

International Journal on Data Science and Technology
2017; 3(1): 8-15

http://www.sciencepublishinggroup.com/j/ijdst

doi: 10.11648/j.ijdst.20170301.12

ISSN: 2472-2200(Print); ISSN: 2472-2235(Online)

INL (Is Not Linux): Challenges of Building a New FOSS
Operating System

Lucio Agostinho Rocha

Department of Software Engineering, Federal University of Technology (UTFPR), Dois Vizinhos, Brazil

Email address:
luciorocha@utfpr.edu.br

To cite this article:
Lucio Agostinho Rocha. INL (Is Not Linux): Challenges of Building a New FOSS Operating System. International Journal on Data Science

and Technology. Vol. 3, No. 1, 2017, pp. 8-15. doi: 10.11648/j.ijdst.20170301.12

Received: April 12, 2017; Accepted: April 21, 2017; Published: May 22, 2017

Abstract: This article describes the main considerations to automate the building process to create new operating systems

based on Linux From Scratch and Beyond Linux From Scratch projects. It is necessary to provide automation of this building

to simplify, fix a lot of configuration bugs, and reduce the inherent effort to create a functional operating system. Our purpose

is offering a Free Open Source Software (FOSS) with concise descriptions to guide the building of these operating systems.

One of the major challenges is the necessary effort to deal with packagesand its dependencies. As a consequence, it was

developed an optimized installer that follows rigorously the official LFS documentation to generate bootable virtual machines.

Keywords: FOSS, Operating System, Linux

1. Introduction

The goal of our paper is to answerthe question: how can

webuild a functional operating systemthat follows the

philosophy of Free Open Source Software (FOSS)? In order

to answer this question we conduct this current research.

In this research, it was developed an automated way to

create a new operating system based on Linux From Scratch

(LFS) [2] and Beyond LFS (BLFS) [6]. Although there are

some works that use the same documentation of these latter

projects to automate the building of Linux operating systems,

we highlight that our approach is a more convenient way to

complete successfully the whole procedure. This research

follows rigorously the documentation of LFS and BLFS

projects.LFS is an online project that explains the step-by-

step to build complete and functional Linux operating

systems. As long as exist a lot of packages on severalservers

in world wide web, the LFS project aims as a detailed

guideabout how to find them, configure and install them.

LFS follows rigorously POSIX.1-2008, Filesystem Hierarchy

Standard version 3.0 Draft 1 (FHS), and Linux Standard

Base (LSB). LSB has Five patterns: Core, C++ compiler,

desktop environment, real-time languages, and printing. A

basic LFS system has the following packages: Autoconf,

Automake, Bash, Bc, Binutils, Bison, Bzip2, Check, Coreutils,

DejaGNU, Diffutils, E2fsprogs, Expect, File, Findutils, Flex,

Gawk, GCC, GDBM, Gettext, Glibc, GMP, Grep, Groff,

GRUB, Gzip, Iana-etc, Inetutils, IProute2, Kbd, Kmod, Less,

Libpipeline, Libtool, Linux Kernel,M4, Make, Man-DB, Man-

pages, MPC, MPFR, Ncurses,Patch, Perl, Pkg-config,

Procps-NG, Psmisc, Readline, Sed, Shadow, Sysklogd,

Sysvinit, Tar, Tcl, Texinfo, Udev, Util-linux, Vim, XZ Utils e

Zlib. On the other hands,BLFS is a complementary document

that describes the additional steps to bring more features to

LFS systems, such as graphical user, interface, thirdy-party

softwares, multimedia, and many others packages and its

necessary dependences.

LFS operating systems are created through an other Linux

operating system. Although there is a lot of documentation

about this process, it is very common to find errors during

installation. Main reasons for thisare differences between

distros, change of the source code links in Web, update of

distro, many differences of building packages in Linux

distributions, and mainly the high compilation time. Minor

seemingly unimportant errors compromise the whole LFS

installation process.

We emphasize that the building is highly dependent on the

proper configuration of the target platform. In the face of

these problems, we have developed a new simplified

automation toolkit of the LFS and BLFS processes for the

creation of FOSS operating systems. In this research it was

created the automation to build the operating system known

 International Journal on Data Science and Technology 2017; 3(1): 8-15 9

as INL, and its name is a recursive acronym for Is Not Linux.

