
 

International Journal of Data Science and Analysis 
2020; 6(6): 204-212 

http://www.sciencepublishinggroup.com/j/ijdsa 

doi: 10.11648/j.ijdsa.20200606.14 

ISSN: 2575-1883 (Print); ISSN: 2575-1891 (Online)  

 

Non-linear Approximations of Shape and Location 
Parameters in the Poisson Inverse Gaussian Model in 
Analysis of Infectious Count Data 

Symon Kamuyu Matonyo, Oscar Ngesa, Anthony Wanjoya 

Department of Statistics and Actuarial Science, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya 

Email address: 

 

To cite this article: 
Symon Kamuyu Matonyo, Oscar Ngesa, Anthony Wanjoya. Non-linear Approximations of Shape and Location Parameters in the Poisson 

Inverse Gaussian Model in Analysis of Infectious Count Data. International Journal of Data Science and Analysis.  

Vol. 6, No. 6, 2020, pp. 204-212. doi: 10.11648/j.ijdsa.20200606.14 

Received: November 13, 2020; Accepted: November 21, 2020; Published: November 30, 2020 

 

Abstract: Statistical models create a basis for analysis of infectious disesase count. These data sets exhibit unique 

characteristics such as low counts, delayed reporting, underreporting amoung others. The tendency to model these counts using 

linear models with their simplicity is common with most research. Further, the assumption of a fixed dispersion in modeling 

infectious disease counts is quite high. Prediction relating to infectious disease counts have been based on the Poisson model 

framework. The extension of the Poisson models such NB and PIG distributions have gained popularity over the recent past in 

modeling count responses showing over dispersion relative to the Poisson distribution. In this study we propose non-linear 

models for these data sets, modeling the mean and dispersion parameters as additive terms. Negative Binomial (NB) and 

Poisson Inverse Gaussian (PIG) glm models with a fixed and a varying dispersion parameter and compare them with NB GAM 

and PIG GAM with both mean and dispersion modeled as additive terms. The model are fitted to over dispersed infectious 

counts, Salmonella Hadar data set. Residual plots are constructed to explore the quality of fits and analysis goodness of fit is 

carried out to access the best fitting model. The study results reveal better performance of the PIG models on both the linear 

and non linear model platforms. Further, modelling both the mean and dispersion proved better as compared to models 

assuming the dispersion as a constant. 
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1. Introduction 

Count data is encountered on daily basis and dealings. The 

data exhibits unique characteristics such as over-dispersion, 

under-dispersion, incompleteness, presence of excess zeros 

among others. More understanding of such data and 

extraction of important information about it needs some 

statistical analysis or modelling. Various count data may 

posses different characteristics and therefore cannot be used 

with particular count data models. This necessitates the need 

for a systematic way in choosing of the best model that best 

describes the data in that, one should test whether the models 

assumptions are met rather than just picking a model naively. 

The nature of these data has led to development of various 

types of statistical models that are of great use in the 

statistical analysis of this type of data. The models and 

results vary according to the strength of the distributional 

assumptions made [4]. Most of these methods have now 

found their way into major statistical packages, which has 

greatly encouraged their application in variety of contexts. 

Count data are most commonly modeled using regression 

based on the Poisson regression model [3], this regression 

has considerable limitation. Poisson distribution has one 

parameter which limits the variance from varying 

independently from the mean. Despite the fact that these 

models have been applied extensively in modelling count 

events [36], this assumption that the mean and variance of 

the data are equivalent is rather too restrictive and seldom 

does occur in observational data. This is a significant 

drawback since count data are often over- or underdispersed 

relative to the Poisson variance. More so, when the observed 

data involves excessive zero counts, over dispersion arises 
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hence may result in underestimation of the variance of the 

estimated parameter, resulting in wrong deductions [31]. 

Over-dispersion in regard to the Poisson model can be 

modeled by introduction of an additional parameter. For 

instance, in the negative binomial (NB) distribution and 

Generalized Poisson (GP) distributions [6], the models 

enable independent modelling of both, mean and variance by 

the incorporation of an additional parameter. They enable 

additional variation within the data to be accounted for by 

adding a randomly distributed error term, that is based on the 

Gamma distribution. 

