simplified Pulmonary Embolism Severity Index (sPESI) score in a real world population.

Methods: Data records of 452 patients that were discharged for acute PE from 28 Internal Medicine wards of Tuscany (Italy) were retrospectively analysed. sPESI was calculated in the identical manner as the original study. Prognostic ability of sPESI score for predicting in-hospital all-cause and PE-related mortality was tested by using Areas under Receiver Operating Characteristics (ROC) curve (AUC). Results: 15.2% of patients were classified as sPESI score 0, whereas 84.8% were classified as sPESI ≥ 1. All causes of in-hospital mortality were 10.95% (5.75% PE-related) in patients with sPESI score ≥ 1 and 0% (0% PE-related) in sPESI score 0. AUC for all causes of mortality was 0.694 (95% CI: 0.650-0.736), whereas it was 0.702 (95% CI: 0.657-0.743) for PE-related mortality. Conclusion: In a real world population, sPESI is a good prognosticator for all causes of in-hospital and PE-related mortality and its use should be encouraged.

Keywords: Pulmonary Embolism, Prognosis, PESI Score

1. Introduction

Acute pulmonary embolism (PE) remains one of the leading causes of mortality and morbidity in cardiovascular setting, especially when is associated with hemodynamic instability (1).

Prognostic stratification of acute PE is of utmost importance for the choice of appropriate treatment and setting of care. It can be assured by using clinical, instrumental and laboratory assessment (2, 3).

In the latest years, many prognostic models for mortality risk stratification in acute PE have been proposed. Of them, simplified PESI score (sPESI) showed to be a good prognosticator for 30-day mortality (4). The sPESI score considers the presence or absence of age over 80 years, history of cancer, heart failure or chronic obstructive pulmonary disease (COPD), heart rate (HR) ≥ 110 beats for minute, systolic blood pressure (SBP) ≤ 100 mmHg, oxygen arterial saturation ≤ 90%.

The contemporary absence of all variables (sPESI score 0) identifies low risk patients (30-day mortality ≤ 1%) whereas the presence of at least one of variables (sPESI score ≥ 1) identifies patients with high risk (30-day mortality around 11%) (4). Despite, sPESI score has been used as prognostic model for identifying low risk patients candidate for home treatment in clinical trials (5-7) and much recently European Society of Cardiology (ESC) has proposed a prognostic model that is based on sPESI score as first prognostic tool for subdividing low risk patients from high risk patients needing for further prognostic assessment (8), to now sPESI score is still underused in clinical practice, especially in real world population.

Therefore, the aim of the present study was to test the prognostic ability of sPESI score as prognosticator of all causes of in-hospital and PE-related mortality.

2. Materials and Methods

We performed a multicenter, observational, retrospective, cohort study aimed to evaluate characteristics and clinical management of acute PE none selected patients that were admitted in internal medicine wards of Tuscany (Italy). Demographic, clinical and prognostic data of at least ten patients consecutively were discharged for acute PE between 2012 and 2013 years from each center were retrospectively provided. sPESI was calculated in the identical manner of the study validation (4).

For testing the prognostic ability of sPESI, we calculated the Areas under Receiver Operating Characteristic (ROC) curves (AUCs) for each study endpoint.

3. Results

Table 1 shows the general characteristics of patients.

<table>
<thead>
<tr>
<th>Number</th>
<th>452</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males/Females</td>
<td>39.8%/60.2%</td>
</tr>
<tr>
<td>Mean age (years) ± SD</td>
<td>76.01 ± 12.34</td>
</tr>
<tr>
<td>Age ≥ 80 years</td>
<td>45.3%</td>
</tr>
</tbody>
</table>
452 patients were enclosed in the study. 15.2% of patients were classified as sPESI score 0, whereas 84.8% were classified as sPESI ≥ 1, 66.9% of patients being classified as sPESI 1 or 2.

All causes of in-hospital mortality was 10.95% in patients with sPESI score ≥ 1 and 0% in sPESI score 0 (p<0.001). PE-related mortality was 5.75% in patients with sPESI score ≥ 1 and 0% in sPESI score 0 (p<0.001). All causes of in-hospital mortality increased from 0% in patients with sPESI score 0 to 29.1% in patients with sPESI score ≥ 4, whereas PE-related in-hospital mortality increased from 0% in patients with sPESI score 0 to 20.8% in patients with sPESI score ≥ 4 (Figure 1).