Theobjective is to simplify and provide a complete and

reliable alternative to using other operating system kernels

beyond the Linux kernel. But, in this article, we focus on the

challenges of creating INL system with the minimal set of

tools of LFS and BLFS. This system supports a LXDE

graphical interface [8], Mozilla Firefox 50.0 browser [9], and

multimedia support. INL is designed for general purpose on

64-bit x86 architectures.

Remain sections are presented as follows: Section 2

describes the background of the project, and reports related

works; Section 3 describes the methodology of building of

the INL operating system; Section 4 discusses the challenges

of creating the system, and presents results; Finally, Section 5

makes the final considerations.

2. Background

This section describes the work related to the LFS project.

Figure 1 shows the graphical interface and the Firefox browser

running on the INL operating system. Although there are a lot

of fixes for many issues during setup process, it is observed

that LFS automation is still little explored.Nexttopics describe

briefly the many related projects as follows:

LFS:it is the basic design of building LFS systems. LFS

project explains the step-by-step for complete and functional

installation of the new Linux operating system software

compatible with various international standards.

BLFS (Beyond LFS): it is the project that explains the addition

of new features to the LFS system. Required, recommended, and

optional tools and configurations are described.

CLFS (Cross LFS)[3]: it is the project that explains the

creation of LFS systems for different architectures. Processes

for the x86, x86, 64-bit, SPARC, MIPS, PowerPC and ARM

architectures are currently described.

HLFS (Hardened LFS)[7]: it is the project for the security

aspects of configuration and security update of packages on

LFS systems.

ALFS (Automated LFS)[5]: It is a project for automating

the LFS installation. The project is also known as jhalfs, with

initials in tribute to its creator Jeremy Huntwork, has the

latest update in 2007 and currently does not run correctly on

newer versions of Ubuntu, despite being present on the LFS

LiveCD. It is based on a set of Shell Bash scripts that use

Subversion and xsltproc to download the source packages,

describe them in XML, extract them, and install them. Jhalf

scripts also allow you to fetch packages from the base system

instead of fetching them from the Internet. The authors report

that there is a possibility of recovery if errors are found in

construction. Package management is likewise supported. An

earlier version known as nALF by author Never Has was

written in C, but was discontinued. The current version of

jhalf has many undocumented bugs and its extensive set of

software makes hard maintenance for it.

LFScript (Linux From Script)[13]: it is an unofficial

project that provides scripts to automate the installation of

LFS. There has been no recent activity in the project since

2014 and the link to the LiveCD of the latest version is not

available. The project also has many undocumented bugs in

the installation. The main criticism is that not all package

installation scripts comply with what is recommended by the

official LFS website, which is a potential source of failures.

The scripts are divided into many folders. On the one hand,

this simplifies the update of the download links, but makes it

difficult to see the dependencies between the packages.

Related at these other solutions we emphasize that INL

automated installer follows strictly the procedures described

in the official website of the project with a few sets of

scripts.The process for creating the INL system assumes that

all packages and patches have been previously searched. So

far, only the ALFS project is recommended by LFS project.

Also, we note that related at these other projects; using

INL toolkit of building scripts has a lot of advantages, as

shows Table 1. Our toolkit has significant improvements

related at these other researched projects: a) reduced amount

of source code of the automated toolkit, and reduced amount

of languages used to perform the building; b) strictly follows

LFS and BLFS documentation; c) simplicity to understand,

modify, and update the setup scripts of our toolkit; d) log of

processes during the installation; e) well documented and

recent information about installation. A comparative

description about these features and other aspects are

described in Table 1.

Table 1.Comparative Description.

 INL Toolkit ALFS LFScript

Stable Versions [2016 – 2017] [2005 – 2007] [2011 – 2014]

Source Code Language Shell Script
C, Shell Script, Makefile, XSL,

other libraries

Shell Script, Makefile, libraries,

other binary files

Amount of Files 12 files Above of 100 files Aboveof 50 files

User Interaction during Install Process Yes No No

Show of Installation Progress Yes Yes No

Effort to Update Files From Installation

Reduced High High

(It follows the LFS procedure)
(It not follows strictly the LFS

procedure)

(It not follows strictly the LFS

procedure)

Platform Target x86_64 Generic Generic

Logs
Yes, and describes strictly issues

about LFS process.

Yes, but not involves details

specifically about LFS process

Yes, but not involves details

specifically about LFS process

Internet Access to Get Additional Files
Once at the initial step, only to

download LFS+BLFS packages

Download of XML files +

LFS+BLFS packages
Distributed during the installation.

