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Abstract: HIV infection leads to immune deficiency, increasing the risk of TB in people with HIV. HIV/TB co-infection 

increases the risk of death from TB or other opportunist infections. CD4 cell counts (cells/mm3) along with viral load are 

measures of treatment failure. This study purposed to apply shared frailty model in analyzing the survival and hazard rates of the 

TB/HIV co-infected persons. This work is very important because co-morbidity with TB and HIV is a rambling cause of death in 

Africa. The research employed a bivariate Gamma Frailty model to get the correlation amongst the HIV/TB outcomes to 

necessitate valid and reliable statistical inferencing. A survival frailty model on the CD4 counts is developed and fitted to factor 

in the unobserved heterogeneity that might occur in some observations. Ignoring some unobserved or unmeasured effects gives 

misguided estimates of survival. Thus, correcting these overdispersion or under-dispersion helps adjust these frailties. Frailty 

model provided a solid statistical analysis to CD4 data accounting for TB/HIV co-infection. The study also carried out some 

simulations along with the standard errors to compare the true values of the parameters. From the simulation findings, it is 

evident that precision and coverage improves with increase in sample size. Data used in this paper is from Kenya AIDS Indicator 

Survey (2012) which comprised of 648 HIV-positive patients, 10978 HIV-negative, and 2094 whose status was unknown. From 

the results, it is evident that the survival rate for the HIV positive individuals who are TB negative, with CD4 ≤ 310 is higher, at 

0.9963 than that of the TB positive persons, at 0.975. The research finding points TB/HIV co-infection as a key factor for 

predicting immunological failure as measured by CD4 counts. The Kenyan government, and in particular the ministry of health 

should develop policies that mandate TB diagnosis among the PLHIV and linkage to TB treatment for the positive cases. 
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1. Introduction 

The resurgence of tuberculosis and HIV infections is a big 

threat to the Kenyan population. According to Kaplan et al., 

human immunodeficiency virus (HIV) leads to an explosive 

upsurge of TB incidences, hence raising a great concern for 

mortality due to HIV/TB co-infections [1]. Coupled with the 

fact that HIV/AIDS is incurable and lowers immunity when 

superimposed with TB it adversely lowers survivorship [2]. 

Therefore, there is a dare need to use an adequate statistical 

model to analyze the survival rate for TB/HIV co-infected 

individuals. 

In response to this need, shared frailty models using R 

program were used to model the correlation amongst the 

observations. HIV/TB coinfection is a significant factor in 

predicting immunological failure as indicated by CD4 counts 

[2]. Tuberculosis (TB) is an opportunistic infection which 

strikes more severely in persons with weak immune system 

than the healthier systems. According Esmail et al., HIV 

weakens the immunology, hence escalating the risks of 

suffering from TB in persons with HIV [3]. In spite of having 

this knowledge, there is the need to model the correlation 

amongst the observations for the coinfections to make valid 

and reliable statistical inferences. 
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Frailty models factor in the unobserved heterogeneity that 

might occur in some observations [4]. Since some 

observations are frailer than others in data sets, there is, 

therefore, the need to introduce an extra parameter to the 

hazard rate to account for the random frailties. Research by 

Gasparini et al. reveals that heterogeneity lowers the power of 

detecting clinically relevant treatment variances [5]. Such 

heterogeneities affect the reporting and interpretation of the 

treatment effects. 

Literature Review 

Sometimes, the actual survival time for an individual may 

not be known, more so if the event of interest has not occurred. 

Such cases call for specialized methods in analyzing the data. 

The univariate analysis describes survival data concerning the 

factors being investigated, whereas ignoring the effects of 

others [6]. Statistical models help assess simultaneously all 

the factors which may affect a certain diagnosis to obtain an 

estimation of the effects for each constituent factor. 

Frailty models explain the effects of the unobserved 

covariates in a proportional hazard model [7]. They are an 

extension of the Cox PH models giving a suitable method to 

introduce random effects, associations, and unobserved 

heterogeneities. Shared frailty model models data with 

subjects having mutual frailty within groups or clusters. 

Zarulli posits that, shared frailty models are conditionally 

independent models with mutual frailty amongst all the 

subjects in a group [8]. Hence, they create dependence 

between the even times to bring in the aspect of shared frailty. 

The assumption is that the different groups are independent [9]. 

If frailty is zero, then the groups are independent, otherwise, 

there is positive dependence between the events within the 

groups. 

Various distributions can be selected for the frailty with the 

widest distribution being gamma distribution. According to 

Wang et al., the gamma distribution is commonly used as 

mixture distribution [10]. Its simplicity in deriving the closed 

formats for survival, density, and hazard functions make it 

very convenient for use. For gamma distributions, big values 

of the variance simply a great degree of heterogeneity among 

the groups and a stronger association within the clusters [11]. 

