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Abstract: The Bayesian estimation of unknown variance of a normal distribution is examined under different priors using 

Gibbs sampling approach with an assumption that mean is known. The posterior distributions for the unknown variance of the 

Normal distribution were derived using the following priors: Inverse Gamma distribution, Inverse Chi-square distribution and 

Levy distribution of the unknown variance of a normal distribution and Gumbel Type II. R functions are developed to study the 

various statistical simulation samples generated from Winbugs. 
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1. Introduction 

In statistical inference, there are two broad categories of 

interpretations of probability: Bayesian inference and 

frequentist inference. These views often differ with each 

other on the fundamental nature of probability. Frequentist 

inference loosely defines probability as the limit of an event’s 

relative frequency in a large number of trials, and only in the 

context of experiments that are random and well-defined.  

Bayesian inference, on the other hand, is able to assign 

probabilities to any statement, even when a random process 

is not involved. In Bayesian inference, probability is a way to 

represent an individual’s degree of belief in a statement, or 

given evidence. 

In frequentist approach, a general method for calculating 

statistics that estimate specific parameters is called 

Maximum Likelihood (ML). This method is considered to be 

more robust (with some exceptions) and yields estimators 

with good statistical properties, it is perhaps the most 

versatile method for fitting statistical models to data, it finds 

the value of one or more parameters for a given statistic 

which makes the known likelihood distribution a maximum 

[14]. 

In typical applications, the goal is to use a parametric 

statistical model to describe a set of data or a process that 

generated a set of data. The appeal of ML stems from the fact 

that it can be applied to a wide range of statistical models and 

kinds of data (e.g., continuous, discrete, categorical, 

censored, truncated, etc.), where other popular method, like 

least squares, do not, in general, provide a satisfactory 

method of estimation. Indeed, when assuming an underlying 

normal (also known as Gaussian) distribution, the least 

squares estimates of regression coefficients are equivalent to 

ML estimates. The ML method is, however, much more 

general because it allows one to use other distributions as 

well as more general assumptions about the model and the 

form of the data. This study focus on the estimation of 

variance of a Normal distribution under different prior 

distributions. 

2. Materials and Methods 

2.1. Data Description 

The present study is based on time series data related to 

amount of rainfall (mm). The rainfall data of 47 years (1971 - 

2017) were collected from Nigeria Meteorological Agency 
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for Borno State. Appendix Figure 1 and Figure 2 show the time plot and qqplot for the amount of rainfall in Borno state. 

 

Figure 1. Time plot graph for the amount of rainfall in Borno State. 

 

Figure 2. QQplot for rainfall data of Borno state. 

2.2. Methodology 

The problem of estimation is to devise means of using 

sample observations to construct good estimates of one or 

more of the parameters. It is expected that the information in 

the sample concerning those parameters will make an 

estimate based on the sample generally better than a sheer 

guess. How well the parameter is approximated can depend 

on the method, the type of data and other factors. The method 

of maximum likelihood corresponds to many well-known 

estimation methods in statistics (such as; maximum 

likelihood, moments, least squares, Bayesian estimation etc) 

and finding particular parametric values that make the 

observed results the most probable (given the model). 

Cox and Reid [2] used Composite Likelihood methods for 

approximating the likelihood function and also [1, 10] 

applied Approximate Bayesian Computational (ABC) 

methods for approximating the posterior distribution for 

obtaining estimates of parameter. It is well-known that ABC 

produces a simple approximation of the posterior distribution 

[1] in which there exists a deterministic approximation error 

in addition to Monte Carlo variability. The quality of the 

approximation to the posterior and theoretical properties of 

the estimators obtained with ABC have been studied [3, 5, 7, 

15]. The use of ABC posterior samples for conducting model 

comparison was studied [4, 12]. Using this sample 

approximation to characterize the mode of the posterior 

would in principle allow (approximate) maximum a 

posteriori (MAP) estimation. 

2.3. Bayes Theorem 

This section presents an overview of the Bayesian 

techniques for estimating the parameter of interest ��. The 

Bayesian method differs from the frequentist method in that 

each parameter is assumed to be a random variable and each 
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one has a probability function called prior distribution. The 

estimate of the unknown parameter is obtained by deriving a 

posterior distribution on the basis of the prior distributions 

and the likelihood function. The Bayesian methods allow the 

integration of statistical analysis through the prior 

distribution with the most current information based on the 

observations into a posterior distribution. In other words, the 

prior to experimentation; the posterior distribution, an 

updated belief about the parameters after sample data is 

obtained. The posterior distribution is obtained: Posterior ∝ 

likelihood × prior 

��σ�|	
 ∝ ��	|σ�
 × ��σ�
 
2.4. Normal Distribution 

The normal distribution is one of the most important 

probability distribution in statistics because it fits many 

natural phenomena.  

Consider the probability distribution function of a random 

variable 	� . 		�, 	� . ⋯⋯ , 	� drawn from a normal distribution 

with mean � and variance σ� 

��	; �, σ�
 = 	 �
����� �

� �
�������
�              (1) 

The likelihood function of (1) can be expressed as 
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The aim of this study is to obtain an estimate for variance 

of a normal distribution using different prior distributions and 

to determine the efficient prior distribution by comparing the 

posterior variances. 