Documentation Yes Yes, but it is not recent Yes, but it is not recent.

10 Lucio Agostinho Rocha: INL (Is Not Linux): Challenges of Building a New FOSS Operating System

Figure 1. INL Operating System Running Inside VirtualBox.

Figure 2. Workflow of the INL Building Process.

3. Methodology

A complete description of the process is described indetails

in the documentation available on the project website [1].

Because of this, in this section we focus on the workflow

description of the automation process. In this methodology,

the INL operating system will be created from scratch

through well-defined parts, explained as follows:

A. LFS Building Process

a. Partitioning: Building the INL operating system is

done by previously creating your primary partition.

Many alternatives are possible to create partitions, for

example: fdisk, mkfs, Gparted, and others. We use a

conventional Ubuntu installer to inform the distro

 International Journal on Data Science and Technology 2017; 3(1): 8-15 11

installation process of the two primary partitions: the

first for Ubuntu and the second for the INL, in

addition to one (1) common Swap partition for both.

After installing Ubuntu, just run the main script

INL1.sh. The remains of process is automated, and

uses automatic root and chroot user switching. Several

steps are performed with root user permissions in a

protected environment (chroot) to avoid toolchain

conflicts with packages that are already installed on

the host system. At the end of the process will be

created the INL system with LFS software, LXDE

graphical interface and Mozilla Firefox 50.0 browser.

The workflow in Figure 2 shows this process.

b. INL1 (Root user): This is the main program that

controls the other programs. Its function is to

coordinate the steps of the installer and treat the

dependencies.

c. INL2 (Chroot Environment): Installation of the

minimum packages in the base system, necessary for

compiling the packages in the next steps.

d. INL3 (Root user): Preparing the chroot environment.

The chroot environment runs an interactive shell with

a new root directory entered by the user. This means

that changes in this environment will not affect the

original environment. This is necessary to prevent new

installed packages from conflicting with those already

in the parent directory structure. In this environment

the new file and directory tree is created, initial device

nodes, / dev assembly, assembly of kernel virtual file

systems, symbolic links to directories, devices and

shared libraries, and creation of users, groups and their

permissions.

e. INL4 (Chroot Environment):This step is about the

installation of the INL packages, but now in the newly

installed Bash environment in the chroot environment.

The minimum packages will be compiled in this

protected environment.

f. INL5 (User chroot): This step is about the installation

in the chroot environment. This step will install the

Linux kernel, and add-on packages.

g. INL6 (Root user):This step is about the completion of

the installation in the chroot environment, with

network preparation, virtual terminals, file partition

table (fstab) and boot manager (Grub) for the first

boot. At the end of this step you have the functional

and bootable INL system. We complement the

installation with BLFS in the second part.

B. BLFS Complementary Process

In the previous steps a basic LFS system will be generated.

In this next part the INL is complemented with BLFS for the

addition of more functions:

a) INL_pos1: Preparation for automatic discovery of

devices with udev.

b) INL_pos2: Installation of VirtualBox Guest Additions.

c) INL_pos3: Network configuration for Internet access.

d) INL_pos4: Installation of basic packages for graphical

interfaces.

e) INL_pos5: Installation of the graphical interface LXDE

and Mozilla Firefox.

f) INL_pos6: Multimedia support (sound and video

drivers), Adobe Flash Player, OpenJDK, and additional

packages.

The first part of the LFS process, which uses 6 scripts,

with time configuration about 8 hours on hardware with 2

Intel i3 processors and 2GB of RAM. Major steps require

few user involve during installation. At the conclusion of this

process the bootable operating system will occupy little more

than 5GB of disk space. The second part installs a minimal

set of BLFS and the duration was not estimated. At the

conclusion of this other part we will have a LFS and BLFS

system with LXDE graphical interface and the Mozilla

Firefox 50.0 browser.