The small variance shows independence between the group 

individuals. 

For a gamma distribution with parameters β and θ and 

random effects µi the density function of z is given by; 

���; �, �� = �
�
��exp	�−���
Ӷ���  

Other distributions that are widely used for the frailty 

effects are positive stable distribution, normal, lognormal, 

Poisson, and the inverse Gaussian distributions [11]. 

HIV infected persons are said to be 30 times more prone to 

contracting TB than HIV-free persons. Klein et al. claim that 

this is because the same cells holding latent TB in check (CD4 

lymphocytes) are made dysfunctional by the human 

immunodeficiency virus [12]. CD4 T cells compose the 

immune response and guard against bacteria, pathogens, and 

viruses. The mechanisms that promote susceptibility of 

persons with HIV to TB are inadequately understood, being 

prospectively linked to multi-factorial processes [6]. 

2. Methodology 

2.1. Introduction 

A bivariate gamma frailty model was considered to the 

model correlation amongst the HIV/TB outcomes to 

necessitate valid and reliable statistical inferencing [13]. The 

typical Cox proportional hazard models are not suitable in 

analyzing the recurrent events since they account only for 

single occurrences of the outcome in an individual. 

2.2. Bivariate Frailty Model 

Assume that the bivariate random variables Ti1 and Ti2 with 

covariate vector Xij = (Xi1, Xi2) and i=1, 2, 3,..., n individuals 

under study. The study will assume survival times T1 and T2 

for each group to share the same values of the covariates. Also, 

assume that the frailties are multiplicative on the baseline 

hazard function and that the survival times of the subjects T1 

and T2 are independent for some frailty Ui =ui. the conditional 

hazard model for the i
th

 group at survival time tij > 0, for a 

given frailty Ui = ui. The conditional hazard model for the i
th

 

group at survival time tij > 0, for a given frailty Ui = ui 

becomes; 

h�t��, t��|U�, X�� 	 = 	 u�h��t���exp�xˊijβ�	
where; 

Ui are the unobserved common risks factors shared by all 

individuals in a group j 

h0tij is the common baseline hazard function 

Xi is the vector of observable covariates 

β is the vector of unknown regression coefficients 

The model above is termed as a shared frailty model since 

the individuals in the same group share the same frailty factor. 

It brings about correlations between the survival times of 

individuals within the same groups. The Ui is mutual to the 

subjects in the cluster and creates dependence, which is 

usually positive. 

The conditional hazard function for the i
th

 subjects at j
th

 

survival time tij > 0 becomes; 

H�t��, t��|U�, X�� 	 = u�H��t���exp�xˊijβ�	
The conditional survival function for the i

th
 subjects 

becomes: 

S(ti1, ti2|Ui, Xi) = exp{ -H0(ti1, ti2|Ui, Xi)} = exp{-uiH0(ti1, ti2) 

exp(xˊijβ)} 

Assuming independence, the conditional survival function 

for the bivariate case at survival times ti1 > 0 and ti2 > 0 

becomes; 

S(ti1, ti2|Ui, Xi) = S(ti1|Ui, Xi) S(ti2|Ui, Xi) = exp{-ui[H01(ti1) + 

H02(ti2)] exp(xˊijβ)} 
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To obtain the bivariate survival function we integrate the 

above equation with probability function f (ui); 

S(ti1, ti2|Xi) = 

# exp$−%&'(���)&�� +	(���)&��+ exp�xˊ&-β�..
0& 1�%&�2%& 

= E[exp$−%&'(���)&�� +	(���)&��+ exp�xˊ&-β�.] 

= L%&['(���)&�� + 	(���)&��+ exp�xˊ&-β�+ 
Where L(.) is the Laplace Transformation of the U 

distributions. Thus, the bivariate survival function has been 

written in terms of the Laplace transformations of the frailty 

distribution, obtained as the aggregate integrated conditional 

hazard. 

2.3. Estimation in Semi-Parametric Cox PH Model 

Fitting the Cox PH model will help in estimating the vector 

regression coefficients, β. Using the Cox approach, we will 

obtain the partial likelihood function for β, which is 

independent of h0 (t). Partial likelihood approach makes 

inferences about the regression parameters in the presence of 

nuisance parameters h0 (t) in the Cox proportional hazard 

model [14]. In this case, the study will obtain partial likelihood 

functions based on the Cox PH model. 

Consider T1, T2,..., Tn, the survival time for n individuals. 

