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Abstract: The theory of optimal experimental designs is concerned with the construction of designs that are optimum with 

respect to some statistical criteria. Some of these criteria include the alphabetic optimality criteria such as; D-, A-, E-, T-, G- 

and C- criterion. Compound optimality criteria are those that combine two or more alphabetic optimality criteria. Design that 

require optimality criteria have specific desired properties that do very well in one design and at the same time perform poorly 

in another design. Thus, a compound optimality criterion gives a balance to the desirability of any two or more alphabetic 

optimality criteria. The present paper aims to introduce CD- and DT- criteria which are compound optimality criteria for 

second order rotatable designs constructed using Balanced Incomplete Block Designs (BIBDs) in four dimensions. 

Keywords: Optimality Criteria, Compound Criteria, DT-optimum and CD-optimum 

 

1. Introduction 

Design experts have come to a realization that a design can 

perform very well in terms of a particular statistical 

characteristic and still perform poorly in terms of a rival 

characteristic. In the field of life sciences optimal designs are 

required in order to cut on cost of experimentation. Kussmaul 

[15] introduced method that allows for an efficient 

consideration of nonlinear constraints. 

An experimenter is therefore advised to make the choice of 

a design to be used prior to carrying out any experiment. In 

statistics, Response Surface Methodology (RSM) explores 

the relationships between several explanatory variables and 

one or more response variables. The method was introduced 

by George E. P. Box and K. B. Wilson [1]. The main idea of 

RSM is to use a sequence of designed experiments to obtain 

an optimal response. Box and Wilson [1] suggest using a 

second-degree polynomial model to do this. They 

acknowledge that this model is only an approximation, but 

they use it because such a model is easy to estimate and 

apply, even when little is known about the process. Statistical 

approaches such as RSM can be employed to maximize the 

production of a special substance by optimization of 

operational factors. In contrast to conventional methods, the 

interaction among process variables can be determined by 

statistical techniques [2]. 

According to Box and Draper [3], RSM is either used to 

explore response surfaces or to estimate the parameters of a 

model. Bose and Draper [4] point out that the technique of 

fitting a response surface is one widely used to aid in the 

statistical analysis of experimental work in which the 

response of a product depends in some unknown factors on 

one or more controllable variables. A particular selection of 

settings or factor levels at which observations are to be taken 

is called a design. Designs are usually selected to satisfy 

some desirable criteria chosen by the experimenter.  

The proper meaning of optimal depends on the situation 

and can include cost effective, minimum variance and 

minimum bias. Youdim [13] Correctly chosen D-optimum 

designs provide efficient experimental schemes when the aim 

of the investigation is to obtain precise estimates of 

parameters. The commonly used classical optimality criteria 
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which were introduced and widely discussed by Pukelsheim 

[5] includes, Determinant criterion (D-), the average variance 

criterion (A-), the smallest Eigen value (E-) and the trace 

criterion (T-). Many results on optimal designs of 

experiments are derived under the assumption that the 

statistical model is known at the design stage. Nguyen [14] 

proposed to use a compound optimality criterion based on the 

expected population Fisher information matrix in nonlinear 

mixed effect models. However, rarely it is known in advance 

which model is the most appropriate. Box and Hunter [6] 

introduced rotatable designs in order to explore the response 

surfaces. They developed second order rotatable designs 

through Schlaflian vectors and matrices. Mylona [12] 

allowed for a more powerful statistical inference than 

traditional optimal designs. 

According to Draper [7] a second order rotatable design 

aids the fitting of a second order surface and provides 

spherical information contours and a third order rotatable 

design aids the fitting of a third order surface. Thus, the goal 

of an experiment should be dual: to choose an appropriate 

design and the most adequate model. 