4. Results and Discussion

There are many undocumented details that hinder the

complete and functional creation of LFS and BLS systems.In

this section a discussion and important recommendations for

the success of the configuration, installation and execution of

the new system are made. The authors of the LFS project

suggest as prerequisites a minimum knowledge of Linux to

use the shell for various commands, as well as minimal

knowledge about how to install Linux software. As for

hardware, the main architecture of LFS is an AMD / Intel x86

32-bit and 64-bit x86 processors, and it also supports cross-

compiling for other architectures.The process of installing the

LFS system uses another Linux operating system, which we

will call the base system. This base system provides the

programs needed to build the new system. The base system

should be compatible with GNU / Linux tools, such as a

Slackware, Ubuntu, Red Hat, Fedora, Debian, Mandriva,

Suse or other Linux distribution. Empirically, it is suggested

using a new installed host system, which suggests using

virtualization to test multiple of them if necessary. Unless

strictly necessary, it is suggested performing the installation

for recent hardware with 64-bit architectures with at least

2GB of RAM, noting that 32-bit distributions also work on

64-bit architectures. Each base system has its own set of

tools, but it is recommended to install the packages and

patches for the LFS version to be followed. It is observed that

different base system distributions generate different

configuration processes as well. To start the LFS installation

it isnecessary to obtain the following minimum set of

packages in the base system: Bash, Binutils, Bison, Bzip2,

Coreutils, Diffutils, Findutils, Gawk, GCC, Glibc, Grep,

Gzip, Linux kernel, M4, Make, Patch, Perl, Sed, Tar and

Xz.Some recommendations are described below:

1) Minimal setup: For minimal LFS system installation

without graphical interface, we suggest at least 15 GB of disk

space and at least 2GB of RAM in multiprocessed Intel

architectures. But for an LFS system with graphical interface,

we suggest at least 30GB of disk space. For a virtualized

installation, changing the disk size is straightforward, but

must be preplanned so as not to interfere with the installation

12 Lucio Agostinho Rocha: INL (Is Not Linux): Challenges of Building a New FOSS Operating System

due to the lack of disk space of the virtual machine. It is

important to note that the recommended packages for a

particular version of LFS must be strictly used. The order of

installation of the packages must also be strictly adhered to it;

2) Processing time:At least 8 hours will be required to

complete the entire process for the first boot of LFS with the

INL installer as long as no errors are found. The LFS site

generally reports this value with Standard Build Units

(SBUs) to compare build times against the first compiled

package, in this case the Binutils package. For example, if

the Binutils compile time was 10 minutes, another 3.5 SBU

pack will take an average of 35 minutes to compile on the

same platform;

3) Optimization aspects:The software source code can be

removed after installation in order to increase the available

disk space. For example, only the uncompressed Mozilla

Firefox 50.0 software source code will occupy approximately

5GB of disk space and you will not need to keep this folder

after installation. It is important to strictly follow the steps

outlined in LFS and, in case of an error, do not proceed until

the problem is solved. This consideration is significantly

minimized with INL scripts. It is also important that all

packages are downloaded before using them to optimize the

installation time, and making checks of the packagesonly

when strictly necessary (eg.: verify if gcc binaries are

properly built). The LFS authors themselves report that this

check is optional for most users. There arerelatively good

chances that the package has been properly compiled if there

are no errors during compilation.Another note is to avoid

installing unnecessary documentation to save disk space. On

the other hand, it is suggested that you do not remove

packages with the package source code before finalizing the

installation of the entire LFS, unless strictly informed in the

process, to avoid linking problems before boot. In this regard,

it is important to leave the host active during critical steps,

and not create snapshots before the first boot. Snapshots

should not be created with active shared folders during the

installation process because they corrupt the new system in

the virtual machine. Another consideration is that the major

"villains" that burden the LFS build time are the GCC-related

packages. So it is interesting to make the most of the

hardware features: using make -jX allows you to use X

processors to build most packages.

4) Disk resizing:As illustrated in Figure 3, after installing

the packages it is useful to remove the folders with their

source code to conserve disk space. However, the resizing of

virtual machines has some details [11]: a) newer versions of

Linux identify the boot hard disk by the drive ID; B) Size

adjustment of VDI virtual disks with VBoxManage is only

incremental (without reducing image size); C) simple cloning

is not enough to make the disk booze again. Because of these

factors the following procedure was proposed. After the

installation, INL will be on the /dev/sda2 partition, because a

new partition has been created to install it, and the /dev/sda1

partition with Ubuntu can be removed. To use a disk with

only the /dev/sda1 partition and to resize (reduce) the space

used, a combination of actions with the GParted and

Clonezilla softwares (or fdisk, mkfs, and resize2fs commands)

is suggested as follows:

1) Use two images on the VirtualBox SATA controller. The

original image is connected to Serial ATA 0 (SATA0),

and the new one is connected to SATA1, but the latter is

not contained on the disk; 2) Gparted: create a

/dev/sdb1 partition on disk in SATA1.Without creating

the partition table on that disk, will not possible to do

cloning; 3) Gparted: Resize the partition /dev/sda2,

where INL is installed on SATA0. Note that the two

partitions must be the same size; 4) Clonezilla: Cloning

the /dev/sda2 partition to the /dev/sdb1 partition.