The ordered death rates for k individuals will be ti1 < ti2 <... < 

tij <... < tik. Let R (tij) be the risk before tij. 

Then, the conditional likelihood that the i
th

 subject dies at 

time tij given that one individual from the risk set R (tij) dies at 

tij will be: 

P (individual i dies at tij) / P (single death occurs at tij) = 
3�456�

∑ 3�456� 

= 
38�456�9:;�<ˊ=56�456��
∑ 38�456�9:;	�
ˊ=56456� 

= 
9:;�<ˊ=56�456��
∑ 9:;	�
ˊ=56456� 

The partial likelihood function for the Cox PH model will 

be given by; 

L (β) = ∏ 	9:;�<ˊ=56�456��
∑ 9:;	�
ˊ=56456�	?&@�  

where xij(tij) is the vector of covariates for individual i who 

dies at tij [15]. However, the likelihood function is only for 

uncensored individuals. Let δi be the event indicator, such 

that; 

δ&- = B1;	)&- ≤ 	 E&
0;	)&- > 	 E&

 

The likelihood function in the equation above becomes; 

L(β) = ∏ B9:;�<ˊ=56�456��
∑ 9:;	�
ˊ=56456�H

I5 	?&@�  

The partial likelihood applies when there are zero ties in the 

data i.e., no individuals with the same event times. 

3. Results 

3.1. Simulation Results 

Table 1. Summary of the Simulation Results (n=100). 

Parameter True Estimate MSE RMSE MAE MAPE COVERAGE 

β1 0.405 0.397 0.021 0.146 0.117 126 94 

β2 1.253 1.226 0.036 0.189 0.150 104 96 

Table 2. Summary of the Simulation Results (n=250). 

Parameter True Estimate MSE RMSE MAE MAPE COVERAGE 

β1 0.405 0.407 0.008 0.090 0.070 108.6 97 

β2 1.253 1.266 0.012 0.111 0.088 99.6 96 

 

As can be seen in Table 1 the model fits well even for 

the sample size n=100, especially for β2. The precision 

and coverage improve with the increase in sample size, n = 

250 (see Table 2). This is demonstrated by attenuation of 

MAPE values to the null (100%) after increasing the 

sample size. 

3.2. Results of Real-data Analysis 

The analysis was carried out using R-Software using 

various packages. The values reported were estimated under 

95% confidence intervals. Table 3 presents a summary of the 

demographic profile of the respondents. 

Table 3. Socio-demographics and outcome characteristics of respondents. 

 HIV infected only (n=411) TB/HIV (n=53) Overall (n=474) 

Sex 

Men 117 (28.5%) 23 (43.4%) 142 (30%) 

Women 294 (71.5%) 30 (56.6%) 332 (70%) 

Age Group (years)    

15-24 51 (12.4%) 0 (0%) 52 (11%) 
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 HIV infected only (n=411) TB/HIV (n=53) Overall (n=474) 

25-29 78 (19%) 5 (9.4%) 85 (17.9%) 

30 -39 124 (30.2%) 19 (35.8%) 146 (30.8%) 

40 -49 104 (25.3%) 10 (18.9%) 117 (24.7%) 

50 -59 44 (10.7%) 16 (30.2%) 61 (12.9%) 

60 -64 10 (2.4%) 3 (5.7%) 13 (2.7%) 

Residence 

Rural 233 (56.7%) 25 (47.2%) 265 (55.9%) 

Urban 178 (43.3%) 28 (52.8%) 209 (44.1%) 

Consistence condom use 

No, did not use condoms every time 226 (55%) 483 (37.7%) 253 (53.4%) 

Yes, use condoms every time with the last partner 76 (18.5%) 14 (26.4%) 91 (19.2%) 

Missing 109 (26.5%) 19 (35.8%) 130 (27.4%) 

CD4 

Mean (SD) 557 (369) 483 (289) 550 (364) 

Median (Min, Max) 496 [7.00, 2610) 437 [34.0, 1340] 491 [7.00, 2610] 

Log viral load 

Mean (SD) 4.51 (0.767) 4.65 (1.04) 4.52 (0.793) 

Median [Min, Max] 4.54 [2.74, 6.69] 4.98 [2.89, 6.10] 4.57 [2.74, 6.69] 

Missing 137 (33.3%) 33 (62.3%) 174 (36.7%) 

 

Among the HIV-infected persons, 42.5% had CD4 counts 

per microliter ≤ 350 counts per microliter, while 18.42% had ≤ 

200 CD4 cells. Thus, 57.5% of the HIV-infected met the CD4 

count threshold for Antiretroviral Therapy (ART) initiations. 

It was evident that, of the 648 HIV-infected persons, the 

average count of the CD4 cells was 455.7. 