Further developments have been in progress with the view 

of coming up with a model that best analyses count data with 

their unique characteristics. Extension of the Poisson models 

such as the Conway-Maxwell-Poisson (COM-Poisson) 

distribution and its generalized regression model (GLM) 

have been proved to be exceptionally flexible in modelling 

count data [15, 14, 32, 13] whereas, the Double-Poisson (DP) 

and its generalized regression model; DP GLM performed 

better for count data with high mean scenarios independent 

of the type of dispersion [41]. 

The Sichel (SI) distribution is a model suitable for 

modelling count data that is highly dispersed [40]. This 

distribution is a compound form of Poisson distribution, that 

combines the Poisson distribution with generalized inverse 

Gamma distribution [35]. Recent research on mixed Poisson 

distributions for analyzing long-tailed count data stated that the 

SI model provides satisfactory inferences for so many cases 

compared to other models [16]. However, though the model 

seems adequate in modelling count data it suffers estimation 

problem. To overcome this challenge, reparameterization of 

the model was introduced, [35]. The special form of the SI 

distribution; the Poisson inverse Gaussian (PIG) in which the 

shape parameter in the SI model is set to -0.5 provides a better 

model for analysis of count data with slightly longer tails and 

excess kurtosis [39]. The PIG model has tractable nature in 

that its likelihood function is easily obtainable and has a closed 

form, indicating estimation of parameters as quite simple and 

less time consuming. 

In the recent past, regression models extending modelling to 

dispersion, other shape parameters and to distributions beyond 

the exponential family have been so popular [10]. However, 

though much interest is still focused on modelling the mean, 

these models allow the flexibility of modelling shape 

parameter as a function of covariates. The PIG model 

parametrized in terms of the mean � and dispersion parameter �  is available as response distribution in already existing 

regression software [34]. A study conducted on analysis of 

clinical trials where a secondary outcome was the number of 

falls that participants experienced while undergoing a drug 

treatment or usual care (control group: [18]), estimates of the 

treatment effect on the mean � were found to be sensitive to 

the specification of the dispersion model. The sensitivity of the 

mean model to the dispersion model is of particular concern in 

the context of clinical trials, since statistical analysis plans do 

not generally specify modelling the dispersion parameter. A 

regression model using alternative parametrization of the PIG 

distribution, where the shape parameter � is orthogonal to the 

mean should be considered [21]. But this parametrization of � 

and �  leads to �  model estimates that are robust to 

misspecification of the dispersion model. 

Misspecification of the model may result in realisation of 

biased estimates, that may in turn lead to erroneous and 

misleading conclusions. Regression models require that 

relationship between the variables (response and explanatory) 

conform to a particular functional form. Omission of 

important explanatory variables, failure to account for any 

non-linear components or critical interaction terms, or 

making measurement errors may lead to misspecification and 

accordingly bias the parameter estimators of one or more of 

the predictors in the regression model [5]. The study propose 

non-linear parameterization of the PIG model in location and 

dispersion parameters. 

2. Literature Review 

Counts are non negative integers which represents 

occurrences of event (s) within a fixed period of time. In 

numerous scientific and economic contexts the response 

variable is usually a count which needs to be analyzed in 

terms of a set of covariates. Common features off these 

counts is over dispersion or underdipersion with regard to the 

Poisson assumption. This arises when the variance of the 

counts data exceeds (overdispersion) or falls short of 

(underdispersion) the mean. 

Regression models for count data 

a) The Poisson Regression model 

The Poisson model is a benchmark model for count data in 

much same way as the normal linear model is a bench mark 

for continuous data [30, 4, 36]. This count model distribution 

is focused on the number of outcomes of a given event. The 

model is derived from the Poisson probabilty mass function; 

�(�� ; ��) = ��
���(����)��
��! , � = 0,1, . . . . . ; � > 0            (1) 

where ��=count response ��=rate parameter or predicted count ��=time or area in which counts enter the model. 

When ��  is considered as applying to individual counts 

without considering size or the time, �� = 1, where as, when �� > 1 it is known as an exposure and usually modeled as an 

offset. 

Estimation of this model is based on log-likelihood 

parametarization of the Poisson probability distribution, 

which is focussed at establishing parameter values making 

the data most likely. The exponential family form is: 

�(��; ��) = ∑  ��� {��ln(��) − �� − ln(��!)},            (2) 

where ��  symbolize the predicted count. The deviance 

function associated with this equation is applied when the 

model is estimated as a Generalized Linear Model (&�'). 