2) After cloning, it is still not possible to boot to the new

disk in /dev/sdb1, but the MBR (Master Boot Record)

partition table will be present. It is necessary to

reactivate your access via Grub. For this, use the disk in

SATA0, which has the INL in /dev/sda2:

a) From the Grub boot menu in /dev/sda2, inform with

the edit option to boot /dev/sdb1. The boot will be

performed on the new cloned partition.

b) After the boot of /dev/sdb1:

a. Update of /etc/fstab file: /dev/sdbX entries to

/dev/sdaX, where X indicates the partition number.

b. Update of /boot/grub/grub.cfg file: change entries to

(hd0,1), and /dev/sda1.

c. With the image that was booted (/dev/sdb1), type in

Bash: grub-install /dev/sdb

d. The Grub manager will be re-installed on the new

partition, and will make it bootable. Note that the

disk in SATA0 must be removed, and the change of

the SATA1 disk to SATA0 in the VirtualBox manager

has been performed.

Figure 3. Cloning, Resizing and Restarting of Grub.

 International Journal on Data Science and Technology 2017; 3(1): 8-15 13

5) Network Virtualization: VirtualBox Guest Additions

extends the possibilities of accessing the system through

shared folders and host machine network access. Additional

BLFS packages are downloaded to the host machine and sent

to the INL guest machine through shared folder. NAT

network access will not work with VirtualBox PCnet

interfaces, but for Intel / PRO MT and related interfaces. The

MAC address of the INL network interface should be the

same as the NAT interface reported for the virtual machine in

VirtualBox. After the first boot the Grub boot manager still

allows access to the 2 operating systems, but we suggest

deleting the primary partition of the base system and resizing

the INL partition to occupy that additional space.

6) Building of INL LiveCD:After the creation of LFS +

BLFS it is interesting to offer the distribution of the system

in a media, be it a liveCD or a USB drive. We illustrate this

boot process in Figure 4. This process uses Isolinux, which is

a boot loader for images, CDs and floppies that allows you to

boot kernels of different operating systems with parameter

passing. In summary, in the boot process, there is nowriting

permission enabled on the CD. Due to this issue, the boot

strategy is to create a set of temporary directories with write

permission in RAM. The process starts as follows:a) isolinux

boot; b) kernel uncompress; c)basic Linux system loading

(that is compressed in initramfs_data file);d) load of the

complete filesystem that is compressed inside root.ext2 file

of the liveCD. The next steps are the loading of the /dev

directories, recognizing of other devices, and passing of the

root control (with root and chroot commands) to the liveCD

file system loaded in RAM

(/etc/rc.d/rcS.d/S00createramdisk). In the remastering

process, this LiveCD only becomes bootable (via the create-

initramfs command from the liveCD itself) if the kernel

modules are available in /lib/modules. Also, it is necessary to

use two partitions in the base host to create this LiveCD

filesystem: one source partition to load source files and one

destination partition for the remastered image files. The

complete description of this process is in reference [1].

Figure 4. Boot process via LiveCD.

7) Linux compatibility: We believe that any Linux

application is able torun natively in the INL environment.

Figure 5 illustrates the MobileSim 0.7.3 [12] robotic

application simulator in the execution of a Java application

written in the Netbeans IDE 8.1, all installed in the INL.

Figure 6 shows the execution of the simulator V-REP [14]

also running in the INL. It has been found that the process of

installing additional packages (BLFS) is the most time-

consuming process because it is not sequential and, unlike

other distros, there is no package manager that simplifies the

installation. BLFS systems present a set of tools and

configurations that complement the minimum LFS.