The Kaplan Meier CD4 curve was obtained as shown below: 

HIV-TB Positive In this category, results were obtained for 

two TB cases: TB-uninfected and TB-infected. 

 

Figure 1. Kaplan Meier CD4 curve. 

The best model was selected using the Akaike Information 

Criterion (AIC). As seen in Table 4 the best model has Sex 

only as of the covariate with the smallest AIC of 4450. From 

the Cox regression model results where we included the 

interaction term with HIV TB status, the model shows that 

HIV only as compared TB-HIV have had higher CD4 cells 

count. 

Table 4. Model Selection using AIC. 

Model AIC 

Sex 4450 

Age Group 4462 

Residence 4455 

Sex + Age Group 4459 

Sex + Residence 4452 

Sex + Age Group + Residence 4461 
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A summary of the survival for the HIV-infected persons 

who were also TB infected was obtained as shown in Table 5. 

Likewise, a summary of the survival for the HIV-TB infected 

people was also obtained as illustrated by Figure 1. 

Table 5. Parameter estimates from the Cox regression model stratified for TB-HIV status and Shared Frailty Model. 

Model Variable HR 95% CI Lower 95% CI Upper 

Cox Sex (Women) 0.782 0.6381 0.9534 

Shared Sex (Women) 0.794 0.6517 0.986 

 δ 2.583   

 ρ -0.427   

 

From the results, it is evident that the survival rate for the 

HIV positive individuals who are TB negative, with CD4≤ 

310 is higher, at 0.9963 than that of the TB positive persons, at 

0.975. As shown in Table 5, the regression coefficients of sex 

from the Cox regression model stratified by TB-HIV, and that 

of the shared frailty model is generally in the same direction. It 

the hazard ratio (HR) show that men have higher CD4 cell 

counts than females. 

4. Discussions 

The main method applied in this research project is the 

shared frailty survival model. Shared frailty model, 

incorporates the unobserved frailty, are random effect models 

for time variables with the frailty having multiplicative effects 

on the hazard. The frailty being an unobservable random 

variable varying over the sample balances the individual risk 

by safeguarding against underestimation or overestimation of 

the parameters. This model strengthens the accurate measures 

of covariates effects. 

Most epidemiology or biomedical research studies have 

applied Cox proportional hazard model. The hazard function 

in this model is a product of baseline hazard function and the 

exponential to linear predictor function of time-independent 

covariates. Even though this model does not consider frailties, 

it provides robust and easy to interpret hazard ratios. 

We performed a simulation study to assess the precision and 

coverage of the shared frailty model. Results from the 

simulation study indicated that the precision of the model 

improved with the sample size. The key finding the simulation 

study was that the model maintained the 95% coverage of all 

the parameter even for the smaller sample size. This 

demonstrated the flexibility and appropriateness of the model 

in modelling survival data. 

In this project, we applied a shared frailty model to the 

national representative complex survey data, namely, the 

second Kenya AIDS indicator survey. Tough many 

explanatory variables were considered only sex was shown 

to the key predictor of the CD4 cell counts. This was based 

on the model with the smallest Akaike Information 

Criterion (AIC). The AIC is an estimator of the relative 

quality of statistical models for a given set of data. Prior 

studies have founded that TB/HIV co-infection severely 

impact on young women, more so those in low-income 

settings. This agrees with the findings from this research. 

The results from this research indicated that women had 

lower CD4 counts than males, which could be a result of a 

higher burden on women in terms of health-seeking 

behavior. A different research also agrees that TB is a 

number one infectious disease killer amongst women than 

in men, hence it is imperative that women to undergo 

screening whenever they experience the first signs of TB. 

They attribute the disparity to the fact that females have 

lower body mass indices, low hemoglobin levels, and high 

macroglobulin levels than males. 

5. Conclusion 

In this work, we presented an approach to model 

immunological markers with an example of CD4 count using 

a shared frailty survival model. This provided a solid 

statistical analysis to CD4 data accounting for TB/HIV 

co-infection. This is in contrast to traditional transmission 

dynamics cellular models that defined HIV and TB 

coinfections in an individual. This work is very important 

because co-morbidity with TB and HIV is a rambling cause of 

death in Africa. Through the research, we found out that 

TB/HIV co-infection is a key factor for predicting 

immunological failure as measured by CD4 counts. This is a 

clear pointer for urgent and immediate action by policymakers 

in handling TB scenarios amongst persons living with HIV 

(PLHIV). The Kenyan government, and more so the ministry 

of health (MOH) should develop policies that mandate TB 

diagnosis among the PLHIV and linkage to TB treatment for 

the positive cases. 
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