The response variable � = 0,1,2, . ..  uses the probability 

distribution function of the Poisson where: 
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�� ∼ *(��), �� = 0,1, . .. and +(��) = �� 
The mean response is given as ,�′. = ./ + . ,� +. . . +.12 ,�12  which is a function of 

linear predictor variables ,� , . . . , ,�12 . The function 

�(,� , .)  relates the mean response ��  to the predictor 

variables ,�  and the regression coefficients . . Hence, if 

�� ∼ *(��)  then, the mean(response) function is given as �� = 34*(,�.) . Therefore, the Poisson regression mean 

response function can be expressed as; 

�� = ./ + . ,� +. . . +.12 ,�12                 (3) 

and its likelihood function is; 

�(.) = 5  
�

�� 
{�(,� , .)��34*6−�(,� , .)7}

��! = {∏  ��� 6�(,� , .)7��}34*6− ∑  ��� �(,� , .)7
∏  ��� 9�!  

The log likelihood function is given by; 

ℓ = log�(.) = ∑  ��� 9�ln6�(,� , .)7 − ∑  ��� �(,� , .) − ∑  ��� ln(9�!)                                             (4) 

MLEs of ./, . , . . . , .12 , can be realized through 

numerical maximization procedures e.g, through the 

reweighted least square approach. The response function and 

fitted values �̂ = exp(,� , A)  for the regression function �� = �(,� , .) = exp(,�′, .)  can be obtained from the 

parameter estimates of .. 

The Poisson regression has advantages in that it takes into 

account the non-negative and discrete data hence, allows for 

drafting of conclusions on the probability of the occurrence of 

an event. The model may likewise be used as an option to Cox 

model in survival analysis, when the risk rates are around 

steady, amid the perception time frame and given that the 

danger associated with the occurrence is minimal [1]. However, 

despite its extensive use the Poisson model seems rather too 

restrictive due to the assumption that, the mean and variance of 

the data are equal. This is rarely the case with observation data 

since most count data in real life are either over- or under-

dispersed. This violation of the Poisson necessitates the need 

for other models like, the Negative Binomial (NB) regression 

model and the Generalized Poisson (GP) model that are able to 

capture these characteristics of the data. 

b) The Generalized Poisson (GP) Regression Model 

The explicit presumptions of the Poisson regression models 

is that the force of Poisson process is a deterministic capacity 

of the covariates and the occurrences happen arbitrarily over 

some time. When handling count data characterised by under- 

or over-dispersion; where the sample variance is smaller (or 

larger) compared to the sample mean, the Poisson model leads 

to biased estimates of the parameters [7]. For over-dispersed 

data sets, the GP regression models provide a better alternative 

for the Poisson regression model [25, 28, 23, 24, 26]. The GP 

and NB regression models have been applied in  order to 

handle over-dispersed count data in place of the Poisson model 

[25, 12]. For instance, where the type of dispersion exhibited 

by the data set is already known to be overdispersed then, one 

can either use the GP or NB regression models to model such 

data, otherwise, for an unknown type of dispersion the decision 

ought to be the GP model as it is more adaptable. The General 

Poisson regression can be expressed as; 

B�(C�: ��, 4) = E F�
 GHF�I

J� E GHF�
J�! IJ�2 exp K2F�( GHJ�)

 GHF� L     (5) 

with mean and variance; 

+(C�|4�) = �� NOPQNR(C�|4�) = ��(1 + S��)T 

where, 

C� = 0,1,2,3, . .. 
�� = ��(4�) = exp(4� , .) 

4� = (* − 1) dimensional vector of predictors and . = * dimension vector of parameters. 

For S = 0 the above model reduces to a Poisson model 

implying that the GP model is general form of the standard 

Poisson model. A comparison of the two models in terms of 

their capability to model over-dispersed count data showed 

that the GP regression out do the Poisson regression 

comparing their log-likelihood values [11]. Despite the fact 

that these models are able to capture overdispersion in count 

data, the models may not be adequate in handling data 

characterised by too many zeros. 

Other regression models for handling count data 

c) The Double Poisson (DP) Model and its extensions. 