A second degree response model with k factors is 

represented as follows 

�	 = 	�0 + 2

1 1

k k k

i i ii i ij i j

i i i j

x x x xβ β β ε
= = ∠

+ + +∑ ∑ ∑∑  (1) 

where  

�� is the intercept  

��  is the linear coefficient for the i
th

 factor  

���  is the quadratic coefficient for the i
th

factors 

��	  is the cross product coefficient for the i
th

 and j
th

 factors 


� is the level of the i
th

 factor 


�
	 is the level of the i
th

 and j
th

 factor 

2. Evaluation of C-Criterion in Four 

Dimensions 

The C-criterion for the second order rotatable design in 

four dimensions is obtained through minimizing the variance 

of the linear unbiased estimator of the integral 

function	�/(�/�)���. This was defined by Elfying [8] as; 
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and  

$ = is the number of factors in the design for this case the 

factors are four. 

3. Design Matrix 

The generalized design matrix �  for the second order 

rotatable design is given by 
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The vector in (3) is partitioned in the following order; the 

pure quadratic, the linear and the interaction effects. 

Consequently, the moment matrix is also partitioned as 

shown below. 
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The inverse of (5) is; 
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where, 
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In which; 
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The coefficient matrix 	CD  is determined from a reduced 

parameters system, where the reduced pure quadratic and the 

interaction effect is that; 
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Where 

( )/
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second order model 
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is generalized coefficient matrix of the parameter system of 

interest. 

The coefficients of w/ in (3) are the diagonal elements of a 

k matrix in the parameter system of interest. 

4. Information Matrix 

Mwan and Rambaei [9] used the moment matrix for 

second order model to determine the information matrix for 

the parameter system of interest. Its information matrix C is 

determined by 

��(-) = 2C�D-���C�4�� 

where - = 
�
E 
D
	and $ is the number of factors and � is as 

defined in (4) 

��(-) 
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Using the elements of the inverse of the moment matrix in 

(7), (8) and (9) respectively (3) is obtained. 

The computation for the C- criterion was portioned into 

three parts; the linear effects the pure quadratic and the 

interaction effects which were denoted as βGH. For the 64 points 

the parts are	β��, β��	and	β�� with the help of matlab software. 

5. D – Criterion for 2
nd

 Degree Design 

with Sixty Four Points 

For k = 4 factors, the information matrix is given as; 
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Thus the determinant criterion is 
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Now from (13), we have, for the designs with k = 4, we 

substitute the following to (14) 

2
2 0.233258λ ρ= and

4
4 0.06251λ ρ=         (15) 

Thus, 

 ∅M�7(-) = 2246�767(667 − 46��)4
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6. T – Criterion for 2
nd

 Degree Design 

with Sixty Four Points 

The trace criterion is given as; 
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Thus, 

1 4Cϕ [ ]4 2 4

1
1 24 4 6

7
λ λ λ= + + +  and by further 

simplification we get; 

[ ]1 4 2 4

1
1 4 30

7
Cφ λ λ= + + .                  (18) 

Now from (17), we have, for the designs with k = 4, 

Substituting for these values of 2λ  and 4λ given in (15) 

then; 

The Trace criterion is 

 ∅�C7 = 0.54440474286.                 (19) 

7. C–Criterion for 2
nd

 Degree Design 

with Sixty Four Points 

Substituting 6�  and 67  given in (15) to (7) yields the 

information matrix given as; 
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The vector � expanded to include all terms of a second 

order rotatable design in four dimensions was given by, 
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Substituting (20) and (22) to integral function in (2) gives; 

∬∬ 22.3825 − 0.3704
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β�� =3.8586.                             (23) 

Again by Substituting λ�	 given in (15) to (8) gives 

<��� 	=
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0 0 0 4.2871
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Taking only the linear terms in (21) the outcome is; 

�D274= [
�, 
�, 
�, 
74                     (25) 

Substituting sub matrix in (24) and the linear terms in (25) 

to the integral function in (2) gives; 
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���
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β��	=11.43232.                              (26) 

Substituting λ7 given in (15) to (9) gives 
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Taking only the interactions terms of vector �	in (21) we 

have; 
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�
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�
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�
U 
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Substituting (27) and (28) to the integral function in (2) 

yields; 

