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Abstract: Variable selection in count data using Penalized Poisson regression is one of the challenges in applying Poisson 

regression model when the explanatory variables are correlated. To tackle both estimate the coefficients and perform variable 

selection simultaneously, Lasso penalty was successfully applied in Poisson regression. However, Lasso has two major 

limitations. In the p > n case, the lasso selects at most n variables before it saturates, because of the nature of the convex 

optimization problem. This seems to be a limiting feature for a variable selection method. Moreover, the lasso is not well-

defined unless the bound on the L1-norm of the coefficients is smaller than a certain value. If there were a group of variables 

among which the pairwise correlations are very high, then the lasso tends to select only one variable from the group and does 

not care which one is selected. To address these issues, we propose the elastic net method between explanatory variables and to 

provide the consistency of the variable selection simultaneously. Real world data and a simulation study show that the elastic 

net often outperforms the lasso, while enjoying a similar sparsity of representation. In addition, the elastic net encourages a 

grouping effect, where strongly correlated predictors tend to be in the model together. 
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1. Introduction 

In modern data analysis problem, we had number of 

parameters greater than number of observation leading to 

high dimensional problems. 

Health, finance, economics and sports to mention a few 

were some of the areas that had benefited drastically from the 

ever increasing level of technology. This has seen an 

enormous amount of data derived with two dimensions the 

number of both variable and observation. 

This is different from the normal dataset we encounter for 

statistical analysis having many observations on a few 

variables. This type of dataset, however, comes with new 

challenges because of its complexity and cannot simply apply 

classically statistical methods such as Poisson regression, 

ineffective, because statistical issues associated with 

modeling high dimensional data include model over fitting, 

estimation instability, computational difficulty [1]. 

The criteria for evaluating the quality of a model will 

differ according to the circumstances. Typically, the 

following two aspects are important: 

Accuracy of prediction on future data- it is hard to defend 

a model that predicts poorly. 

Interpretation of the model- scientists prefer a simpler 

model because it explains more light on the relationship 

between response and covariates. Parsimony is especially an 

important issue when the number of predictors is large [2]. 

Ordinary Least squares does poorly in both prediction and 

interpretation that lead to introduction of Penalized 

techniques to improve OLS. How to reduce the 

dimensionality has been an important research question in 

statistical application. One way to handle the high 

dimensional data is to perform data reduction [3]. To do this, 

various penalized methods have been proposed. The least 

absolute shrinkage and selection operator (Lasso) to estimate 

the regression coefficients through L2- norm penalty [4]. 
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Lasso has advantages in that it can provide a very good 

prediction accuracy, because shrinking and removing the 

coefficients can reduce variance without a substantial 

increase of the bias, this is especially useful when you have a 

small number of observation and a large number of features 

[5]. 

In terms of the tuning parameter λ we know that bias 

increases and variance decreases when λ increases, indeed a 

trade-off between bias and variance has to be found. 

Moreover, the Lasso helps to increase the model 

interpretability by eliminating irrelevant variables that are not 

associated with the response variable, this way also 

overfitting is reduced. This is the point where we are more 

interested in because in this paper the focus is on the feature 

selection task [6]. 

The elastic net penalty which is based on a combined 

penalty of Lasso and ridge regression penalties in order to 

overcome the drawbacks of using the Lasso on its own [7]. 

Usually, in high dimensional data the explanatory variables 

are correlated. If there is a group of highly correlated 

variables, the lasso will randomly select only one variable 

from this group and drop the rest whereas elastic net will 

select the whole group of the highly correlated explanatory 

variables [8]. 

In this paper we propose a new regularization technique 

which we call the elastic net. 

Similar to the lasso, the elastic net simultaneously does 

automatic data reduction and continuous shrinkage, and is 

able to select groups of correlated variables [9]. 

The remainder of the paper is structured as follows: 

Section 2 discusses the existing 

literature, Section 3 presents an overview of the Penalized 

Poisson regression models and outlines the lasso and Elastic 

regression methods. Section 4 describes the simulation study 

and real data analysis. Section 5 results obtained from the 

real data and simulated data. Section 6 concludes the study. 

2. Literature Review 

Poisson regression models have received much attention in 

econometrics and medicine literature as model for describing 

count data that assume integer values corresponding to the 

number of events occurring in a given interval. 

The Poisson regression model is the most basic model, 

where the mean of the distribution is a function of the 

explanatory variables. 