The Double Poisson regression model is a model within 

the frameworks of the double exponential family proposed by 

[9]. The distribution is derived from a mixture of two Poisson 

distributions, V(�) and V(C), i.e, 

�(C, �, W) = X(�, W)6V(�)7Y6V(C)7 2Y              (6) 

where, W =dispersion parameter X(�, W) =normalizing constant. The exact values of this 

constant are dependent on the values of � and W. The density 

function of the model is expressed as, 

V(Z = C) = �F,Y(C) = X(�, W)�F,Y(C)            (7) 

and the probability mass function is given by; 

V(Z = C) = �F,Y(C) = W /Texp(−W�) K��\J\
J! L K�F

J LYJ , C = 0,1,2, . ..  (8) 

with mean and standard deviation (the exact density �F,Y(C)) 

given as; 

+(Z) ≈ �,                                     (9) 

^_(Z) ≈ KF
YL /T

                             (10) 
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The normalizing constant X(�, W) is approximately equal 

to 1 and can be obtained as; 

 
`(F,Y) = ∑  aJ�/ �F,Y(C) ≈ 1 +  2Y

 TFY K1 +  
FYL            (11) 

This constant ensures that the density adds up to unity. 

This double poiusson model takes into account 

overdispersion (�bR W > 0) and underdispersion (cℎ3O W <0)  and reduces to a Poisson distribution whenever W = 1 . 

The estimates of the parameters �  and W  can be gotten 

through maximum likelihood approach. Due to the fact that 

the model has capability of handling over- and 

underdispersed count data, it has been applied in various 

research and several extensions developed. 

Though this models seems attractable in its ability to 

handle over- and underdispersed counts, it is still limited in 

that the normalizing constant has no closed form hence 

leading to non exact results [36, 22]. The incorporation of 

this constant increases the non-linearity which results in 

difficulties in achieving the MLEs. 

d) Conway-Maxwell (COM) Poisson models 

The COM-Poisson is a generalization of the Poisson model, 

enabling for over- and underdispersed count data to be 

modelled and having a probabilty mass function given by; 

V{9 = �|�, R} = ��
(�!)f ⋅  

h(�,i) , � = 0,1,2, . ..            (12) 

Z(�, R) = ∑  a��/ �j
(�!)f , � > 0 NOP R ≥ 0                (13) 

where, � is a random count of a discrete nature � = centering parameter (approximately equal to the 

expected value in many cases) R =shape parameter for the model 

Setting R = 0, � < 1 results in the geometric distribution; 

while when R → ∞  the model converges to a Bernoulli 

Distribution otherwise, when R = 1 results in Poisson model. 

The adaptability of the COM-Poisson model greatly extends 

its utilization for count occurences. The mean and the 

variance of the distribution are given as; 

+(9) = nopqh
nopq�                                  (14) 

QNR(9) = nropqh
nopqr�                               (15) 

Despite having some attractable characteristics and being 

more robust it has limitations in its applicability as a basis for 

GLMs since the parameters �  and R  lack a clear centering 

parameter [15]. Actually, while � almost equals the mean for R 

close to 1, this differs at a greater extent from the expected 

value for small values of R. When the data is over-scattered, R 

would be required to be small and along these lines a COM-

Poisson dependent on the original formulation would be 

extremely hard to decipher and use for the over-scattered count 

data. To overcome this challenge introduced a 

reparametrization of �  to  � = � /R  was introduced in the 

original distribution to provide a clear centering parameter [15]. 

e) The Sichel (SI) Distribution 

The Sichel (SI) distribution, which is a compound Poisson 

model was introduced by [33]. The distribution combines the 

Poisson distribution with the generalized inverse Gaussian 

distribution. This resultant combination is in particular very 

useful in modelling count data that show overdispersion in 

respect to the Poisson model and has produced satisfactory 

results in many instances where other count models were 

inadequate. The distribution contains three parameters 0 < W < 1, � > 0 and −∞ < s < ∞ and can be expressed as; 

*(�|�, �, s) = (F/t)�u�vw(H)
uw( /x)�!(Hx)�vw                (16) 

where, � =dependent variable � =expected value of the observations � =scale parameter s =shape parameter ST = �2T + 2�(P�)2  and 