Therefore, the required disk space will depend on the needs

and characteristics intended for the new operating system. In

BLFS the biggest challenge is to correctly enable the

graphical interface, because even the simplest interface

depends on more than 200 software packages with

mandatory, recommended and optional dependencies. We

suggest installing mandatory packages as well as

recommended packages, and avoid installing optional

packages unless required. Using the INL installer greatly

simplifies this step because a number of dependency bugs

and settings not mentioned in the BLFS documentation are

resolved. Finally, the Mozilla Firefox 50.0 browser is not

buildable in almost all 32-bit architectures [9][10]. It has

been empirically observed that at least 2 Intel i3 processors

and 2.5 GB of RAM are required for standard build.

5. Conclusions and Future Works

Our article presents a methodology to build acomplete

FOSS operating system. This automation is important

because simplify a lot of configurations that are necessary to

correct compilation of its many softwares related and its

dependencies. We argue that this process that is described in

this article is better than the other studied projects in many

aspects: a) reduced amount of scripts; and employ of shell

scripts as installation language; c) strict compromise in

follows LFS and BLFS; d) simplicity to modify/update the

source code of thetoolkit scripts; e) logs during the

installation; f) well documented and recent information about

installation. We develop an automated software to prepare

and compile each software that is necessary to create this

new operating system. The automated process of creating

new operating systems with INL provides a simple,

expandable, complete, and reliable alternative for creating

new LFS and BLFS systems. Creating from scratch operating

systems is only recommended for users seeking alternatives

in the face of the many limitations of performance of

conventional systems.

Although many operating systems are built to optimize the

capabilities of the target platform, there are also many

disadvantages: the installation process will require an

intricate set of configurations and fine control of the versions

and their dependencies. As future work is being considered

modifications in the toolkit scripts to provide more

interactivity with the users.

14 Lucio Agostinho Rocha: INL (Is Not Linux): Challenges of Building a New FOSS Operating System

Acknowledgment

The author gratefully acknowledges the contribution of the

Grupo de Pesquisa em Engenharia de Software e

Informática(GPESI) -

(http://dgp.cnpq.br/dgp/espelhogrupo/6364090264037055) a

Brazilian research group.

Figure 5. Java Application with MobileSim Robotic Simulator in INL.

Figure 6. Robotics simulator V-REP in INL.

References

[1] L. A. Rocha, “INL (Is Not Linux)”. [Online]:
http://paginapessoal.utfpr.edu.br/inl/inl, 2017.

[2] M. Burgess, and B. Dubbs, “Linux From Scratch Versão 7.5
Created by Gerard Beekmans”, [Online e-book]. Available:
http://linuxfromscratch.org, 2017.

[3] R. Oliver, J. Gifford, J. Ciccone, et al., “Cross Linux From
Scratch”. [Online], Available: http://trac.clfs.org, 2016.

 International Journal on Data Science and Technology 2017; 3(1): 8-15 15

[4] P. Gerum, K. Yaghmour, J. Masters, G. Ben-Yossef, “Building
Embedded Linux Systems”. O’Reilly, 2002

[5] J. Huntwork, “Automated LFS”. [Online] Available:
http://linuxfromscratch.org/alfs, 2007.

[6] B. Dubbs, D. R. Reno, DJ Lucas, et al., “Beyond Linux From
Scratch”. [Online], Available: http://linuxfromscratch.org/blfs,
2016.

[7] R. Connoly, M. C. Esparcia “Hardened Linux From Scratch”.
[Online], Available:http://linuxfromscratch.org/hlfs, 2016.

[8] LXDE. org, “A lightweight X11 for desktop environment”.
[Online] Available: http://lxde.org, 2016.

[9] Mozilla Foundation, “Mozilla Firefox”, [Online] Available:
http://mozilla.org/firefox, 2017.

[10] Mozilla Developer Network, “Building Firefox”, [Online]
Available: https://developer.mozilla.org/en-
US/docs/Mozilla/Developer_guide/Build_Instructions/Simple
_Firefox_build, 2017.

[11] Oracle Corporation,“Oracle VM VirtualBox – User Manual –
Cloning disk images”, pp. 92, [Online], Available:
http://www.virtualbox.org, 2016.

[12] MobileRobots Inc, ”MobileSim – Simulator for MobileRobots
/ ActivMedia Robots”. [Online]
Available:http://robots.mobilerobots.com, 2013.

[13] Marcel Van den Boer, “Linux from Script”. [Online]
Available:https://www.lfscript.org, 2016.

[14] Coppelia Robotics, "V-REP PRO Edu - Virtual Robot
Experimentation Platform". [Online], Available:
http://coppeliarobotics.com, 2016.