2.4.1. Posterior Distribution of Unknown Parameter 12 

Using Inverse Gamma Prior Distribution 

[6, 9, 11, 13, 16] assumed an inverse gamma distribution for 

the parameter of interest σ�  of 3  normaldistribution with 

hyper parameters 3	345	6.  The probability distribution 

function for the prior distribution can be expressed as  

��σ�|3, 6
 = 	 78
9�:
 �σ�
��:;�
��

<
��                   (3) 

where a > 0, b > 0, σ� > 0 

To obtain the posterior distribution of σ�|	, we combined 

equations (3) and (2).  
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which results to a kernel density of an inverse gamma 

distribution with parameters ?�� + 3, 7;∑����
�� @ 

2.4.2. Posterior Distribution of Unknown Parameter 12 

Using Inverse Chi-Squares Prior Distribution 

Obisesan [8] assumed an inverse chi-squares distribution 

for parameter σ�  with hyper parameter D  and 5  which the 

distribution function can be expressed as 

��σ�|D, 5
 = 	 9?
E
�@�

F�
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	To obtain the posterior distribution of σ�|	, we combined 

equations (5) and (2).  

��σ�|	
 ∝ �σ�
�?*KE� ;�@�� �
��AHG;

∑�,-.
�
� B

             (6) 

which results to a kernel density of an inverse gamma 

distribution with parameters ?�;H� , D5 + ∑����
�
� @ 

2.4.3. Posterior Distribution of Unknown Parameter 12 

Using Levy Prior Distribution 

We assumed a Levy prior distribution with parameter e for 

the unknown parameter 	σ� . The probability distribution 

function for the Levy prior distribution can be expressed as  

��σ�|�
 = 	L M
�� �σ�
�

N
��� O

���	; 	� > 0, σ� > 0            (7) 

To obtain the posterior distribution of σ�|	, we combined 

equations (7) and (2).  

��σ�|	
 ∝ �σ�
�?*KN� @�� �
��A
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�
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               (8) 

which results to a kernel density of an inverse gamma 

distribution with parameters ?�;�� , M;∑����
�� @. 

2.4.4. Posterior Distribution of Unknown Parameter 12 

Using Gumbel Type II Prior Distribution 

We assumed Gumbel Type II prior probability distribution 

with parameters f and g for unknown parameterσ�, which has 

the following probability distribution functions  
 

��σ�|�, P
 = 	�P�σ�
��Q;�
��
R

S��TU; 	� > 0, P > 0, σ� > 0	                                               (9) 

In order to make (13) a conjugate prior we take f = 1, then 

the prior distribution becomes  

��σ�|P
 = 	P�σ�
���� R
��	; 	P > 0, σ� > 0 	            (10) 

To obtain the posterior distribution of σ�|	, we combined 

equations (10) and (2).  

��σ�|	
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which results to a kernel density of an inverse gamma 

distribution with parameters ?�� + 1, P + ∑����
�
� @. 
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3. Results and Discussion 

Table 1. Posterior Distribution of Variance using Inverse Gamma prior 

distribution. 

 
Mean sd 2.5pc Median 97.5pc 

a=b=05 26430 5124 18230 25820 38120 

a=b=10 22320 3970 15920 21850 31380 

a=b=15 19420 3247 14080 19090 26690 

a=b=20 17070 2646 12660 16800 23050 

Table 2. Posterior Distribution of Variance using Inverse Chi-square prior 

distribution. 

 
Mean sd 2.5pc Median 97.5pc 

a=b=05 29100 5975 19640 28320 42830 

a=b=10 26430 5124 18230 25820 38120 

a=b=15 24240 4493 16900 23770 34450 

a=b=20 22320 3970 15920 21850 31380 

Table 3. Posterior Distribution of Variance using Levy prior distribution. 

 
Mean sd 2.5pc Median 97.5pc 

a=b=05 31540 6732 20930 30620 47280 

a=b=10 31600 6707 21030 30750 47060 

a=b=15 31520 6687 20980 30630 47190 

a=b=20 30850 6492 20740 30000 45860 

Table 4. Posterior Distribution of Variance using Gumbel Type II prior 

distribution. 

 
Mean sd 2.5pc Median 97.5pc 

a=b=05 30850 6492 20740 30000 45860 

a=b=10 29640 6083 20090 28860 43830 

a=b=15 29630 6197 19900 28800 43880 

a=b=20 28500 5775 19350 27800 41740 

Tables 1-4, shows the posterior variances under the various 

informative prior distributions with assumed values of hyper 

parameters. The length of the burn-in period is 1,000 and the 

number of iterations of the Gibbs sampler after the burn-in 

period is chosen as 9,000. From the results displayed in 

Tables 1-4, we observed that the posterior variances under 

the inverse gamma distribution less compare with other 

informative distribution which proves that the inverse gamma 

distribution is efficient as compared to other priors. 

4. Conclusion 

In this research work, we compare different conjugate 

prior distribution for the unknown parameter variance of a 

normal distribution. Four conjugate prior distributions were 

considered namely: inverse gamma distribution, inverse chi-

squares distribution, Gumbel Type II prior distribution and 

Levy prior distribution. Posterior distributions for variances 

were derived under the four conjugate prior distribution. 

Comparison were made using the estimated variances 

obtained under the four conjugate prior distribution and we 

conclude that inverse gamma distribution performs better 

than the other three prior distributions. So therefore, we 

recommend that inverse gamma distribution should be used 

when estimating the unknown variance of normal 

distribution.  
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