P = XyG (1/�)
Xy(1/�)  

The fucntion Xy(�) is referred to as the modified Bessel 

function expressed as; 

Xy(�) =  
T z  a

/ ,y2 exp K−  
T �(4 + 42 )L P4          (17) 

The central moments of the SI distribution are given as; 

+(9) = �, QNR(9) = �T62�(s + 1)/P + 1/PT − 17 
As � → ∞  and s > 0 , the distribution converges to a NB 

distribution. For, s = −0.5 , the distribution reduces to a 

Poisson-inverse Gaussian with an expected value � and variance � + �T�  [39]. The likelihood function of the PIG model is 

effectively realistic and has a closed form, showing estimation 

of parameters very straightforward and nearly takes no time [27]. 

Various research in the fields of medicine and transport have 

demonstrated that PIG provides a better fits in modeling count 

data with longer tails and excess Kurtosis [39]. Recently, an 

orthogonal parametrization of this dispersion model was 

proposed and  its performance tested on a clinical trial data  [20]. 

3. Methodology 

a) The Poisson Inverse Gaussian (PIG) Regression Model 

The PIG regression model is a special form of the Sichel 

distribution proposed by [8]. In this model, the shape 

parameter in the Sichel distribution is set to be a constant, 

that is, s = −  
T. Therefore, the model is characterized by two 

parameters in contrast with the SI model. This model is more 

tractable and very useful when handling data exhibiting 

longer tails compared to those of a NB model [8, 35]. A 

variety of Poisson mixture distributions that can be used to 

handle count data have been proposed, [29]. The distributions 

are characterized by the two parameters � and � where the 

expected value and the variance are given as +(9) = � and QNR(9) = �(1 + ��) . Under these parametrization the 

probabilty denstity function function is expressed as; 
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��(�|�, �) = | T
}x (1 + 2��)~

�3~
� �F/�( GTFx)��

�! X�2/.���(1 + 2��)/��, � = 0,1, . ..                        (18) 

with the inverse Gaussian distribution � ∼ �&(�, �) 

expressed as; 

��(�|�, �) = (2��T��)2 Texp �− (� − �)T
2�T�T� � , � > 0 

and Xy(�) is a modified Bessel function of a third kind. This 

parametrization was first used in literature with � = �, [8]. 

As � → 0 the distribution converges to a Poisson distribution. 

Under this parametrization the distribution can be 

communicated as a multiplicative arbitrary effect model. For 

instance, given; 

9 ∼ Vb���bO(���) NOP � ∼ �&(1, �)             (19) 

where � represents the moddel offset then we can have the 

model as; 

9 ∼ V�&(��, �) 

The PIG distribution has been presented in various 

literature texts in different parametrization. It was first 

introduced with parameters S and � with S > 0 and 0 < � <1 , [33]. Under this parametrization the distribution’s 

expected value is expressed as +(9) = H�( 2�)~r
T  with a 

variance QNR(9) = S�(2 − �)/(4�(1 − �)�). However, the 

asymptotic correlation of the Likelihood estimators S� and �� 
are emphatically negative under this representation. To solve 

this limitation an orthogonal representation (�, S)  was 

developed, [35]. This results in a pdf of the following format; 

�(�|�, S) = KTH
} L

~
r exp{�(�T + ST) − �} KF(�FrGHr2F)L�

H��! X�2~
r(H), � > 0, S > 0                           (20) 

with a mean and variance expressed as; 

+(9) = � NOP QNR(9) = �(1 + �)/ K��T + ST − �L 

In this representation �  is inversely related to S , i.e, 

S = � GTFx
x  and as the value of S → ∞  the distribution 

converges to Poisson. It is not possible to express this model 

as a multiplicative arbitrary effect model as in the previous 

parametrization (19). 

