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Abstract: The study of laminated magnetostrictive plate without shear deformation under thermal vibration is calculated by 

using the generalized differential quadrature (GDQ) method. In the thermoelastic stress-strain relations that containing the 

linear temperature rise and the magnetostrictive coupling terms with velocity feedback control. The dynamic differential 

equations without shear deformation are normalized and discrete into the dynamic discretized equations with GDQ method. 

Four edges of rectangular laminated magnetostrictive plate with simply supported boundary conditions are considered. In the 

moderately thick plate of laminated magnetostrictive plate, the effect of shear deformation should be considered for the 

computational controlled values of transverse center deflection and dominated normal stress. 
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1. Introduction 

There were several researches in the transverse 

displacement of vibrations for the laminated magnetostrictive 

plate. In 2016, Arani and Maraghi [1] made the study of the 

linear sinusoidal shear deformation plate theories for vibrations 

of magnetostrictive plate under follower force by using the 

differential quadrature method (DQM). There are some studied 

parameters e.g. follower force, velocity feedback gain, aspect 

ratio and thickness ratio were used to investigate the vibration 

behavior for the magnetostrictive plate. In 2015, Zhang et al. 

[2] used the finite element method (FEM) to analyze the 

nonlinear effect of constitutive model on the vibration of 

cantilever laminated composite plate with giant 

magnetostrictive materials (GMM) layers. Studied parameters 

in embedded placement of GMM layers and control gain were 

used to investigate the suppression on vibration. There were 

several researches in the transverse displacement with the 

effect of shear deformation for the laminated composite plates. 

In 2016, Sarangan and Singh [3] used the higher-order shear 

deformation theories (HSDT) to study the free vibration of 

laminated composite. Some of the HSDT, e.g. algebraic (ADT), 

exponential (EDT), hyperbolic (HDT), logarithmic (LDT) and 

trigonometric (TDT) were studied in Navier closed form 

solution, there are no transverse shear stresses at the top and 

bottom of the plate surfaces under free vibration. In 2012, 

Hong [4] studied the thermal vibration of magnetostrictive 

functionally graded materials (FGM) plate with the YNS 

first-order shear deformation theories (FSDT) under rapid 

heating. The transverse shear stresses exist at the top and 

bottom of the plate surfaces under thermal vibration and 

control gain. In 2008, Nguyen et al. [5] made the static 

numerical analyses for the FGM plate with the effect of shear 

deformation. Terfenol-D magnetostrictive materials have the 

magneto-electric coupling property under the action of 

magnetism and mechanism. In 2006, Ramirez et al. [6] 

presented the Ritz approach to obtain the free vibration solution 

for magneto-electro-elastic laminates. In 2005, Lee and Reddy 

[7] used the finite element method to analyze the non-linear 

response of laminated plate of magnetostrictive material under 

thermo-mechanical loading. In 2004, Lee et al. [8] obtained the 

transient vibration values of displacement for the Terfenol-D 

magnetostrictive material plate included the effect of shear 

deformation by using the FEM. In 2014, Hong [9] used the 

GDQ method with the effect of modified shear correction 

coefficient to make the thermal vibration analyses of FGM 

plates and mounted magnetostrictive layer. In 2009, Hong [10] 

used the GDQ method without the effect of shear coefficient to 

make the thermal transient response analyses of laminated 

magnetostrictive plates. It is interesting to study thermal 
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vibration in the transverse displacement and thermal stress of 

the laminated magnetostrictive plates without/with the shear 

deformation effect by using the GDQ method. 

2. Formulation 

2.1. Displacement Field 

The time dependent of displacements fields without the 

shear deformation are assumed in the following equation: 

0

0

( , , )

( , , )

( , , )

u u x y t

v v x y t

w w x y t

=
=
=

                (1) 

where 0u  and 0v  are tangential displacements, w  is 

transverse displacement of the middle-plane, t  is time.  