YZ 215.9974
��
�� + 15.9974
��
�� + 15.9974
��
7�
�

�� + 15.9974
��
�� + 15.9974
��
7�+ 15.9974
��
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β��= 21.33.                            (29) 

The C-criterion for a design with 64 points is; 

β��+β�� + β��=36.62092                    (30) 

8. DT- Optimality 

This paper combines two alphabetic optimality criteria D- 

and T- by using the concept that was introduced by Atkinson 

[10], where DT optimality criterion is a combination of D-

optimality criterion for parameter estimation with the T-

optimality criterion for discriminating between models. The 

DT- criterion provides a specified balance between model 

discrimination and parameter estimation.  

The Generalized Determinant and Trace Criteria are given as; 

( ) [ ]
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The DT-criterion is given by the formula; 

∅�[\(]) = (1-k) log ∆�(]) + (
�
^1) log|`�(])|.            (33) 

where	∅�[\(]) is a convex combination of two design criteria, 

the first criterion is log ∆�(]) which is the logarithm of T- 

optimality and the second log |`�(])| is also the logarithm 

of D- optimality. 

Designs maximizing (33) are called DT-optimum. The 

quantities in (31) and (32) are substituted in (33) to obtain the 

DT-optimality criterion. 

For k=4, the determinant criterion is given in (16) and the 

trace criterion in (19) substituting it in the compound formula 

given in (33) results to the DT-compound optimality criteria is; 

Whence,  

∅�ab(ε) = (1 − k)Log	0.5440474286	
+ 	h kp�j 	log	0.3541807443 

= (1-4) log	0.5440474286	+ 
7
l log 	(0.3541807443) 

= 0.7930897141 – 0.257585745 

∅�[\(]) = 0.5355039691.                         (34) 

9. CD-Criterion for 64 Points in Four 

Dimension 

The CD-optimality that combines C-optimality for a model 

selection and D-optimality for parameter estimation which 

was introduced by Atkinson [11], provides a specified 

balance between model discrimination and parameter 

estimation too. The criterion to be maximized was; 

∅�m[(]) = (
�
^1) log |`�(])|- (1-k) log �\-��(])�.	    (35) 

where	∅�m[(]) is a convex combination of two design criteria, 

the first criterion is log |`�(])| which is the logarithm of D- 
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optimality and the second log �\-��(])�	is the logarithm 

of C- optimality. 

The designs maximizing (35) are called CD-optimality. 

The quantities in (2) and (31) were substituted in (35) to 

obtain the CD-optimality criterion. 

The Determinant criterion was given in (16) and the C 

criterion in (30) for k= 4 using the compound formula stated 

in (35) gave the CD- compound optimality criterion as; 

∅�m[(]) = 
7
l log 0.3541807443+ 3 log 36.62092 

∅�m[(]) = - 0.257585745 + 4.691187752 

∅�m[(]) = 4.4336.                                                      (36) 

10. Conclusion 

The study concludes by combining D- and T-optimality to 

get DT-(compound optimality). The design under 

consideration is said to be better than the alphabetic optimality 

design in four factors constructed by Mwan, kosgei and 

Rambaei [9]. The D-, T- and DT- optimality criteria are 

compared and there is a clear balance brought by the DT- 

combination. Again the analysis of the two alphabetic criteria 

and the compound criterion above show that design experts 

will prefer characteristics from the D- optimality criteria. 

However, when the experiment requires the utilization of the 

two properties the compound optimality serves the deal. This 

is from the result obtained above for the D- criterion the value 

was 0.3541807443, the T- criterion become 0.5440474286 but 

the combination of the two gave a value of 0.5355039691 

which is in between the two criteria. Hence, a balance between 

parameter estimation and model discrimination is achieved. 

Again, the result obtained above for the D- criterion the value 

was 0.3541807443, the C- criterion become 36.62092 but the 

combination of the two gave a more homogenous value 

tending to zero 4.4336 as compared to single optimality 

criterion. This clearly brought a balance between parameter 

estimation and model discrimination. 
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