The aspect of the PIG model based on orthogonal 

parametrization of the mean and shape parameter was 

investigated and the model appllied on data from clinical trial 

for the number of falls that patients experienced while 

undergoing a drug treatments [20]. The PIG distribution is 

represented as a respeonse distribution with; 

B(�) = 4′.;  ℎ(�) = �′� 

The study assumes an orthogonal parametrization 

proposed and introduce general additive models for both the 

mean and the dispersion parameters in the PIG model 

assuming; 

B(�) = 4′.;  ℎ(S) = �′s                         (21) 

b) Model Formulation 

Let 9 be a response variable from the exponential family 

distributions and assuming 9 is parameterized by W then the 

General additive model (GAM) for the distribution 

parameters can be expressed as; 

B(W) = S + ∑  ��� ��(4�) + �                     (22) 

where S  is a constant term, ��′�  are unspecified smooth 

functions of the covariates 4� , � = 1,2, . . . , � , B(⋅)  is a 

smooth monotonic link function which is known and 

� ∼ �(0, �T) is error term [17, 37]. The model above can be 

represented otherwise using basis expansions for each 

smoother with its corresponding penalty and estimation 

carried out by penalized regression approaches with 

appropriate degree of smoothness for the ��′� estimated from 

the data via marginal likelihood maximization or cross 

validation approaches [37]. Under this approach a smooth 

function ��  can be represented by a set of �  spline basis 

functions A��(4) hence; 

�� = �  
1

�
A��(4) ⋅ .��  

where .��  is the smoothing coefficient associated with the ��� 

function. .�  is estimated by maximizing the penalized log-

likelihood; 

ℓ�(.) = ℓ(.) −  
T ∑  ��� ��.′_�.                  (23) 

where ℓ⋅  is the log-likelihood function,��  is the smoothing 

parameter for the ��ℎ function ��  and _�  is known matrix of 

coefficients [38]. 

In this study we seek to develop GAMs, for both the mean 

and dispersion parameters under the orthogonal 

parametrization, that is, 9 ∼ V�&(�, S). We assume a mean 

and dispersion model of the form; 

B(��) = ./ + ∑  ��� ��(4��) + �                 (24) 

ℎ(��) = s/ + ∑  ��� ��(4��)                    (25) 

where, B(��) = log(��)  and ℎ(��) = log(��)  are the monotonic 

link functions 4� ′� are observed data variables 
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� = log�� is the offset term for an observation time �� 

c) Model specification 

A parameter-observational model for infectious diseases 

takes the following functional form; 

�� 
 34*��� 0 S��2 	                          (26) 

where the model parameters ��  is the mean infections per 

week and ��  and S��2  are the endemic and is epidemic 

components respectively [19]. The endemic component �� is 

considered to be parameter driven. Due to the fact that most 

infectious disease data exhibit seasonality, �bB���	  is 

modeled as the sum of S harmonic waves having different 

frequencies and an intercept term as; 

�� 
 � 0 .� 0 ∑  �
�� �s���O����	 0 �� b�����		      (27) 

where, 

�=number of harmonics 

�� 

T�}

1
 are fourier frequencies with �  as the base 

frequency. The epidemic component S��2  is an 

observational driven process through S . For values of S 

between 0 and 1, the model depicts occasional epidemic 

outbreaks which a branching process with immigration. The 

process is ergodic in situations where S e 1  and has an 

exponential increase for values of S � 1. However, in cases 

where S 
 0 , the model reduces to a parameter driven 

formulation without an epidemic incidences. 

The model serves a link for infectious disease counts mean 

and the explanatory variables. The dispersion parameter is 

modeled as a function of the explanatory variables to explain 

extra variation in the data. The study modelled mean 

infection model as a function of additive terms: 

�bB���	 
 ����	 0 ����2 	                    (28) 

where,����	 is the endemic additive term given as: 

����	 
 1 0 ���	 0 ����O����	 0 �� b�����		      (29) 

and ����2 	  is the epidemic component considered to be 

observational driven. Further the dispersion in the data was 

modelled as additive terms of the both the endemic and 

epidemic components under the Poisson inverse model as: 

�bB���	 
 ����	 0 ����2 	                       (30) 

where parameters are as earlier defined. 

d) Description of the Data (Salmonella Hadar Data) 

The Salmonella Hadar data set contained 295 observations 

of the disease recorded over a period of six years (2001-2006) 

in Germany. The distribution of the responses, in figure 1, 

depicts a highly peaked data with a long tail and skewed to 

the right with a kurtosis and skewness coefficients of 7.3 and 

1.86 respectively. The ratio of variance to the mean was 3.45 

an indication of presence of over-dispersion in the data [2]. A 

Poisson glm model fiited on the data recorded a dispersion of 

1.96. This showed that the data was over-dispersed relative to 

the Poisson distribution. 