2.2. GDQ Method 

The GDQ method approximates the derivative of function, 

for example, the first-order and the second-order derivatives of 

function 
* ( , )f x y  at coordinates ( , )i jx y  of grid point ( , )i j  

can be discretized by [10] [11] [12] and rewritten as follows: 
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where ( )

,

m

i jA  and ( )

,

m

i jB  denote the weighting coefficients for 

the m th
-order derivative of the function 

*
( , )f x y  with 

respect to the x  and y  directions. 

2.3. Thermoelastic Stress-Strain Relations with 

Magnetostrictive Effect 

We consider a rectangular laminated magnetostrictive plate 

of the length a and b in the x , y  direction, respectively, 

under uniformly distributed loading and thermal effect as 

described in [10]. There are no shear stresses and shear 

strains in the laminate without shear effect assumption. The 

plane stress in a laminated material with magnetostrictive 

effect for the thk  layer are in the following equations [7]: 
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where 
x

α  and 
y

α  are the coefficients of thermal 

expansion, 
xy

α  is the coefficient of thermal shear. ijQ  is 

the so called transformed reduced stiffness can be in terms of 

the elastic stiffness of materials and can be explained more 

detail by Whitney [13].  

, ,x y xyε ε ε  are in-plane strains. 
0 1*
( , , ) ( , , )

z
T T x y t T x y t

h
∆ = +  

is the temperature difference between the laminate and curing 

area, z  is the coordinate in the thickness direction. *h  is 

the plate total thickness. ijeɶ  is the transformed 

magnetostrictive coupling moduli. 
zHɶ  is the magnetic field 

intensity, expressed in the following equation. 

( , , ) ( , , )z cH x y t k I x y t=ɶ ɶ  with velocity feedback control 

( , , ) ( )
w

I x y t c t
t

∂=
∂

ɶ  where ck  is the coil constant, ( , , )I x y tɶ  

is the coil current, ( )c t  is the control gain. 

2.4. Dynamic Equilibrium Differential Equations 

Without shear deformation effect, the dynamic equilibrium 

differential equations in terms of displacements included the 

magnetostrictive loads are expressed in the following matrix 

forms [10]: 
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where 
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, ,f f f  are the expressions of thermal loads ( , )N M , mechanical loads 
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in which 0ρ  is the density of ply, 1p  and 2p  are the 

in-plane distributed forces, q  is the applied pressure load. 

2.5. Dynamic Discretized Equations 

Without the shear deformation effect, we apply the 

weighting coefficients of discretized equations (2) in the 

two-dimensional generalized differential qradrature (GDQ) 

method to discrete the differential equations (4) under the 

vibration of time sinusoidal displacement and temperature: 
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where 
mn

ω  is natural frequency of the plate, γ  is frequency 

of applied heat flux. 

And the following non-dimensional parameters are 

introduced: 
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under the vibration of time sinusoidal displacement and 

temperature. 

We obtain the following dynamic discretized equations in 

matrix notation: 
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The elements of 3 9×  matrix [ ]AM , 3 2×  matrix [ ]KE  and 3 3×  matrix [ ]FQ  are as follows: 
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in which 
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discretized equation: 
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in which 
1

p  and 
2

p  are the in-plane distributed forces, q  

is the applied pressure load. The force resultants 

, ,x xy yN N N  and moment resultants , ,x xy yM M M  are 

expressed as follows: 

T
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T

y yM M=  

in which { }
T

N  is the thermal force resultant, { }
T

M  is the 

thermal moment resultant. 

3. Some Numerical Results and 

Discussions 

The typical upper surface magnetostrictive layer of the 

three-layer (0 / 90 / 0 )
m° ° °

 cross-ply laminates plate under 

four sides simply supported are considered, the superscript of 

m  denotes magnetostrictive layer. The elastic modules, 

material conductivity and specific heat of the typical host 

material and Terfenol-D magnetostrictive material are used 

the same value as in [10]. The grid points are used in the 

following coordinates: 
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Firstly, we make the dynamic convergence studies of center 