This model has the defining characteristic that the 

conditional mean of the outcome 

is equal to the conditional variance [10, 11]. 

A procedure called penalization, which is always used in 

variables selection in high dimensional data, attaches a 

penalty term 	��	���  the log-likelihood function to get a 

better estimate of the prediction error by avoid over fitting. 

Recently, there is growing interest in applying the 

penalization method in the Poisson regression models. An 

efficient algorithm for the estimation of a generalized linear 

model including Poisson regression with a convex penalty 

[12]. Stein-type shrinkage estimator for the parameters of 

Poisson regression model [13]. A combination of minimax 

concave and ridge penalties and a combination of smoothly 

clipped absolute deviation and ridge penalties [14]. In 

Poisson regression model, the number of events ��  has a 

Poisson distribution with a conditional mean that depends on 

individual characteristics according to the structural model. 

Equation 1 

	���� =
��
�����
��!  

and the conditional mean parameter �� = exp	���,��. Under 

the assumption of independent observation, the log-

likelihood function is given by 

Equation 2 

∑ ����,���� � − exp���,�� − � ��!. 

3. Methodology 

3.1. Penalized Poisson Regression Model 

The penalized Poisson regression is defined by; 

Equation 3 

!!" = ���� + $���� 
where λ is a tuning parameter λ ≥ 0. It controls the strength 

of shrinkage the explanatory variables, when λ takes larger 

value, more weight will be given to the penalty term. 

Since the value of λ is depends on the data, it can be 

calculated using cross- validation method [9]. 

Before solving the PPR, it is worth to make 

standardization to �	� 	so that 

�
�∑ ��%���� = 0 and ∑ ��%' 	���� for j =1, 2,…k 

This makes intercept �(	equal to zero. 

3.2. Lasso Regression 

The lasso (least absolute shrinkage and selection operator) 

is a regression analysis method that performs both variable 

selection and regularization, in order to enhance the 

prediction accuracy and interpretability of the regression 

model by altering the model fitting process to select only a 

subset of the provided covariates for use in the final model 

rather than using all of them. 

The Lasso for the Poisson regression model was originally 

proposed [15]. 

Lasso is able to achieve both of these goals by forcing the 

sum of the absolute value of the regression coefficient to be 

less than a fixed value which shrink some coefficients to 

zero, and thus can implement variable selection. 

The Lasso method estimates the coefficients by 

minimizing the negative log-likelihood with the constraint 

that the sum of the absolute values of the model coefficients 

is bounded above by some positive number. Cross-validation 

methods can be used for identifying which of these two 
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techniques is better on a particular data set. 

The method applies a shrinking (regularization) process 

where it penalizes the coefficients of the regression variables 

shrinking some of them to zero. During features selection 

process the variables that still have a non-zero coefficient 

after the shrinking process are selected to be part of the 

model. The goal of this process is to minimize the prediction 

error. 

The lasso estimator is 

Equation 4 

�)*++, = -./01 2����� + $3|�%|
5

%��
� 

where λ ≥ 0 is the tuning parameter that controls the strength 

of the penalty assumes great importance. 

For large values of λ coefficients are forced to be exactly 

equal to zero. This way, dimensionality can be reduced. The 

larger the parameter λ the more the number of coefficients 

are shrunk to zero. 

3.3. Elastic-net 

The Elastic net is a regularized regression method that 

linearly combines the L1 and L2 penalties of Lasso and 

Ridge methods. 

The elastic net overcomes the limitation of Lasso selects at 

most n variables before it saturates. Also if the group is 

highly correlated variables then the Lasso tend to select one 

variable from the group and ignore the others. The elastic net 

estimator which is a combination between the ridge and the 

lasso penalty [12]. 

The second term (ridge penalty) encourages highly 

correlated variables to be averaged, while the first term (the 

LASSO penalty) encourages a sparse solution in the 

coefficients of these average variables. The elastic net 

estimator for Poisson regression model is elastic net 

estimator is depended on non-negative two tuning parameters 

$�, $' and leads to penalized Poisson regression solution. 

Equation 5 

�6)*+7�8 = -./01 2�−���� + $�39�%9
5

%��
+ $'3|�%|'

5

%��
� 

3.4. Model Testing 

The developed model will be tested on real count data set 

of choice to determine its performance compared to its linear 

counterpart. The statistics MSE will be used to make a 

conclusion on the performance of the models. The model 

with least mean-squared errors for the test data (MSE) will be 

considered the best. The following test statistic was used as 

performance measurements between the two models. 