 

Figure 1. Salmonella Hadar data distribution. 

4. Results and Discussions 

a) Linear models 

Generalized linear models (GLM) were fitted for both data 

sets under the Poisson, Negative Binomial and PIG 

distributions and model performance examined. Goodness of 

fit of the models was examined based on values of Akaike 

Information Criterion (AIC), global deviance and Bayesian 

Information Criterion (BIC). Model (s) considered to have 

best fit for the data were those that recorded the smallest 

values of these measures. Table 1 shows the summary results 

for the Poisson, Negative Binomial (NBI) and Poisson 

Inverse Gaussian (PIG) linear model fits with both fixed and 

varying dispersion parameters for the study data. 

Table 1. Modelling results for Poisson, NB and PIG glm models. 

Model PO NB PIG 

Parameters Fixed Fixed Varying Fixed Varying 

� 0.9861 (0.0670) 1.0138 (0.0950) 0.9804 (0.1001) 1.0276 (0.0976) 0.9986 (0.1010) 

. -0.0011 (0.00034) -0.0016 (0.0005) -0.0014 (0.0005) -0.0016 (0.0005) -0.0014 (0.0005) 

s -0.1497 (0.0478) -0.1426 (0.0643) -0.1409 (0.0639) -0.1481 (0.0654) -0.1449 (0.0649) 

� -0.4848 (0.0523) -0.4807 (0.0702) -0.4974 (0.0724) -0.4888 (0.0709) -0.5038 (0.0726) 

S 0.0764 (0.0074) 0.0862 (0.0126) 0.0875 (0.0125) 0.0838 (0.0124) 0.0853 (0.0122) 

�: � - -1.500 (0.194) - -1.4009 (0.2092)  

s/ - - -0.7193 (0.7636) - -0.6916 (0.7211) 

s  - - -0.1782 (0.1729) - -0.1647 (0.1633) 

 - - - - - 

&�bAN�_3¡. 1313.972 1240.889 1239.903 1237.772 1236.804 

¢�£: 1323.972 1253.903 1252.889 1250.804 1249.772 

^¤£: 1342.39 1279.688 1274.991 1276.589 1271.874 

*Numbers in brackets are the standard errors for the estimates. 
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From these summary results it is evident that the NB and 

PIG models had similar estimates. For instance, the past 

observations of the disease had a positive relationship with 

the current infection frequency. Further, the PIG model had 

better fits for both the fixed and varying dispersion 

parameters. The models with a varying dispersion parameter 

showed better fits for the data compared to those with a fixed 

dispersion. This is evident from the small values of AIC, 

SBC and Global deviance values. This is an indication that 

the Inverse Gaussian part in the PIG model has a better 

flexibility to handle over dispersed data common in 

infectious disease compared to the Gamma part present in 

NB models. Efficiency of the PIG model is facilitated by the 

varying dispersion parameters in the model that help to 

capture variability within the data. 

b) Non-linear model fits 

General additive models were fitted for Poisson, NB and 

PIG models. General additive term models for the mean 

assuming the dispersion was fixed were fitted to the data 

under the models and results compared. Further both the 

mean and dispersion were modeled as smooth additive terms 

and model performance investigated. Table 2, shows the 

summary results for the AIC, SBC and global deviance for 

the fitted models. 

Table 2. GAM models AIC, SBC and Global deviance comparisons. 

model parameter modelled AIC SBC Global deviance 

Poisson Log (��) 1238.596 1274.97 1218.846 

NB (m1) Log (��) 1212.634 1252.028 1189.702 

NB (m2) Log (��); log (��) 1211.622 1251.414 1188.845 

PIG (m1) Log (��) 1209.564 1250.46 1187.36 

PIG (m2) Log (��); log (��) 1199.047 1249.795 1164.435 

 

Evidently, from the observed summary results the PIG 

GAM model produced a better fitted model for the study data. 