**Table 2. Summary of statistical analysis.**

<table>
<thead>
<tr>
<th>Area under the ROC curve (AUC) for all cause in-hospital mortality</th>
<th>0.694</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Error</td>
<td>0.0384</td>
</tr>
<tr>
<td>95% Confidence interval</td>
<td>0.650 to 0.736</td>
</tr>
<tr>
<td>z statistic</td>
<td>5.055</td>
</tr>
<tr>
<td>Significance level P (Area=0.5)</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Youden index J</td>
<td>0.2674</td>
</tr>
<tr>
<td>Associated criterion</td>
<td>≤1</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>56.97</td>
</tr>
<tr>
<td>Specificity</td>
<td>69.77</td>
</tr>
</tbody>
</table>

**Criterion values and coordinates of the ROC curve**

<table>
<thead>
<tr>
<th>Area under the ROC curve (AUC) for PE-related in-hospital mortality</th>
<th>0.702</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Error</td>
<td>0.0507</td>
</tr>
<tr>
<td>95% Confidence interval</td>
<td>0.657 to 0.743</td>
</tr>
<tr>
<td>z statistic</td>
<td>3.975</td>
</tr>
<tr>
<td>Significance level P (Area=0.5)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Youden index J</td>
<td>0.2996</td>
</tr>
<tr>
<td>Associated criterion</td>
<td>≤2</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>83.80</td>
</tr>
<tr>
<td>Specificity</td>
<td>46.15</td>
</tr>
</tbody>
</table>

Figure 1. sPESI score and in-hospital mortality.

Figure 2 shows the ROC curves.
4. Discussion

Prognostic stratification of acute pulmonary embolism (PE) represents the cornerstone of modern management of this disease (9). sPESI score is now considered as a safe prognostic model that is able to classify patients in 30-day low mortality risk (sPESI 0) and high mortality risk (sPESI ≥ 1). A meta-analysis showed that the odds ratio for all causes of mortality in low risk sPESI versus high risk (3 events on 770 patients with low risk sPESI versus 72 events on 1404 patients with high risk sPESI) was 0.09 (95% CI: 0.03-0.26), whereas it was 0.08 (95% CI: 0.04-0.16) for PE-related mortality (8 events on 1003 patients with low-risk sPESI versus 205 events on 1981 patients with high risk sPESI) (10).

Prognostic stratification by using sPESI score is of utmost importance for making decision on appropriate treatment and setting of care. New ESC recommendations on PE management suggest that patients with low risk sPESI score should not receive further investigations such as right heart dysfunction and myocardial damage assessment and could be early discharged from hospital and/or treated at home after diagnostic and prognostic assessment are performed in emergency department (8). Much recently, a meta-analysis of studies on home treatment of low risk PE, a lot of them classifying low risk patients by using sPESI score, has demonstrated that 14-day and 90-day all causes of mortality were 0.41% and 1.58, respectively (11).

From a true real world perspective, our study confirms that mortality may be extremely low if not completely absent in low risk sPESI patients.

5. Conclusion

Prognostic stratification is a key point in the modern management of acute PE. Despite it was limited by the retrospective methodology, our study was performed in more than 80% of internal medicine wards of one of the most populated regions of Italy, demonstrates that sPESI score, a simple and easily performable score, seems to be a good prognosticator for stratifying the in-hospital prognosis. Therefore, its wide use should be strongly encouraged.

Appendix

The Simplified Pulmonary Embolism Severity Index (sPESI)

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age over 80 years</td>
<td>1</td>
</tr>
<tr>
<td>History of cancer</td>
<td>1</td>
</tr>
<tr>
<td>History of cardiopulmonary disease</td>
<td>1</td>
</tr>
<tr>
<td>Heart rate ≥ 110 bpm</td>
<td>1</td>
</tr>
<tr>
<td>Systolic blood pressure ≤ 100 mmHg</td>
<td>1</td>
</tr>
<tr>
<td>Arterial oxygen saturation ≤ 90%</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

0  
Low risk  
30-day mortality 1%

≥ 1  
High risk  
30-day mortality 10.9%

References