Equation 6 

0:; = 1
 3��� − Ẑ��

�

���
 

4. Data Description 

To examine the prediction accuracy and variable selection 

of the elastic net we compare it with the Lasso penalties on 

Penalized Poisson regression using simulated data and real 

data. 

In simulations the response variable were generated from 

Poisson distribution with conditional mean	��. Our simulated 

data consist of a training set, validation set and testing set. 

The training data were used for model fitting; the 

validation data were used to determine 

the tuning parameters and the testing data were used to 

evaluate the penalization methods. 

The observation numbers of the corresponding data sets 

were denoted by training/validation/testing. 

Also the MSE was computed on test data. 50 datasets were 

simulated consisting of 50/50/400 observation. 

The real data set were from a study of prostate cancer [16]. 

The predictors are eight clinical measures: log cancer volume 

(lcavol), log prostate weight (lweight), age, log of the amount 

of benign prostatic hyperplasia (lbph), seminal vesicle 

invasion (svi), log capsular penetration (lcp), Gleason score 

(gleason) and percentage Gleason score 4 or 5 (pgg 45). The 

response is the log of prostate specific antigen (lpsa). 

5. Empirical Result 

Elastic net is more accurate than the lasso where grouped 

selection is required, the elastic net behaves like the oracle. 

The additional grouped selection ability makes the elastic net 

a better variable selection method than the lasso. In each 

case, Table 1 reveals that the elastic method produces 

considerably smaller median MSE and standard deviation 

among all methods in all cases. 

Table 1. Comparison of MSE Median and their Standard deviation among 

two methods. 

Statistic MSE Std 

Lasso 46.6 3.96 

Elastic net 34.5 1.64 

It is obvious from our simulation results that the elastic net 

performs better in term of MSE by obtaining smaller values 

high correlation. Elastic net has greater advantage of variable 

selection with grouping effects in Poisson regression model. 

The lasso and elastic net were all applied to the prostate 

cancer data, in order to enable a fair comparison, typically, 

the dataset was randomly partitioned into a training dataset, 

which comprised 70% of the samples, and a test dataset, 

which consisted of 30% of the samples. 

In order to get the best value of the pair (λ-1, $'), 10-fold 

cross validation were carried out on the training data. We 

then compared the performance of those methods by 

computing their prediction mean squared error on the test 

data. All the applications were conducted in R using the 

glmnet package. Table 2 shows the median number of 

explanatory variables selected by each of the elastic net and 

lasso in the test data set, and the corresponding median MSE. 
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It can be seen that Elastic net performs best in term of 

prediction error where the MSE of the elastic net is 

approximately 0.21% lower than Lasso. Moreover, elastic net 

selects less explanatory variables than the other method 

Table 2. Comparison of Median MSE for the Regression methods. 

MSE Min 1st Qu Median Mean 3rd Qu Max 

Lasso 0.6056 0.6390 0.7019 0.7257 0.7770 0.9570 

Elastic net 0.6113 0.6310 0.6991 0.7262 0.7835 0.9649. 

 

The lasso includes lcavol, lweight lbph, lcp, svi, and pgg45 

in the final model, while the elastic net selects lcavol, 

lweight, svi, lcp, and pgg 45. 

The prediction error of the elastic net is about 10 percent 

lower than that of the lasso. 

Table 3. Variable selection among the methods for Real data. 

Variables Lasso Elastic 

(Intercept) -0.359568455 -0.313754493 

lcavol 0.464825516 0.433777648 

lweight 0.557305441 0.550976927 

Age 

lbph 0.014129093  

svi 0.333693029 0.388507425 

lcp 

gleason 

Pgg 45 0.005352502 0.005773321 

 

Figure 1. Lasso. 

 

Figure 2. Elastic net. 

6. Conclusion 

A study of elastic net was proposed by applying on 

Penalized Poisson regression model. Elastic net and Lasso 

were compared by using simulation studies and real data 

application. 

Both the simulation and real data results show that the 

Elastic produces a model with good prediction accuracy and 

also outperforming the Lasso in term of MSE of test data and 

variable selection accuracy. 

Elastic net encourages a grouping effect. We can conclude 

that Elastic net combines feature elimination from lasso and 

feature coefficient reduction from the ridge model to improve 

your model’s prediction. Elastic net can be used as a 

generalization of Lasso which has been shown to be of great 

importance for model fitting and variable selection in high 

dimension data. 
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