deflection amplitude ( / 2, / 2)W a b  without shear effects in 

the thermal vibration of sinusoidal temperature only (
0

0T = , 

1 1.0T F°= , 1p = 2p = 0q = ) at time 6sec, 1m n= =  mode 

shape, with 
8( ) 10ck c t = , aspect ratio / 1.0a b = , 

side-to-thickness ratio */a h =100, 50, 20 and 10. Figure 1 

shows that ( / 2, / 2)W a b  in the grid point N M× = 9 9× , 

11 11×  and 13 13×  of GDQ method for the three-layer 

(0 / 90 / 0 )m° ° °
 laminated plate. The number of grid points in 

N M× = 13 × 13 are found for ( / 2, / 2)W a b  in the 

convergence result and use further in the GDQ analyses of time 

responses for deflection and stress for */a h =100, 50, 20 and 

10. Figure 2 shows that deflection amplitude ( , / 2)W X b  in 

the grid point N M× =13 13×  of GDQ method for the thick 

(0 / 90 / 0 )m° ° °
 laminated plate 

* 10a h =  without shear 

effects. The maximum value of deflection amplitude (0.00016) 

occur nearly at the center position ( / 2x a= , / 2y b= ). 

 

Figure 1. Convergence for (0 / 90 / 0 )m° ° ° . 

 

Figure 2. ( , / 2)W X b  vs. X  for * 10a h = . 

The same control gain ( )
c

k c t  values are used as in analysis 

of Hong [10] to calculate the displacement and stress of 

typical three-layer (0 / 90 / 0 )m° ° °
 laminated 

magnetostrictive plate without shear effects. Figure 3 and 

Figure 4 show that the time response of the non-dimensional 

transverse center deflection amplitude ( / 2, / 2)W a b  with 

respective to time for thick 
* 10a h =  and thin 

* 100a h =  

laminated plate, respectively. And the controlled values of 

displacement ( / 2, / 2)W a b  without/with shear effects are 

compared. The ( / 2, / 2)W a b  without shear effect are found 

in smaller value than the ( / 2, / 2)W a b  with shear effect by 

using the GDQ computation method, typically in the thinner 

plate (
* 100a h = ). 

 

Figure 3. ( / 2, / 2)W a b  vs. t , * 10a h = . 

 

Figure 4. ( / 2, / 2)W a b  vs. t , * 100a h = . 

Figure 5 and Figure 6 show that the time response of the 
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dominated non-dimensional stress ( )*

1 2/x x xh T aEσ σ α=  at 

center position of lower surface *0.5Z h= −  with respective 

to time for thick 
* 10a h =  and thin 

* 100a h =  laminated 

plate, respectively. And the controlled values of stress xσ  

without/with shear effects are compared. The xσ  without 

shear effect are keep constant and found in smaller value than 

the xσ  with shear effect by using the GDQ computation 

method, typically in the thinner plate (
* 100a h = ). 

 

Figure 5. xσ  vs. t  for * 10a h = . 

 

Figure 6. xσ  vs. t  for * 100a h = . 

4. Conclusions 

The GDQ provides a method to compute the controlled 

deflection and stress in the cross (0 / 90 / 0 )m° ° °
 ply 

laminated magnetostrictive plate subjected to thermal 

vibration of sinusoidal temperature without shear deformation 

effect. Without/with shear deformation effect, especially, in 

the thin plate 
* 100a h = , the amplitude of transverse center 

deflection ( / 2, / 2)W a b  can be controlled into a smaller 

desirable value with the suitable control gain ( )ck c t  value, 

by using the GDQ method. Without shear deformation effect, 

the amplitude of the dominated stress xσ  is the same value 

under the corresponding controlled ( / 2, / 2)W a b  condition 

in the thick plate 
*

10a h =  and thin plate 
*

100a h =  of the 

GDQ method. In the moderately thick plate 
*

10a h =  of 

laminated magnetostrictive plate, the effect of shear 

deformation should be considered for the computational 

controlled values of transverse center deflection 

( / 2, / 2)W a b  and dominated stress xσ . In the future work, 

parametric study would be investigated by using the nonlinear 

coefficient term in the third-order shear deformation theory 

(TSDT) of displacement fields to calculate the displacement 

and stress for the thick plates. 
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