This is indicated by the small values of AIC (1199.047, 

1209.564) recorded for the model compared to the NB model 

AICs (1212.634, 1211.622). Modeling the mean and the 

dispersion parameters as additive terms increased the model 

performance further by far. This is clear indication that 

modeling the mean parameter alone may result in model 

misspecification, [20]. A comparison of the AIC of the 

additive models and their linear counterparts showed that the 

additive models had better fits compared to the glm models 

previously fitted. This implies that, non-linear additive 

models are best suited to fit overdispersed count data as they 

produced better fits compared to the linear models. 

c) Residual Analysis 

For any fitted model, true residuals R�  have standard 

normal distribution irrespective of the model distribution. 

The randomized quantile residual summary for the additive 

models are shown in Table 3. 

Table 3. Randomized normal quantile residuals for the additive models. 

GAM Model Mean Variance Skewness Kurtosis 

NB (m1) 0.011 1.002 0.220 3.42 

NB (m2) -0.0009 0.951 0.258 3.48 

PIG (m1) -0.0073 0.981 0.133 3.28 

PIG (m2) 0.002 0.942 0.044 2.874 

 

The normalized quantile residuals for the fitted PIG 

models behave well. Their means are nearly zero, variance 

nearly one, kurtosis is nearly 3 and the values fall inside the 

acceptance region, except for model skewness. The model 

residuals shows some right skewness. The residual 

distributions for NB the models suggests a leptokurtic 

behavior which is slightly skewed to the right. The residuals 

from the PIG model with additive terms for the mean 

parameter are leptokurtic and skewed to the right. The figures 

2 and 3 show the residual worm plots for the additive models 

with fixed dispersion and an additive dispersion model 

respectively. 

 

Figure 2. Residual worm plots for NB and PIG GAM models with fixed dispersion. 



 International Journal of Data Science and Analysis 2020; 6(6): 204-212 211 

 

 

Figure 3. Residual worm plots for NB and PIG GAM models with additive dispersion. 

The residual worm plots show that the model fits the 

data fairly well. However, the plots for the additive 

models where the dispersion parameter was assumed to be 

fixed indicate the model did not fit the data very well as 

shown by some points lying outside the confidence 

bounds. An in depth insight to the residual worm plots for 

both the fixed dispersion models and additive dispersion 

reveal some misfits of the penalized curves fitted to the 

residual points for given data. This serves as an 

explanation to the disparities seen from the summary of 

randomized quantile residuals for the models. The misfits 

observed for these models were as follows: (0.5, 23.5) and 

(74.5, 98.5) for the skewness and kurtosis of the residuals, 

(98.5, 122.5) for kurtosis and (245.5, 270.5) for the 

variance of the residuals in the eleventh interval for the 

NB model with a fixed dispersion parameter. The PIG 

model with fixed dispersion had misfits in the intervals; 

(0.5, 23.5), (68.5, 90.5) and (226.5, 249.5) for the 

skewness coefficient and (0.5, 23.5) for the kurtosis. 

Though the additive dispersion models showed improved 

model fits of the residual worm plots, an in depth analysis 

of these plots had evidence of misfits in some intervals. 

The NB additive model had misfits in: (74.5, 98.5) for 

skewness coefficient, (0.5, 24.5), (74.5, 98.5) and (172.5, 

196.5) for peak coefficients. The PIG additive model 

recorded misfits at the intervals, (0.5, 24.5) and (74.5, 

98.5) for the skewness and kurtosis of the model residuals. 

5. Conclusions 

The study applied non linear models for both the mean and 

dispersion parameters of the PIG distribution to overdispersed 

infectious disease count data. General additive models of the 

PIG and NB distribution were fitted to infectious disease 

counts. The linear model fits for counts indicated that PIG glm 

models with varying dispersion parameter had better 

performance in fitting the data as opposed to the other fits. 

More so, PIG GAM overall provided better model results 

compared to NB GAM models and the linear forms of the two 

models. This could be attributed to the flexibility of the Inverse 

Gaussian part of present in this model. Further, the findings 

showed that models having both the mean and dispersion 

parameters as varying terms had better performance as 

compared to models with a fixed dispersion paramater. This is 

an indication that modeling the mean parameter in a 

distribution assuming the dispersion may have resulted in the 

poor performance of these models. From the study results the 

PIG and NB models had almost similar estimates for the 

smooth terms and linear coefficients implying that these 

models can be applied alternatively depending on the data 

structures. This study proposes the PIG GAM models as a 

better distribution for modelling overdispersed infectious 

disease count. 
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